Exploring the Association between Negative Emotions and COVID-19 Vaccine Acceptance: A Cross-Sectional Analysis of Unvaccinated Adults in Sweden
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Data Collection
2.2. Dependent Variable (Vaccine Acceptance)
2.3. Independent Variables
2.4. Statistical Analysis
3. Results
3.1. Sample Characteristics and Descriptive Statistics
3.2. Factor Analysis and Descriptive Statistics of Negative Emotions toward the COVID-19 Pandemic
3.3. Multivariate Logistics Regression Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The European Health Report 2021. Taking Stock of the Health-Related Sustainable Development Goals in the COVID-19 Era with a Focus on Leaving No One Behind. 10 March 2022. Available online: https://www.who.int/europe/publications/i/item/9789289057547 (accessed on 8 June 2022).
- Brooks, S.K.; Webster, R.K.; Smith, L.E.; Woodland, L.; Wessely, S.; Greenberg, N.; Rubin, G.J. The psychological impact of quarantine and how to reduce it: Rapid review of the evidence. Lancet 2020, 395, 912–920. [Google Scholar] [CrossRef] [Green Version]
- Blom, V.; Lönn, A.; Ekblom, B.; Kallings, L.V.; Väisänen, D.; Hemmingsson, E.; Andersson, G.; Wallin, P.; Stenling, A.; Ekblom, Ö.; et al. Lifestyle Habits and Mental Health in Light of the Two COVID-19 Pandemic Waves in Sweden, 2020. Int. J. Environ. Res. Public Health 2021, 18, 3313. [Google Scholar] [CrossRef] [PubMed]
- Pandey, K.; Thurman, M.; Johnson, S.D.; Acharya, A.; Johnston, M.; Klug, E.A.; Olwenyi, O.A.; Rajaiah, R.; Byrareddy, S.N. Mental Health Issues During and After COVID-19 Vaccine Era. Brain Res. Bull. 2021, 176, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Gallè, F.; Sabella, E.A.; Roma, P.; Ferracuti, S.; Da Molin, G.; Diella, G.; Montagna, M.T.; Orsi, G.B.; Liguori, G.; Napoli, C. Knowledge and Lifestyle Behaviors Related to COVID-19 Pandemic in People over 65 Years Old from Southern Italy. Int. J. Environ. Res. Public Health 2021, 18, 10872. [Google Scholar] [CrossRef]
- Kabir, K.A.; Tanimoto, J. A cyclic epidemic vaccination model: Embedding the attitude of individuals toward vaccination into SVIS dynamics through social interactions. Phys. A Stat. Mech. Appl. 2021, 581, 126230. [Google Scholar] [CrossRef]
- Sweden-COVID-19 Overview-Johns Hopkins. Johns Hopkins Coronavirus Resource Center. Available online: https://coronavirus.jhu.edu/region/sweden (accessed on 11 August 2022).
- Savoia, E.; Piltch-Loeb, R.; Goldberg, B.; Miller-Idriss, C.; Hughes, B.; Montrond, A.; Kayyem, J.; Testa, M. Predictors of COVID-19 Vaccine Hesitancy: Socio-Demographics, Co-Morbidity, and Past Experience of Racial Discrimination. Vaccines 2021, 9, 767. [Google Scholar] [CrossRef]
- Piltch-Loeb, R.; Savoia, E.; Goldberg, B.; Hughes, B.; Verhey, T.; Kayyem, J.; Miller-Idriss, C.; Testa, M. Examining the effect of information channel on COVID-19 vaccine acceptance. PLoS ONE 2021, 16, e0251095. [Google Scholar] [CrossRef]
- Reno, C.; Maietti, E.; Fantini, M.P.; Savoia, E.; Manzoli, L.; Montalti, M.; Gori, D. Enhancing COVID-19 Vaccines Acceptance: Results from a Survey on Vaccine Hesitancy in Northern Italy. Vaccines 2021, 9, 378. [Google Scholar] [CrossRef]
- Raffetti, E.; Mondino, E.; Di Baldassarre, G. COVID-19 vaccine hesitancy in Sweden and Italy: The role of trust in authorities. Scand. J. Public Health 2022, 50, 803–809. [Google Scholar] [CrossRef]
- Kabir, K.M.A.; Hagishima, A.; Tanimoto, J. Hypothetical assessment of efficiency, willingness-to-accept and willingness-to-pay for dengue vaccine and treatment: A contingent valuation survey in Bangladesh. Hum. Vaccines Immunother. 2020, 17, 773–784. [Google Scholar] [CrossRef]
- Lu, P.; Kong, D.; Shelley, M. Risk Perception, Preventive Behavior, and Medical Care Avoidance among American Older Adults During the COVID-19 Pandemic. J. Aging Health 2021, 33, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Chou, W.-Y.S.; Budenz, A. Considering Emotion in COVID-19 Vaccine Communication: Addressing Vaccine Hesitancy and Fostering Vaccine Confidence. Health Commun. 2020, 35, 1718–1722. [Google Scholar] [CrossRef] [PubMed]
- Lieberoth, A.; Lin, S.-Y.; Stöckli, S.; Han, H.; Kowal, M.; Gelpi, R.; Chrona, S.; Tran, T.P.; Jeftić, A.; Rasmussen, J.; et al. Stress and worry in the 2020 coronavirus pandemic: Relationships to trust and compliance with preventive measures across 48 countries in the COVIDiSTRESS global survey. R. Soc. Open Sci. 2021, 8, 200589. [Google Scholar] [CrossRef]
- Rosenfeld, D.L.; Tomiyama, A.J. Jab my arm, not my morality: Perceived moral reproach as a barrier to COVID-19 vaccine uptake. Soc. Sci. Med. 2022, 294, 114699. [Google Scholar] [CrossRef] [PubMed]
- McCracken, L.M.; Badinlou, F.; Buhrman, M.; Brocki, K.C. Psychological impact of COVID-19 in the Swedish population: Depression, anxiety, and insomnia and their associations to risk and vulnerability factors. Eur. Psychiatry 2020, 63, e81. [Google Scholar] [CrossRef]
- Rondung, E.; Leiler, A.; Meurling, J.; Bjärtå, A. Symptoms of Depression and Anxiety During the Early Phase of the COVID-19 Pandemic in Sweden. Front. Public Health 2021, 9, 562437. [Google Scholar] [CrossRef]
- Ng, Q.X.; Lim, S.R.; Yau, C.E.; Liew, T.M. Examining the Prevailing Negative Sentiments Related to COVID-19 Vaccination: Unsupervised Deep Learning of Twitter Posts over a 16 Month Period. Vaccines 2022, 10, 1457. [Google Scholar] [CrossRef]
- Mugavero, M.J.; Raper, J.L.; Reif, S.; Whetten, K.; Leserman, J.; Thielman, N.M.; Pence, B.W. Overload: Impact of Incident Stressful Events on Antiretroviral Medication Adherence and Virologic Failure in a Longitudinal, Multisite Human Immunodeficiency Virus Cohort Study. Psychosom. Med. 2009, 71, 920–926. [Google Scholar] [CrossRef] [Green Version]
- Perez, V.; Uddin, M.; Galea, S.; Monto, A.S.; E Aiello, A. Stress, adherence to preventive measures for reducing influenza transmission and influenza-like illness. J. Epidemiol. Community Health 2011, 66, 605–610. [Google Scholar] [CrossRef]
- Tannenbaum, M.B.; Hepler, J.; Zimmerman, R.S.; Saul, L.; Jacobs, S.; Wilson, K.; Albarracín, D. Appealing to fear: A meta-analysis of fear appeal effectiveness and theories. Psychol. Bull. 2015, 141, 1178–1204. [Google Scholar] [CrossRef]
- Maddux, J.E.; Rogers, R.W. Protection motivation and self-efficacy: A revised theory of fear appeals and attitude change. J. Exp. Soc. Psychol. 1983, 19, 469–479. [Google Scholar] [CrossRef]
- Ludvigsson, J.F. The first eight months of Sweden’s COVID-19 strategy and the key actions and actors that were involved. Acta Paediatr. 2020, 109, 2459–2471. [Google Scholar] [CrossRef] [PubMed]
- Brusselaers, N.; Steadson, D.; Bjorklund, K.; Breland, S.; Sörensen, J.S.; Ewing, A.; Bergmann, S.; Steineck, G. Evaluation of science advice during the COVID-19 pandemic in Sweden. Humanit. Soc. Sci. Commun. 2022, 9, 91. [Google Scholar] [CrossRef]
- Heyerdahl, L.W.; Vray, M.; Lana, B.; Tvardik, N.; Gobat, N.; Wanat, M.; Tonkin-Crine, S.; Anthierens, S.; Goossens, H.; Giles-Vernick, T. Conditionality of COVID-19 vaccine acceptance in European countries. Vaccine 2022, 40, 1191–1197. [Google Scholar] [CrossRef] [PubMed]
- Brailovskaia, J.; Schneider, S.; Margraf, J. To vaccinate or not to vaccinate!? Predictors of willingness to receive COVID-19 vaccination in Europe, the U.S., and China. PLoS ONE 2021, 16, e0260230. [Google Scholar] [CrossRef]
- Lindholt, M.F.; Jørgensen, F.; Bor, A.; Petersen, M.B. Public acceptance of COVID-19 vaccines: Cross-national evidence on levels and individual-level predictors using observational data. BMJ Open 2021, 11, e048172. [Google Scholar] [CrossRef]
- Levin, A.T.; Hanage, W.P.; Owusu-Boaitey, N.; Cochran, K.B.; Walsh, S.P.; Meyerowitz-Katz, G. Assessing the age specificity of infection fatality rates for COVID-19: Systematic review, meta-analysis, and public policy implications. Eur. J. Epidemiol. 2020, 35, 1123–1138. [Google Scholar] [CrossRef]
- Mankowski, N.; Al-Qurayshi, Z.; Souza, S.; Campbell, B.; Beighley, A.; Denson, J.; Mauldin, B.; Bojanowski, C.; Friedlander, P.; Zifodya, J. The effect of race, socioeconomic status, and comorbidity on patients afflicted with COVID 19: A Local Perspective. Ann. Epidemiol. 2021, 64, 83–87. [Google Scholar] [CrossRef]
- Nguyen, K.H.; Huang, J.; Mansfield, K.; Corlin, L.; Allen, J.D. COVID-19 Vaccination Coverage, Behaviors, and Intentions among Adults with Previous Diagnosis, United States. Emerg. Infect. Dis. 2022, 28, 631–638. [Google Scholar] [CrossRef]
- Heffner, J.; Vives, M.-L.; FeldmanHall, O. Emotional responses to prosocial messages increase willingness to self-isolate during the COVID-19 pandemic. Pers. Individ. Differ. 2021, 170, 110420. [Google Scholar] [CrossRef]
- Gallè, F.; Sabella, E.A.; Roma, P.; De Giglio, O.; Caggiano, G.; Tafuri, S.; Da Molin, G.; Ferracuti, S.; Montagna, M.T.; Liguori, G.; et al. Knowledge and Acceptance of COVID-19 Vaccination among Undergraduate Students from Central and Southern Italy. Vaccines 2021, 9, 638. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, Y.; Yu, G. Exploring factors that influence COVID-19 vaccination intention in China: Media use preference, knowledge level and risk perception. Front. Psychol. 2022, 13, 954073. [Google Scholar] [CrossRef] [PubMed]
- Torales, J.; O’Higgins, M.; Castaldelli-Maia, J.M.; Ventriglio, A. The outbreak of COVID-19 coronavirus and its impact on global mental health. Int. J. Soc. Psychiatry 2020, 66, 317–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarkadi, A.; Torp, L.S.; Pérez-Aronsson, A.; Warner, G. OUP accepted manuscript. J. Pediatr. Psychol. 2021, 46, 939–949. [Google Scholar] [CrossRef]
- Tishelman, C.; Hultin-Rosenberg, J.; Hadders, A.; Eriksson, L.E. Fearing fear itself: Crowdsourced longitudinal data on COVID-19-related fear in Sweden. PLoS ONE 2021, 16, e0253371. [Google Scholar] [CrossRef]
- Sweden: COVID-19: Economic Update. 2022. February. Available online: https://www.mfat.govt.nz/nl/trade/mfat-market-reports/market-reports-europe/sweden-covid-19-economic-update-22-february/ (accessed on 20 July 2022).
- Savoia, E.; Harriman, N.W.; Piltch-Loeb, R.; Bonetti, M.; Toffolutti, V.; Testa, M.A. Exploring the Association between Misinformation Endorsement, Opinions on the Government Response, Risk Perception, and COVID-19 Vaccine Hesitancy in the US, Canada, and Italy. Vaccines 2022, 10, 671. [Google Scholar] [CrossRef]
Characteristics | Overall (N = 965) N (%) | Acceptant (N = 494) N (%) | Hesitant (N = 471) N (%) | p |
---|---|---|---|---|
Sex | ||||
Male | 477 (49.4) | 242 (50.7) | 235 (49.3) | 0.778 |
Female | 488 (50.6) | 252 (51.6) | 236 (48.4) | |
Age | ||||
18–34 | 383 (39.7) | 163 (42.6) | 220 (57.4) | <0.001 ** |
35–44 | 195 (20.2) | 83 (42.6) | 112 (57.4) | |
45–54 | 192 (19.9) | 111 (57.8) | 81 (42.2) | |
Over 54 | 195 (20.2) | 137 (70.3) | 58 (29.7) | |
Employment status | ||||
Unemployed | 300 (31.1) | 150 (50.0) | 150 (50.0) | 0.619 |
Employed | 665 (68.9) | 344 (51.7) | 321 (48.3) | |
Education | ||||
Less than high school | 101 (10.5) | 44 (43.6) | 57 (56.4) | 0.167 |
High school | 463 (48.0) | 234 (50.5) | 229 (49.5) | |
College and above | 401 (41.6) | 216 (53.9) | 185 (46.1) | |
Economic stress | ||||
No | 620 (64.2) | 356 (57.4) | 264 (42.6) | <0.001 ** |
Yes | 345 (35.8) | 138 (40.0) | 207 (60.0) | |
Comorbidities | ||||
No | 602 (62.4) | 281 (46.7) | 321 (53.3) | 0.001 ** |
One comorbidity | 245 (25.4) | 145 (59.2) | 100 (40.8) | |
Two or more comorbidities | 118 (12.2) | 68 (57.6) | 50 (42.4) | |
COVID-19 diagnosis | ||||
No | 772 (80.0) | 415 (53.8) | 357 (46.2) | 0.001 ** |
Yes | 193 (20.0) | 79 (40.9) | 114 (59.1) | |
Vaccination refusal in the past | ||||
No | 691 (71.6) | 371 (53.7) | 320 (46.3) | 0.014 * |
Yes | 274 (28.4) | 123 (44.9) | 151 (55.1) | |
Opinions about the government’s COVID-19 response | ||||
Not right | 699 (72.4) | 314 (44.9) | 385 (55.1) | <0.001 ** |
Just right | 266 (27.6) | 180 (67.7) | 86 (32.3) | |
Negative emotion degree | 0.009 ** | |||
Low | 348(36.1) | 158(45.4) | 190(54.6) | |
Medium | 329(34.1) | 170(51.7) | 159(48.3) | |
High | 288(29.8) | 166(57.6) | 122(42.4) |
Variables | Model 1 | Model 2 | Model 3 | |||
---|---|---|---|---|---|---|
OR(SE) | 95% CI | OR(SE) | 95% CI | OR(SE) | 95% CI | |
Sex | ||||||
Male | Ref | - | Ref | - | Ref | - |
Female | 1.13 (0.16) | 0.86–1.48 | 1.14 (0.16) | 0.86–1.50 | 1.09 (0.16) | 0.82–1.45 |
Age | ||||||
18–34 | Ref | - | Ref | - | Ref | - |
35–44 | 1.11 (0.20) | 0.78–1.58 | 1.02 (0.19) | 0.71–1.46 | 1.00 (0.19) | 0.69–1.47 |
45–54 | 2.14 (0.40) ** | 1.49–3.08 | 1.98 (0.37) ** | 1.37–2.86 | 1.74 (0.34) ** | 1.19–2.55 |
Over 54 | 3.79 (0.74) ** | 2.58–5.55 | 3.41 (0.69) ** | 2.30–5.06 | 2.82 (0.59) ** | 1.87–4.25 |
Employment status | ||||||
Unemployed | - | - | Ref | - | Ref | - |
Employed | - | - | 0.99 (0.16) | 0.73–1.35 | 1.07 (0.18) | 0.78–1.47 |
Education | ||||||
Less than high school | - | - | Ref | - | Ref | - |
High school | - | - | 1.26 (0.30) | 0.79–2.00 | 1.31 (0.32) | 0.82–2.11 |
College and above | - | - | 1.31 (0.32) | 0.81–2.11 | 1.33 (0.33) | 0.81–2.18 |
Economic stress | ||||||
No | - | - | Ref | - | Ref | - |
Yes | - | - | 0.46 (0.07) ** | 0.34–0.62 | 0.43 (0.07) ** | 0.31–0.59 |
Comorbidities | ||||||
No | - | - | - | - | Ref | - |
One comorbidity | - | - | - | - | 1.68 (0.29) ** | 1.20–2.36 |
Two or more comorbidities | - | - | - | - | 1.61 (0.38) * | 1.02–2.54 |
COVID-19 diagnosis | ||||||
No | - | - | - | - | Ref | - |
Yes | - | - | - | - | 0.59 (0.11) ** | 0.41–0.84 |
Vaccination refusal in the past | ||||||
No | - | - | - | - | Ref | - |
Yes | - | - | - | - | 0.70 (0.11) * | 0.52–0.96 |
Opinions about government’s COVID-19 response | ||||||
Not right | - | - | - | - | Ref | - |
Just right | - | - | - | - | 2.48 (0.40) ** | 1.80–3.40 |
Negative emotion degree | ||||||
Low | Ref | - | Ref | - | Ref | - |
Medium | 1.45 (0.23) * | 1.05–1.99 | 1.65 (0.27) ** | 1.19–2.28 | 1.75 (0.30) ** | 1.25–2.45 |
High | 2.02 (0.35) ** | 1.44–2.83 | 2.51 (0.46) ** | 1.75–3.60 | 2.71 (0.52) ** | 1.86–3.94 |
Models | AUC | AIC | ||
---|---|---|---|---|
Statistic (95% CI) | p | |||
Model 1 | − | 0.624 (0.589–0.659) | reference | 1295.0 |
+ | 0.651 (0.617–0.685) | 0.010 * | 1282.1 | |
Model 2 | − | 0.657 (0.623–0.691) | reference | 1282.0 |
+ | 0.681 (0.648–0.715) | 0.016 * | 1259.5 | |
Model 3 | − | 0.699 (0.666–0.731) | reference | 1236.6 |
+ | 0.723 (0.691–0755) | 0.003 ** | 1211.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; Harriman, N.W.; Piltch-Loeb, R.; Testa, M.A.; Savoia, E. Exploring the Association between Negative Emotions and COVID-19 Vaccine Acceptance: A Cross-Sectional Analysis of Unvaccinated Adults in Sweden. Vaccines 2022, 10, 1695. https://doi.org/10.3390/vaccines10101695
Wei Y, Harriman NW, Piltch-Loeb R, Testa MA, Savoia E. Exploring the Association between Negative Emotions and COVID-19 Vaccine Acceptance: A Cross-Sectional Analysis of Unvaccinated Adults in Sweden. Vaccines. 2022; 10(10):1695. https://doi.org/10.3390/vaccines10101695
Chicago/Turabian StyleWei, Ying, Nigel Walsh Harriman, Rachael Piltch-Loeb, Marcia A. Testa, and Elena Savoia. 2022. "Exploring the Association between Negative Emotions and COVID-19 Vaccine Acceptance: A Cross-Sectional Analysis of Unvaccinated Adults in Sweden" Vaccines 10, no. 10: 1695. https://doi.org/10.3390/vaccines10101695
APA StyleWei, Y., Harriman, N. W., Piltch-Loeb, R., Testa, M. A., & Savoia, E. (2022). Exploring the Association between Negative Emotions and COVID-19 Vaccine Acceptance: A Cross-Sectional Analysis of Unvaccinated Adults in Sweden. Vaccines, 10(10), 1695. https://doi.org/10.3390/vaccines10101695