Transient Expression of Flavivirus Structural Proteins in Nicotiana benthamiana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recombinant Binary Vectors
2.2. Transformation
2.3. Plant Growth
2.4. Syringe Infiltration
2.5. GFP Expression
2.6. Immunoblotting
2.7. Transmission Electron Microscopy
2.8. Animal Experiments
3. Results
3.1. Transient Protein Expression in N. benthamiana after Agroinfiltration
3.2. Successful Expression and Processing of TBEV Structural Proteins in N. benthamiana
3.3. Orally Administrated N. benthamiana Was Tolerated in Mice
3.4. Immunization with Commercial TBEV Vaccine Protected the Offspring
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Musso, D.; Gubler, D.J. Zika Virus. Clin. Microbiol. Rev. 2016, 29, 487–524. [Google Scholar] [CrossRef] [Green Version]
- Higuera, A.; Ramírez, J.D. Molecular epidemiology of dengue, yellow fever, Zika and Chikungunya arboviruses: An update. Acta Trop. 2019, 190, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Slunge, D.; Boman, A.; Studahl, M. Burden of Tick-Borne Encephalitis, Sweden. Emerg. Infect. Dis. 2022, 28, 314–322. [Google Scholar] [CrossRef]
- Tick Borne Encephalitis (TBE)—Sjukdomsstatistik—Folkhälsomyndigheten. Available online: https://www.folkhalsomyndigheten.se/folkhalsorapportering-statistik/statistik-a-o/sjukdomsstatistik/tick-borne-encephalitis-tbe/ (accessed on 10 August 2022).
- Hansson, K.E.; Rosdahl, A.; Insulander, M.; Vene, S.; Lindquist, L.; Gredmark-Russ, S.; Askling, H.H. Tick-Borne Encephalitis Vaccine Failures: A 10-Year Retrospective Study Supporting the Rationale for Adding an Extra Priming Dose in Individuals Starting at Age 50 Years. Clin. Infect. Dis. 2020, 70, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Santi, L.; Zhang, C. Plant-Made Biologics. BioMed Res. Int. 2014, 2014, 418064. [Google Scholar] [CrossRef]
- Tusé, D.; Tu, T.; McDonald, K.A. Manufacturing Economics of Plant-Made Biologics: Case Studies in Therapeutic and Industrial Enzymes. BioMed Res. Int. 2014, 2014, 256135. [Google Scholar] [CrossRef] [Green Version]
- Rosales-Mendoza, S.; Nieto-Gómez, R. Green Therapeutic Biocapsules: Using Plant Cells to Orally Deliver Biopharmaceuticals. Trends Biotechnol. 2018, 36, 1054–1067. [Google Scholar] [CrossRef] [PubMed]
- Daniell, H.; Singh, N.D.; Mason, H.; Streatfield, S.J. Plant-Made Vaccine Antigens and Biopharmaceuticals. Trends Plant Sci. 2009, 14, 669–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopertekh, L.; Schiemann, J. Transient Production of Recombinant Pharmaceutical Proteins in Plants: Evolution and Perspectives. Curr. Med. Chem. 2019, 26, 365–380. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Chen, Q.; Lai, H. Development of Antibody Therapeutics against Flaviviruses. Int. J. Mol. Sci. 2017, 19, 54. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Sun, H.; Lai, H.; Hurtado, J.; Chen, Q. Plant-Produced Zika Virus Envelope Protein Elicits Neutralizing Immune Responses That Correlate with Protective Immunity against Zika Virus in Mice. Plant Biotechnol. J. 2018, 16, 572–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardona-Ospina, J.A.; Sepúlveda-Arias, J.C.; Mancilla, L.; Gutierrez-López, L.G. Plant Expression Systems, a Budding Way to Confront Chikungunya and Zika in Developing Countries? F1000Research 2016, 5, 2121. [Google Scholar] [CrossRef] [PubMed]
- Krenek, P.; Samajova, O.; Luptovciak, I.; Doskocilova, A.; Komis, G.; Samaj, J. Transient Plant Transformation Mediated by Agrobacterium Tumefaciens: Principles, Methods and Applications. Biotechnol. Adv. 2015, 33, 1024–1042. [Google Scholar] [CrossRef] [PubMed]
- Leuzinger, K.; Dent, M.; Hurtado, J.; Stahnke, J.; Lai, H.; Zhou, X.; Chen, Q. Efficient Agroinfiltration of Plants for High-Level Transient Expression of Recombinant Proteins. J. Vis. Exp. 2013, 77, e50521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaghchhipawala, Z.; Rojas, C.M.; Senthil-Kumar, M.; Mysore, K.S. Agroinoculation and Agroinfiltration: Simple Tools for Complex Gene Function Analyses. Methods Mol. Biol. 2011, 678, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Chilton, M.D.; Drummond, M.H.; Merio, D.J.; Sciaky, D.; Montoya, A.L.; Gordon, M.P.; Nester, E.W. Stable Incorporation of Plasmid DNA into Higher Plant Cells: The Molecular Basis of Crown Gall Tumorigenesis. Cell 1977, 11, 263–271. [Google Scholar] [CrossRef]
- D’Aoust, M.-A.; Couture, M.M.-J.; Charland, N.; Trépanier, S.; Landry, N.; Ors, F.; Vézina, L.-P. The Production of Hemagglutinin-Based Virus-like Particles in Plants: A Rapid, Efficient and Safe Response to Pandemic Influenza. Plant Biotechnol. J. 2010, 8, 607–619. [Google Scholar] [CrossRef]
- Hager, K.J.; Pérez Marc, G.; Gobeil, P.; Diaz, R.S.; Heizer, G.; Llapur, C.; Makarkov, A.I.; Vasconcellos, E.; Pillet, S.; Riera, F.; et al. Efficacy and Safety of a Recombinant Plant-Based Adjuvanted Covid-19 Vaccine. N. Engl. J. Med. 2022, 386, 2084–2096. [Google Scholar] [CrossRef] [PubMed]
- Ward, B.J.; Makarkov, A.; Séguin, A.; Pillet, S.; Trépanier, S.; Dhaliwall, J.; Libman, M.D.; Vesikari, T.; Landry, N. Efficacy, Immunogenicity, and Safety of a Plant-Derived, Quadrivalent, Virus-like Particle Influenza Vaccine in Adults (18–64 Years) and Older Adults (≥65 Years): Two Multicentre, Randomised Phase 3 Trials. Lancet 2020, 396, 1491–1503. [Google Scholar] [CrossRef]
- Ward, B.J.; Séguin, A.; Couillard, J.; Trépanier, S.; Landry, N. Phase III: Randomized Observer-Blind Trial to Evaluate Lot-to-Lot Consistency of a New Plant-Derived Quadrivalent Virus like Particle Influenza Vaccine in Adults 18–49 Years of Age. Vaccine 2021, 39, 1528–1533. [Google Scholar] [CrossRef] [PubMed]
- Mason, H.S.; Warzecha, H.; Mor, T.; Arntzen, C.J. Edible Plant Vaccines: Applications for Prophylactic and Therapeutic Molecular Medicine. Trends Mol. Med. 2002, 8, 324–329. [Google Scholar] [CrossRef]
- Kushnir, N.; Streatfield, S.J.; Yusibov, V. Virus-like Particles as a Highly Efficient Vaccine Platform: Diversity of Targets and Production Systems and Advances in Clinical Development. Vaccine 2012, 31, 58–83. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, M.F.; Jennings, G.T. Vaccine Delivery: A Matter of Size, Geometry, Kinetics and Molecular Patterns. Nat. Rev. Immunol. 2010, 10, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Ramjee, L.; Lemay, W.; Vurgun, N.; Charland, N.; Bauch, C.T.; Pullagura, G.R.; Houle, S.K.D.; Tremblay, G. Projected Impact of a Plant-Derived Vaccine on the Burden of Seasonal Influenza in Canada. Hum. Vaccines Immunother. 2021, 17, 3643–3651. [Google Scholar] [CrossRef]
- Marsian, J.; Lomonossoff, G.P. Molecular Pharming—VLPs Made in Plants. Curr. Opin. Biotechnol. 2016, 37, 201–206. [Google Scholar] [CrossRef] [Green Version]
- Cuevas-Juárez, E.; Pando-Robles, V.; Palomares, L.A. Flavivirus Vaccines: Virus-like Particles and Single-Round Infectious Particles as Promising Alternatives. Vaccine 2021, 39, 6990–7000. [Google Scholar] [CrossRef]
- Sainsbury, F.; Thuenemann, E.C.; Lomonossoff, G.P. PEAQ: Versatile Expression Vectors for Easy and Quick Transient Expression of Heterologous Proteins in Plants. Plant Biotechnol. J. 2009, 7, 682–693. [Google Scholar] [CrossRef]
- Lindbo, J.A. High-Efficiency Protein Expression in Plants from Agroinfection-Compatible Tobacco Mosaic Virus Expression Vectors. BMC Biotechnol. 2007, 7, 52. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Nelson, R.S.; Sherwood, J.L. Enhanced Recovery of Transformants of Agrobacterium Tumefaciens after Freeze-Thaw Transformation and Drug Selection. Biotechniques 1994, 16, 664–668. [Google Scholar]
- Matić, S.; Masenga, V.; Poli, A.; Rinaldi, R.; Milne, R.G.; Vecchiati, M.; Noris, E. Comparative Analysis of Recombinant Human Papillomavirus 8 L1 Production in Plants by a Variety of Expression Systems and Purification Methods. Plant Biotechnol. J. 2012, 10, 410–421. [Google Scholar] [CrossRef]
- Thuenemann, E.C.; Lenzi, P.; Love, A.J.; Taliansky, M.; Bécares, M.; Zuñiga, S.; Enjuanes, L.; Zahmanova, G.G.; Minkov, I.N.; Matić, S.; et al. The Use of Transient Expression Systems for the Rapid Production of Virus-like Particles in Plants. Curr. Pharm. Des. 2013, 19, 5564–5573. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.-G.; Wu, S.-C. Glutamic Acid at Residue 125 of the PrM Helix Domain Interacts with Positively Charged Amino Acids in E Protein Domain II for Japanese Encephalitis Virus-Like-Particle Production. J. Virol. 2014, 88, 8386–8396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stiasny, K.; Fritz, R.; Pangerl, K.; Heinz, F.X. Molecular Mechanisms of Flavivirus Membrane Fusion. Amino Acids 2011, 41, 1159–1163. [Google Scholar] [CrossRef]
- Blazevic, J.; Rouha, H.; Bradt, V.; Heinz, F.X.; Stiasny, K. Membrane Anchors of the Structural Flavivirus Proteins and Their Role in Virus Assembly. J. Virol. 2016, 90, 6365–6378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chávez, J.H.; Silva, J.R.; Amarilla, A.A.; Moraes Figueiredo, L.T. Domain III Peptides from Flavivirus Envelope Protein Are Useful Antigens for Serologic Diagnosis and Targets for Immunization. Biologicals 2010, 38, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Santi, L.; Huang, Z.; Mason, H. Virus-like Particles Production in Green Plants. Methods 2006, 40, 66–76. [Google Scholar] [CrossRef] [Green Version]
- Hesketh, E.L.; Meshcheriakova, Y.; Dent, K.C.; Saxena, P.; Thompson, R.F.; Cockburn, J.J.; Lomonossoff, G.P.; Ranson, N.A. Mechanisms of Assembly and Genome Packaging in an RNA Virus Revealed by High-Resolution Cryo-EM. Nat. Commun. 2015, 6, 10113. [Google Scholar] [CrossRef] [Green Version]
- Peyret, H.; Lomonossoff, G.P. When Plant Virology Met Agrobacterium: The Rise of the Deconstructed Clones. Plant Biotechnol. J. 2015, 13, 1121–1135. [Google Scholar] [CrossRef] [Green Version]
- Kalthoff, D.; Giritch, A.; Geisler, K.; Bettmann, U.; Klimyuk, V.; Hehnen, H.-R.; Gleba, Y.; Beer, M. Immunization with Plant-Expressed Hemagglutinin Protects Chickens from Lethal Highly Pathogenic Avian Influenza Virus H5N1 Challenge Infection. J. Virol. 2010, 84, 12002–12010. [Google Scholar] [CrossRef] [Green Version]
- Kanagarajan, S.; Tolf, C.; Lundgren, A.; Waldenström, J.; Brodelius, P.E. Transient Expression of Hemagglutinin Antigen from Low Pathogenic Avian Influenza A (H7N7) in Nicotiana Benthamiana. PLoS ONE 2012, 7, e33010. [Google Scholar] [CrossRef] [Green Version]
- Mohammadzadeh, S.; Khabiri, A.; Roohvand, F.; Memarnejadian, A.; Salmanian, A.H.; Ajdary, S.; Ehsani, P. Enhanced-Transient Expression of Hepatitis C Virus Core Protein in Nicotiana Tabacum, a Protein With Potential Clinical Applications. Hepat. Mon. 2014, 14, e20524. [Google Scholar] [CrossRef] [PubMed]
- Holmberg, N.; Farrés, J.; Bailey, J.E.; Kallio, P.T. Targeted Expression of a Synthetic Codon Optimized Gene, Encoding the Spruce Budworm Antifreeze Protein, Leads to Accumulation of Antifreeze Activity in the Apoplasts of Transgenic Tobacco. Gene 2001, 275, 115–124. [Google Scholar] [CrossRef]
- Goodin, M.M.; Zaitlin, D.; Naidu, R.A.; Lommel, S.A. Nicotiana Benthamiana: Its History and Future as a Model for Plant-Pathogen Interactions. Mol. Plant-Microbe Interact. 2015, 2015, 28–39. [Google Scholar] [CrossRef]
- Hecht, S.S. Tobacco Carcinogens, Their Biomarkers and Tobacco-Induced Cancer. Nat. Cancer 2003, 3, 733–744. [Google Scholar] [CrossRef]
- Moghbel, N.; Ryu, B.; Ratsch, A.; Steadman, K.J. Nicotine Alkaloid Levels, and Nicotine to Nornicotine Conversion, in Australian Nicotiana Species Used as Chewing Tobacco. Heliyon 2017, 3, e00469. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, H. In Utero Exposure to Tobacco and Alcohol Modifies Neurobehavioral Development in Mice Offspring: Consideration a Role of Oxidative Stress. Pharmacol. Res. 2004, 49, 467–473. [Google Scholar] [CrossRef]
- Yu, C.; Zhang, Z.; Liu, Y.; Zong, Y.; Chen, Y.; Du, X.; Chen, J.; Feng, S.; Hu, J.; Cui, S.; et al. Toxicity of Smokeless Tobacco Extract after 184-Day Repeated Oral Administration in Rats. Int. J. Environ. Res. Public Health 2016, 13, 281. [Google Scholar] [CrossRef] [Green Version]
- Rybicki, E.P. Plant-Based Vaccines against Viruses. Virol. J. 2014, 11, 205. [Google Scholar] [CrossRef]
- Pillet, S.; Aubin, É.; Trépanier, S.; Poulin, J.-F.; Yassine-Diab, B.; Ter Meulen, J.; Ward, B.J.; Landry, N. Humoral and Cell-Mediated Immune Responses to H5N1 Plant-Made Virus-like Particle Vaccine Are Differentially Impacted by Alum and GLA-SE Adjuvants in a Phase 2 Clinical Trial. NPJ Vaccines 2018, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Turtle, L.; Griffiths, M.J.; Solomon, T. Encephalitis Caused by Flaviviruses. QJM 2012, 105, 219–223. [Google Scholar] [CrossRef]
- Flaviviridae | Viral Hemorrhagic Fevers (VHFs) | CDC. Available online: https://www.cdc.gov/vhf/virus-families/flaviviridae.html (accessed on 23 August 2022).
- Bray, M. Hemorrhagic Fever Viruses. In Encyclopedia of Microbiology; Academic Press: San Diego, CA, USA, 2009; pp. 339–353. ISBN 978-0-12-373944-5. [Google Scholar]
- Ternovoi, V.A.; Kurzhukov, G.P.; Sokolov, Y.V.; Ivanov, G.Y.; Ivanisenko, V.A.; Loktev, A.V.; Ryder, R.W.; Netesov, S.V.; Loktev, V.B. Tick-Borne Encephalitis with Hemorrhagic Syndrome, Novosibirsk Region, Russia, 1999. Emerg. Infect. Dis. 2003, 9, 743–746. [Google Scholar] [CrossRef] [PubMed]
- Sarkari, N.B.S.; Thacker, A.K.; Barthwal, S.P.; Mishra, V.K.; Prapann, S.; Srivastava, D.; Sarkari, M. Japanese Encephalitis (JE). Part I: Clinical Profile of 1,282 Adult Acute Cases of Four Epidemics. J. Neurol. 2011, 259, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Liu, X.; Shu, T.; Deng, W.; Liao, M.; Zheng, Y.; Zheng, X.; Zhang, X.; Li, T.; Fan, W.; et al. A Live-Attenuated Zika Virus Vaccine with High Production Capacity Confers Effective Protection in Neonatal Mice. J. Virol. 2021, 95, e0038321. [Google Scholar] [CrossRef] [PubMed]
Plant Specie | Plant/Cage (g) | Plant Consumed (g) | Average Weight Gain (g ± SD) |
---|---|---|---|
Beta vulgaris | 25 | 23.0 | 2.56 ± 0.43 |
Beta vulgaris | 50 | 44.7 | 2.42 ± 0.45 |
Beta vulgaris | 100 | 74.5 | 2.58 ± 0.15 |
Nicotiana benthamiana | 25 | 22.2 | 2.46 ± 0.67 |
Nicotiana benthamiana | 50 | 39.5 | 1.58 ± 0.63 |
Nicotiana benthamiana | 100 | 67.3 | 1.70 ± 1.22 |
Lactuca sativa | 25 | 23.7 | 2.38 ± 1.03 |
Lactuca sativa | 50 | 46.6 | 2.46 ± 0.39 |
Lactuca sativa | 100 | 73.9 | 2.74 ± 1.12 |
Tetragonia tetragonioides | 25 | 23.2 | 2.36 ± 0.88 |
Spinacia oleracea | 25 | 23.7 | 1.54 ± 0.56 |
Spinacia oleracea | 50 | 44.1 | 1.70 ± 0.30 |
Control 1 | 2.62 ± 0.25 | ||
Control 2 | 1.95 ± 0.66 |
Treatment | N. benthamiana+VLP | N. benthamiana | Ticovac | Control Female Mice | Control Male Mice | ||||
---|---|---|---|---|---|---|---|---|---|
First immunization (day 0) | 25 g | 25 g | 25 g | 25 g | 0.5 mL | 0.5 mL | |||
Second immunization (day 14) | 25 g | 25 g | 25 g | 25 g | 0.5 mL | 0.5 mL | |||
Third immunization (day 28) | 25 g | 25 g | 25 g | 25 g | 0.5 mL | 0.5 mL | |||
TBEV infection of adult mice (day 35) | TBEV | Breeding | TBEV | Breeding | TBEV | Breeding | TBEV | Breeding | Breeding |
TBEV infection of offspring (day 21 after birth) | TBEV | TBEV | TBEV | TBEV |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asghar, N.; Melik, W.; Paulsen, K.M.; Pedersen, B.N.; Bø-Granquist, E.G.; Vikse, R.; Stuen, S.; Andersson, S.; Strid, Å.; Andreassen, Å.K.; et al. Transient Expression of Flavivirus Structural Proteins in Nicotiana benthamiana. Vaccines 2022, 10, 1667. https://doi.org/10.3390/vaccines10101667
Asghar N, Melik W, Paulsen KM, Pedersen BN, Bø-Granquist EG, Vikse R, Stuen S, Andersson S, Strid Å, Andreassen ÅK, et al. Transient Expression of Flavivirus Structural Proteins in Nicotiana benthamiana. Vaccines. 2022; 10(10):1667. https://doi.org/10.3390/vaccines10101667
Chicago/Turabian StyleAsghar, Naveed, Wessam Melik, Katrine M. Paulsen, Bendikte N. Pedersen, Erik G. Bø-Granquist, Rose Vikse, Snorre Stuen, Sören Andersson, Åke Strid, Åshild K. Andreassen, and et al. 2022. "Transient Expression of Flavivirus Structural Proteins in Nicotiana benthamiana" Vaccines 10, no. 10: 1667. https://doi.org/10.3390/vaccines10101667
APA StyleAsghar, N., Melik, W., Paulsen, K. M., Pedersen, B. N., Bø-Granquist, E. G., Vikse, R., Stuen, S., Andersson, S., Strid, Å., Andreassen, Å. K., & Johansson, M. (2022). Transient Expression of Flavivirus Structural Proteins in Nicotiana benthamiana. Vaccines, 10(10), 1667. https://doi.org/10.3390/vaccines10101667