Understanding Immune Responses to Lassa Virus Infection and to Its Candidate Vaccines
Abstract
:1. Introduction
2. LASV Transmission and LF Disease Pathogenesis
3. LASV Genomic Structure and Mechanisms of Immune Responses to and Evasion against LASV Infection
4. Immune Responses to LF Candidate Vaccines
4.1. Measles Virus Platform
4.2. Adenovirus Vector-Based Platforms
4.3. Live Attenuated Virus-Based Platforms
4.4. Vesicular Stomatitis Virus-Based Platforms
4.5. Recombinant Vaccinia Virus-Based Platforms
4.6. Replicon RNA Viral Vector-Based Platforms
5. Immune Competent and Incompetent Animal Models of LF
6. Future Directions
Vaccine Candidate | Animal Model | Antigen or Virus Strain * | Dose Number | Dose ** | Days to Challenge | SurvivalRate (%) | Test Parameter(s) | Date | Reference |
---|---|---|---|---|---|---|---|---|---|
Recombinant vesicular stomatitis virus | Guinea pig (strain 13) | GPC and NP | 1 | 1 × 106 | 28 | 100 | Antibody | 2015 | [150] |
Cynomolgus macaque | GPC | 1 | 2 × 107–6 × 107 | 28 | 100 | Antibody and T-cell IFN-gamma | 2005, 2015 | [121,150] | |
DNA | Guinea pig (strain 13) | GPC | 3 | 1 × 105 | 63 | 100 | Antibody and T-cell IFN-gamma | 2013 | [151] |
Recombinant Yellow fever 17D | Guinea pig (strain 13) | GPC-AV | 1 | 1 × 105 | 21 | 80 | Antibody | 2006 | [152] |
Guinea pig (strain 13) | GP1 and GP2 | 2 | 5 × 106 | 44 | 83 | Antibody | 2011 | [153] | |
Recombinant Mopeia/Lassa fever (ML29) | Guinea pig (strain 13) | GPC and NP | 1 | 1 × 103 | 30 | 100 | Antibody | 2005 | [106] |
Marmoset | GPC and NP | 1 | 1 × 103 | 30 | 100 | Antibody and T-cell IFN-gamma | 2008 | [58] | |
rLASV-GPC/CD | Guinea pig (strain 13 and Hartley) | GPC (with codon deoptimization) | 2 | 1 × 102–1 × 104 | 30 | 100 | Antibody | 2020 | [109,154] |
Vaccinia (NYBH) vectored virus | Rhesus and cynomolgus macaques | GP1, GP2, GPC, and NP | 1,2 | 1 × 109 | 62-488 | 90 (GPC/NP vaccines) | Antibody and T-cell IFN-gamma | 1989 | [155] |
Nanocarrier rGP1 encapsulated into polymerase | C57BL/6 mice | GP1–unknown | 2 | 10 µg | 14 and 28 | 0–all animals sacrificed at 28 days, no survival data | Antibody/CD4 T-cell/B cell | 2017 | [156] |
Chimpanzee adenovirus–ChAdOx1-Lassa-GP | Guinea pig (Hartley) | GP | 2 | Antibody/CD4 T cell | [93] | ||||
Mice and guinea pigs (Hartley) | GPC | 1 | 1 × 108 IU or 3 × 108 IU | 28 and 56 | 100 | Antibody/CD4 T cell | 2021 | [104] | |
Chimpanzee adenovirus–Ad5 (E1 and E2b deleted) | Mice and guinea pigs (Hartley) | GPC and NP | 2 | 1 × 1010 IU | 40 and 56 | 100 | Antibody | 2019 | [103] |
Lassa virus-like particles | BALB/c mice | Z, GPC, and NP | 2 | 10 µg | N/A | 0–Challenge virus not assessed | Antibody/CD4 T Cell | 2010 | [17] |
Inactivated LASV | Rhesus macaques | Inactivated LASV–Unknown strain | 1 | 1 × 104 | 108 | 0 | Antibody | 1992 | [157] |
Measles virus (MV) backbone | Cynomolgus macaques | GPC and NP | 1 | 2 × 106 TCID50 | 37 | 100 | Antibody/CD4 T Cell | 2021 | [100] |
MV-LASV | Cynomolgus macaques | GPC and NP | 1 and 2 | 3000 FFU | 37 | 100 | Antibody/CD4 and 8 T cell | 2021 | [102] |
Humans (Phase 1) | GPC and NP | 2 (low and high doses) | Not known | 0 -Challenge virus not assessed | Adverse events, injection site reactions, Antibodies, Neutralizing antibodies, and T-cell IFN-gamma | 2021 | [101] | ||
INO-4500 (DNA-based vaccine) | Humans(Phase 1) | GPC | 1-2 intradermal | 1 mg followed by EP with CELLECTRA 2000 (electroporation) | N/A | 0–Challenge virus not assessed | Adverse events, injection site reactions, Antibodies, Neutralizing antibodies, and T-cell IFN-gamma | 2020 | [94] |
Alphavirus | CBA/J mice | VLPs–GPC genes of clades I and IV, LASV/NIG/LP and LASV/Josiah | 21 | N/A | Challenge virus not assessed | Challenge virus not assessed | Antibody/CD4 T Cell | 2018 | [158] |
Venezuelan equine encephalitis virus replicon(Alphavirus) | Guinea pig (strain 13) | GPC and NP | 3 | 1 × 107 | 112 | 100 | Antibody | 2001 | [159] |
Replicon RNA viral vector | Guinea pigs (strain 13/N) | GPC | 1 subcutaneous | 1 × 107 FFU | 28 | 100 (Homologous and heterologous) | Antibody | 2020, 2022 | [127,128,129] |
Animal Model * | Virus | Disease Signs | Pros | Cons | Reference |
---|---|---|---|---|---|
M. natalensis | LASV | No persistent infection or signs of disease |
|
| [132] |
MORV | Persistent infection and horizontal transmission in young animals. Animals older than two weeks rapidly clear infection.Non-lethal infection model |
|
| [131] | |
Macaques | LASV | Similar signs of LF disease as humans, viremia levels correlate with disease/survival outcomes.Lethal infection model |
|
| [47,126,134,135,160] |
LCMV | Lethal (intravenous) infection model |
|
| [143,144] | |
IFNAR-/- mice | LASV | Non-lethal acute infection model with persistent viremia |
|
| [126,136,137] |
chimeric IFNAR-/-B6 | LASV | Lethal infection model |
| [69,126] | |
Strain13 Guinea pigs | LASV | Lethal infection model |
|
| [126] |
PICV | Lethal infection model |
|
| [126,161] | |
Hartley Guinea pigs | LASV | Lethal infection model (30–70% of animals with Josiah strain) |
|
| [103,126,140,161] |
LASV (LF2384) | Lethal infection model (30–70% of animals) |
|
| [103,140] | |
PICV | Lethal infection model |
|
| [141,142,145,146,147] |
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brisse, M.E.; Ly, H. Hemorrhagic Fever-Causing Arenaviruses: Lethal Pathogens and Potent Immune Suppressors. Front. Immunol. 2019, 10, 372. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Lassa Fever. 26 April 2022. Available online: https://www.cdc.gov/vhf/lassa/index.html (accessed on 27 September 2022).
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The Global Distribution and burden of Dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef] [PubMed]
- Lukashevich, S.; Paessler, S.; de la Torre, J.C. Lassa virus diversity and feasibility for universal prophylactic vaccine. F1000Research 2019, 8, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Jing, Q.; Wang, M. Dengue epidemiology. J. Glob. Health 2019, 3, 37–45. [Google Scholar] [CrossRef]
- Mylne, A.Q.N.; Pigott, D.M.; Longbottom, J.; Shearer, F.; Duda, K.A.; Messina, J.P.; Weiss, D.J.; Moyes, C.L.; Golding, N.; Hay, S.I. Mapping the zoonotic niche of Lassa fever in Africa. Trans. R. Soc. Trop. Med. Hyg. 2015, 109, 483–492. [Google Scholar] [CrossRef]
- World Health Organisation. Lassa Fever. 2017. Available online: https://www.who.int/news-room/fact-sheets/detail/lassa-fever (accessed on 27 September 2022).
- Lo Iacono, G.; Cunningham, A.A.; Fichet-Calvet, E.; Garry, R.F.; Grant, D.S.; Khan, S.H.; Leach, M.; Moses, L.M.; Schieffelin, J.S.; Shaffer, J.G.; et al. Using Modelling to Disentangle the Relative Contributions of Zoonotic and Anthroponotic Transmission: The Case of Lassa Fever. PLoS Negl. Trop. Dis. 2015, 9, e3398. [Google Scholar] [CrossRef]
- Olayemi, A.; Cadar, D.; Magassouba, N.; Obadare, A.; Kourouma, F.; Oyeyiola, A.; Fasogbon, S.; Igbokwe, J.; Rieger, T.; Bockholt, S.; et al. New Hosts of The Lassa Virus. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef]
- Agbonlahor, D.E.; Erah, A.; Agba, I.M.; Oviasogie, F.E.; Ehiaghe, A.F.; Wankasi, M.; Eremwanarue, O.A.; Ehiaghe, I.J.; Ogbu, E.C.; Iyen, R.I. Prevalence of lassa virus among rodents trapped in three south-south states of Nigeria. J. Vector Borne Dis. 2017, 54, 146–150. [Google Scholar]
- Olayemi, A.; Oyeyiola, A.; Obadare, A.; Igbokwe, J.; Adesina, A.S.; Onwe, F.; Ukwaja, K.N.; Ajayi, N.A.; Rieger, T.; Günther, S.; et al. Widespread arenavirus occurrence and seroprevalence in small mammals, Nigeria. Parasites Vectors 2018, 11. [Google Scholar] [CrossRef]
- Coalition for Epidemic Preparedness Innovations (CEPI). Largest-Ever Lassa Fever Research Programme Launches in West Africa—CEPI. 2020. Available online: https://cepi.net/news_cepi/largest-ever-lassa-fever-research-programme-launches-in-west-africa/ (accessed on 27 September 2022).
- Richmond, J.K.; Baglole, D.J. Lassa fever: Epidemiology, clinical features, and social consequences. BMJ 2003, 327, 1271–1275. [Google Scholar] [CrossRef]
- McCormick, C.J.; Joseph, B.; King, I.J.; Webb, P.A. Efficacy Trials of Lassa Vaccines: Endpoints, Trial Design, Site Selection. Paris, France. 2018. Available online: https://www.who.int/docs/default-source/blue-print/lassa-vaccines-workshop-april-24-2018.pdf?sfvrsn=2cc3d204_2 (accessed on 27 September 2022).
- McCormick, J.B. Lassa, Junin, Machupo and Guanarito Viruses, 3rd ed.; Academic Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Yuill, T.M. Dengue—Infectious Diseases; Merck Manuals Professional, Ed.; Available online: https://www.merckmanuals.com/professional/infectious-diseases/arboviruses,-arenaviridae,-and-filoviridae/dengue (accessed on 27 September 2022).
- Branco, L.M.; Grove, J.N.; Geske, F.J.; Boisen, M.L.; Muncy, I.J.; Magliato, S.A.; Henderson, L.A.; Schoepp, R.J.; Cashman, K.A.; Hensley, L.E.; et al. Lassa virus-like particles displaying all major immunological determinants as a vaccine candidate for Lassa hemorrhagic fever. Virol. J. 2010, 7. [Google Scholar] [CrossRef] [PubMed]
- Asogun, D.A.; Adomeh, D.I.; Ehimuan, J.; Odia, I.; Hass, M.; Gabriel, M.; Ölschläger, S.; Becker-Ziaja, B.; Folarin, O.; Phelan, E.; et al. Molecular Diagnostics for Lassa Fever at Irrua Specialist Teaching Hospital, Nigeria: Lessons Learnt from Two Years of Laboratory Operation. PLoS Negl. Trop. Dis. 2012, 6, e1839. [Google Scholar] [CrossRef]
- Bello, O.O.; Akinajo, O.R.; Odubamowo, K.H.; Oluwasola, T.A.O. Lassa Fever in Pregnancy: Report of 2 Cases Seen at the University College Hospital, Ibadan. Case Rep. Obstet. Gynecol. 2016, 2016, 9673683. [Google Scholar] [CrossRef] [PubMed]
- Sharun, K.; Dhama, K.; Pawde, A.M.; Gortázar, C.; Tiwari, R.; Bonilla-Aldana, D.K.; Rodriguez-Morales, A.J.; de la Fuente, J.; Michalak, I.; Attia, Y.A. SARS-CoV-2 in animals: Potential for unknown reservoir hosts and public health implications. Vet. Q. 2021, 41, 181–201. [Google Scholar] [CrossRef] [PubMed]
- Kayem, N.D.; Benson, C.; Aye, C.Y.L.; Barker, S.; Tome, M.; Kennedy, S.; Ariana, P.; Horby, P. Lassa fever in pregnancy: A systematic review and meta-analysis. Trans. R. Soc. Trop. Med. Hyg. 2020, 114, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Agboeze, J.; Nwali, M.I.; Nwakpakpa, E.; Ogah, O.E.; Onoh, R.; Eze, J.; Ukaegbe, C.; Ajayi, N.; Nnadozie, U.U.; Orji, M.L.; et al. Lassa fever in pregnancy with a positive maternal and fetal outcome: A case report. Int. J. Infect. Dis. 2019, 89, 84–86. [Google Scholar] [CrossRef] [PubMed]
- Greenky, D.; Knust, B.; Dziuban, E. What Pediatricians Should Know About Lassa Virus. JAMA Pediatr. 2018, 172, 407–408. [Google Scholar] [CrossRef] [PubMed]
- Monson, M.H.; Cole, A.K.; Frame, J.D.; Serwint, J.R.; Alexander, S.; Jahrlingie, P.B. Pediatric Lassa Fever: A Review of 33 Liberian cases. Am. J. Trop. Med. Hyg. 1987, 36, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Ogunkunle, T.O.; Bello, S.O.; Anderson, C.I.; Musa, R.; Olaosebikan, R.; Imam, A. Fatal case of newborn Lassa fever virus infection mimicking late onset neonatal sepsis: A case report from northern Nigeria. Infect. Dis. Poverty 2020, 9, 116–120. [Google Scholar] [CrossRef]
- Akpede, G.O.; Kayode-Adedeji, B.O.; Dawodu, S.O. Manifestations and outcomes of lassa fever in Nigerian children: A case series. Arch. Dis. Child. 2012, 97, A38–A39. [Google Scholar] [CrossRef]
- Mateer, E.J.; Huang, C.; Shehu, N.Y.; Paessler, S. Lassa fever–induced sensorineural hearing loss: A neglected public health and social burden. PLoS Negl. Trop. Dis. 2018, 12, e0006187. [Google Scholar] [CrossRef] [PubMed]
- Ibekwe, T.S. Early-Onset Sensorineural Hearing Loss in Lassa Fever; SpringerLink. Available online: https://link.springer.com/article/10.1007/s00405-010-1370-4?error=cookies_not_supported&code=8419cfba-df5d-4b52-b70a-72f48d312a2d (accessed on 27 September 2022).
- Cummins, D. Acute Sensorineural Deafness in Lassa Fever. JAMA J. Am. Med. Assoc. 1990, 264, 2093. [Google Scholar] [CrossRef]
- Wilson, W.R.; Veltri, R.W.; Laird, N.; Sprinkle, P.M. Viral and epidemiologic studies of idiopathic sudden hearing loss. Otolaryngol. Neck Surg. 1983, 91, 653–658. [Google Scholar] [CrossRef] [PubMed]
- Okokhere, P.O.; Ibekwe, T.S.; Akpede, G.O. Sensorineural hearing loss in Lassa fever: Two case reports. J. Med. Case Rep. 2009, 3, 36. [Google Scholar] [CrossRef] [PubMed]
- Auperin, D.D.; Romanowski, V.; Galinski, M.; Bishop, D.H. Sequencing studies of pichinde arenavirus S RNA indicate a novel coding strategy, an ambisense viral S RNA. J. Virol. 1984, 52, 897–904. [Google Scholar] [CrossRef]
- Dwyer, E.J.C.; Lai, H.; MacDonald, R.C.; Salvato, M.S.; Borden, K.L.B. The Lymphocytic Choriomeningitis Virus RING Protein Z Associates with Eukaryotic Initiation Factor 4E and Selectively Represses Translation in a RING-Dependent Manner. J. Virol. 2000, 74, 3293–3300. [Google Scholar] [CrossRef]
- Fan, L.; Briese, T.; Lipkin, W.I. Z Proteins of New World Arenaviruses Bind RIG-I and Interfere with Type I Interferon Induction. J. Virol. 2010, 84, 1785–1791. [Google Scholar] [CrossRef]
- Fehling, S.K.; Lennartz, F.; Strecker, T. Multifunctional Nature of the Arenavirus RING Finger Protein Z. Viruses 2012, 4, 2973–3011. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, X.; Brisse, M.; Ly, H.; Liang, Y. Effect of strain variations on lassa virus Z protein-mediated human RIG-I inhibition. Viruses 2020, 12, 907. [Google Scholar] [CrossRef]
- Volpon, L.; Osborne, M.J.; Capul, A.A.; de la Torre, J.C.; Borden, K.L.B. Structural characterization of the Z RING-eIF4E complex reveals a distinct mode of control for eIF4E. Proc. Natl. Acad. Sci. USA 2010, 107, 5441–5446. [Google Scholar] [CrossRef]
- Xing, J.; Ly, H.; Liang, Y. The Z Proteins of Pathogenic but Not Nonpathogenic Arenaviruses Inhibit RIG-i-Like Receptor-Dependent Interferon Production. J. Virol. 2015, 89, 2944–2955. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Henry, M.D.; Borrow, P.; Yamada, H.; Elder, J.H.; Ravkov, E.V.; Nichol, S.T.; Compans, R.W.; Campbell, K.P.; Oldstone, M.B.A. Identification of α-Dystroglycan as a Receptor for Lymphocytic Choriomeningitis Virus and Lassa Fever Virus. Science 1998, 282, 2079–2081. [Google Scholar] [CrossRef] [PubMed]
- Kunz, S.; Sevilla, N.; McGavern, D.B.; Campbell, K.P.; Oldstone, M.B.A. Molecular analysis of the interaction of LCMV with its cellular receptor α-dystroglycan. J. Cell Biol. 2001, 155, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Jae, L.T.; Raaben, M.; Herbert, A.S.; Kuehne, A.I.; Wirchnianski, A.S.; Soh, T.K.; Stubbs, S.H.; Janssen, H.; Damme, M.; Saftig, P.; et al. Lassa virus entry requires a trigger-induced receptor switch. Science 2014, 344, 1506–1510. [Google Scholar] [CrossRef]
- Hastie, K.M.; Kimberlin, C.R.; Zandonatti, M.A.; MacRae, I.J.; Saphire, E.O. Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 3′ to 5′ exonuclease activity essential for immune suppression. Proc. Natl. Acad. Sci. USA 2011, 108, 2396–2401. [Google Scholar] [CrossRef]
- Qi, X.; Lan, S.; Wang, W.; Schelde, L.M.; Dong, H.; Wallat, G.D.; Ly, H.; Liang, Y.; Dong, C. Cap binding and immune evasion revealed by Lassa nucleoprotein structure. Nature 2010, 468, 779–783. [Google Scholar] [CrossRef]
- Hensley, L.E. Pathogenesis of marburg hemorrhagic fever in cynomolgus macaques. J. Infect. Dis. 2011, 204 (Suppl. S3), S1021–S1031. [Google Scholar] [CrossRef]
- Mahanty, S.; Hutchinson, K.; Agarwal, S.; Mcrae, M.; Rollin, P.E.; Pulendran, B. Cutting Edge: Impairment of Dendritic Cells and Adaptive Immunity by Ebola and Lassa Viruses. J. Immunol. 2003, 170, 2797–2801. [Google Scholar] [CrossRef]
- Lukashevich, S.; Maryankova, R.; Salvato, M. Lassa and Mopeia Virus Replication in Human Monocytes/Macrophages and in Endothelial Cells: Different Effects on IL-8 and TNF-α Gene Expression. J. Med. Virol. 1999, 59, 552–560. [Google Scholar] [CrossRef]
- Walker, D.H.; Wulff, H.; Lange, J.V.; Murphy, F.A. Comparative pathology of Lassa virus infection in monkeys, guinea pigs, and Mastomys natalensis. Bull. World Health Organ. 1975, 52, 523–534. [Google Scholar]
- Baize, S.; Kaplon, J.; Faure, C.; Pannetier, D.; Georges-Courbot, M.-C.; Deubel, V. Lassa Virus Infection of Human Dendritic Cells and Macrophages Is Productive but Fails to Activate Cells. J. Immunol. 2004, 172, 2861–2869. [Google Scholar] [CrossRef] [PubMed]
- Hawiger, D.; Inaba, K.; Dorsett, Y.; Guo, M.; Mahnke, K.; Rivera, M.; Ravetch, J.V.; Steinman, R.M.; Nussenzweig, M.C. Dendritic Cells Induce Peripheral T Cell Unresponsiveness under Steady State Conditions In Vivo. J. Exp. Med. 2001, 194, 769–780. [Google Scholar] [CrossRef] [PubMed]
- Hallam, H.J. Baseline Mapping of Lassa Fever Virology, Epidemiology and Vaccine Research and Development. Nature. Available online: https://www.nature.com/articles/s41541-018-0049-5?error=cookies_not_supported&code=a666267f-175f-44ad-a52e-9446bc849a67 (accessed on 27 September 2022).
- Günther, S.; Kühle, O.; Rehder, D.; Odaibo, G.N.; Olaleye, D.O.; Emmerich, P.; ter Meulen, J.; Schmitz, H. Antibodies to Lassa virus Z protein and nucleoprotein co-occur in human sera from Lassa fever endemic regions. Med. Microbiol. Immunol. 2001, 189, 225–229. [Google Scholar] [CrossRef] [PubMed]
- ter Meulen, J.; Badusche, M.; Kuhnt, K.; Doetze, A.; Satoguina, J.; Marti, T.; Loeliger, C.; Koulemou, K.; Koivogui, L.; Schmitz, H.; et al. Characterization of Human CD4+ T-Cell Clones Recognizing Conserved and Variable Epitopes of the Lassa Virus Nucleoprotein. J. Virol. 2000, 74, 2186–2192. [Google Scholar] [CrossRef]
- Yun, N.E.; Walker, D.H. Pathogenesis of Lassa fever. Viruses 2012, 4, 2031–2048. [Google Scholar] [CrossRef]
- Sullivan, B.M.; Sakabe, S.; Hartnett, J.N.; Ngo, N.; Goba, A.; Momoh, M.; Demby Sandi, J.; Kanneh, L.; Cubitt, B.; Garcia, S.D.; et al. High crossreactivity of human T cell responses between Lassa virus lineages. PLOS Pathog. 2020, 16, e1008352. [Google Scholar] [CrossRef]
- Brisse, M.; Huang, Q.; Rahman, M.; Di, D.; Liang, Y.; Ly, H. RIG-I and MDA5 Protect Mice from Pichinde Virus Infection by Controlling Viral Replication and Regulating Immune Responses to the Infection. Front. Immunol. 2021, 12, 801811. [Google Scholar] [CrossRef]
- Fisher-Hoch, S.P.; Hutwagner, L.; Brown, B.; McCormick, J.B. Effective Vaccine for Lassa Fever. J. Virol. 2000, 74, 6777–6783. [Google Scholar] [CrossRef]
- Johnson, K.M.; McCormick, J.B.; Webb, P.A.; Smith, E.S.; Elliott, L.H.; King, I.J. Clinical Virology of Lassa Fever in Hospitalized Patients. J. Infect. Dis. 1987, 155, 456–464. [Google Scholar] [CrossRef]
- Lukashevich, I.S.; Carrion, R.; Salvato, M.S.; Mansfield, K.; Brasky, K.; Zapata, J.; Cairo, C.; Goicochea, M.; Hoosien, G.E.; Ticer, A.; et al. Safety, immunogenicity, and efficacy of the ML29 reassortant vaccine for Lassa fever in small non-human primates. Vaccine 2008, 26, 5246–5254. [Google Scholar] [CrossRef]
- Flatz, L.; Rieger, T.; Merkler, D.; Bergthaler, A.; Regen, T.; Schedensack, M.; Bestmann, L.; Verschoor, A.; Kreutzfeldt, M.; Brück, W.; et al. T Cell-Dependence of Lassa Fever Pathogenesis. PLoS Pathog. 2010, 6, e1000836. [Google Scholar] [CrossRef] [PubMed]
- Maurice, N.J.; McElrath, M.J.; Andersen-Nissen, E.; Frahm, N.; Prlic, M. CXCR3 enables recruitment and site-specific bystander activation of memory CD8+ T cells. Nat. Commun. 2019, 10, 4987. [Google Scholar] [CrossRef] [PubMed]
- Port, J.R.; Wozniak, D.M.; Oestereich, L.; Pallasch, E.; Becker-Ziaja, B.; Müller, J.; Rottstegge, M.; Olal, C.; Gómez-Medina, S.; Oyakhliome, J.; et al. Severe Human Lassa Fever Is Characterized by Nonspecific T-Cell Activation and Lymphocyte Homing to Inflamed Tissues. J. Virol. 2020, 94. [Google Scholar] [CrossRef] [PubMed]
- Ostler, T.; Pircher, H.; Ehl, S. ‘Bystander’ recruitment of systemic memory T cells delays the immune response to respiratory virus infection. Eur. J. Immunol. 2003, 33, 1839–1848. [Google Scholar] [CrossRef] [PubMed]
- Jahrling, P.B. Protection of lassa virus-infected guinea pigs with lassa-immune plasma of guinea pig, primate, and human origin. J. Med. Virol. 1983, 12, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Jahrling, P.B.; Peters, C.J. Passive antibody therapy of lassa fever in cynomolgus monkeys: Importance of neutralizing antibody and lassa virus strain. Infect. Immun. 1984, 44, 528–533. [Google Scholar] [CrossRef] [PubMed]
- Hansen, F.; Jarvis, M.A.; Feldmann, H.; Rosenke, K. Lassa virus treatment options. Microorganisms 2021, 9, 10–13. [Google Scholar] [CrossRef]
- Leifer, E.; Gocke, D.J.; Bourne, H. Lassa fever, a new virus disease of man from West Africa. I. Clinical description and pathological findings. Am. J. Trop. Med. Hyg. 1970, 19, 670–676. [Google Scholar] [CrossRef]
- Robinson, J.E.; Hastie, K.M.; Cross, R.W.; Yenni, R.E.; Elliott, D.H.; Rouelle, J.A.; Kannadka, C.B.; Smira, A.A.; Garry, C.E.; Bradley, B.T.; et al. Most neutralizing human monoclonal antibodies target novel epitopes requiring both Lassa virus glycoprotein subunits. Nat. Commun. 2016, 7. [Google Scholar] [CrossRef]
- Hastie, K.M.; Zandonatti, M.A.; Kleinfelter, L.M.; Heinrich, M.L.; Rowland, M.M.; Chandran, K.; Branco, L.M.; Robinson, J.E.; Garry, R.F.; Saphire, E.O. Structural basis for antibody-mediated neutralization of Lassa virus. Science 2017, 356, 923–928. [Google Scholar] [CrossRef]
- Oestereich, L.; Lüdtke, A.; Ruibal, P.; Pallasch, E.; Kerber, R.; Rieger, T.; Wurr, S.; Bockholt, S.; Pérez-Girón, J.V.; Krasemann, S.; et al. Chimeric Mice with Competent Hematopoietic Immunity Reproduce Key Features of Severe Lassa Fever. PLoS Pathog. 2016, 12, e1005656. [Google Scholar] [CrossRef]
- Baize, S.; Marianneau, P.; Loth, P.; Reynard, S.; Journeaux, A.; Chevallier, M.; Tordo, N.; Deubel, V.; Contamin, H. Early and Strong Immune Responses Are Associated with Control of Viral Replication and Recovery in Lassa Virus-Infected Cynomolgus Monkeys. J. Virol. 2009, 83, 5890–5903. [Google Scholar] [CrossRef] [PubMed]
- Meyer, B.; Groseth, A. Apoptosis during arenavirus infection: Mechanisms and evasion strategies. Microbes Infect. 2018, 20, 65–80. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Shao, J.; Lan, S.; Zhou, Y.; Xing, J.; Dong, C.; Liang, Y.; Ly, H. In Vitro and In Vivo Characterizations of Pichinde Viral Nucleoprotein Exoribonuclease Functions. J. Virol. 2015, 89, 6595–6607. [Google Scholar] [CrossRef] [PubMed]
- Reynard, S.; Russier, M.; Fizet, A.; Carnec, X.; Baize, S. Exonuclease Domain of the Lassa Virus Nucleoprotein Is Critical to Avoid RIG-I Signaling and To Inhibit the Innate Immune Response. J. Virol. 2014, 88, 13923–13927. [Google Scholar] [CrossRef]
- Rodrigo, W.W.S.I.; Ortiz-Riaño, E.; Pythoud, C.; Kunz, S.; de la Torre, J.C.; Martínez-Sobrido, L. Arenavirus Nucleoproteins Prevent Activation of Nuclear Factor Kappa B. J. Virol. 2012, 86, 8185–8197. [Google Scholar] [CrossRef]
- Carnec, X.; Baize, S.; Reynard, S.; Diancourt, L.; Caro, V.; Tordo, N.; Bouloy, M. Lassa Virus Nucleoprotein Mutants Generated by Reverse Genetics Induce a Robust Type I Interferon Response in Human Dendritic Cells and Macrophages. J. Virol. 2011, 85, 12093–12097. [Google Scholar] [CrossRef]
- Prescott, J.B.; Marzi, A.; Safronetz, D.; Robertson, S.J.; Feldmann, H.; Best, S.M. Immunobiology of Ebola and Lassa virus infections. Nat. Rev. Immunol. 2017, 17, 195–207. [Google Scholar] [CrossRef]
- Rehwinkel, J.; Gack, M.U. RIG-I-like receptors: Their regulation and roles in RNA sensing. Nat. Rev. Immunol. 2020, 20, 537–551. [Google Scholar] [CrossRef]
- Stott, R.J.; Strecker, T.; Foster, T.L. Distinct molecular mechanisms of host immune response modulation by arenavirus NP and Z proteins. Viruses 2020, 12, 784. [Google Scholar] [CrossRef]
- Brisse, M.; Ly, H. Comparative structure and function analysis of the RIG-I-like receptors: RIG-I and MDA5. Front. Immunol. 2019, 10, 1586. [Google Scholar] [CrossRef] [PubMed]
- Bevilacqua, P.C.; George, C.X.; Samuel, C.E.; Cech, T.R. Binding of the protein kinase PKR to RNAs with secondary structure defects: Role of the tandem A–G mismatch and noncontigous helixes. Biochemistry 1998, 37, 6303–6316. [Google Scholar] [CrossRef] [PubMed]
- Mateer, E.J.; Maruyama, J.; Card, G.E.; Paessler, S.; Huang, C. Lassa Virus, but Not Highly Pathogenic New World Arenaviruses, Restricts Immunostimulatory Double-Stranded RNA Accumulation during Infection. J. Virol. 2020, 94, 4227–4234. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Kolokoltsova, O.A.; Mateer, E.J.; Koma, T.; Paessler, S. Highly Pathogenic New World Arenavirus Infection Activates the Pattern Recognition Receptor Protein Kinase R without Attenuating Virus Replication in Human Cells. J. Virol. 2017, 91, e01090-17. [Google Scholar] [CrossRef] [PubMed]
- Loureiro, M.E.; Zorzetto-Fernandes, A.L.; Radoshitzky, S.; Chi, X.; Dallari, S.; Marooki, N.; Lèger, P.; Foscaldi, S.; Harjono, V.; Sharma, S.; et al. DDX3 suppresses type I interferons and favors viral replication during Arenavirus infection. PLoS Pathog. 2018, 14, e1007125. [Google Scholar] [CrossRef]
- García-Sastre, A.; Biron, C.A. Type 1 interferons and the virus-host relationship: A lesson in détente. Science 2006, 312, 879–882. [Google Scholar] [CrossRef]
- Rojas, J.M.; Alejo, A.; Martín, V.; Sevilla, N. Viral pathogen-induced mechanisms to antagonize mammalian interferon (IFN) signaling pathway. Cell. Mol. Life Sci. 2021, 78, 1423–1444. [Google Scholar] [CrossRef]
- Marié, I.; Durbin, J.E.; Levy, D.E. Differential viral induction of distinct interferon-alpha genes by positive feedback through interferon regulatory factor-7. EMBO J. 1998, 17, 6660–6669. [Google Scholar] [CrossRef]
- Eichler, R.; Lenz, O.; Garten, W.; Strecker, T. The role of single N-glycans in proteolytic processing and cell surface transport of the Lassa virus glycoprotein GP-C. Virol. J. 2006, 3, 8–10. [Google Scholar] [CrossRef]
- Sommerstein, R.; Flatz, L.; Remy, M.M.; Malinge, P.; Magistrelli, G.; Fischer, N.; Sahin, M.; Bergthaler, A.; Igonet, S.; ter Meulen, J.; et al. Arenavirus Glycan Shield Promotes Neutralizing Antibody Evasion and Protracted Infection. PLoS Pathog. 2015, 11, e1005276. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, Y.; Guo, J.; Cao, J.; Wang, Z.; Xiao, G.; Wang, W. Effects of N-Linked Glycan on Lassa Virus Envelope Glycoprotein Cleavage, Infectivity, and Immune Response. Virol. Sin. 2021, 36, 774–783. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Target Product Profiles for Lassa Virus Vaccine; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- World Health Organization. Target Product Profiles. Available online: https://www.who.int/observatories/global-observatory-on-health-research-and-development/analyses-and-syntheses/target-product-profile/who-target-product-profiles (accessed on 27 September 2022).
- Ibukun, F.I. Inter-lineage variation of lassa virus glycoprotein epitopes: A challenge to lassa virus vaccine development. Viruses 2020, 12, 386. [Google Scholar] [CrossRef] [PubMed]
- Purushotham, J.; Lambe, T.; Gilbert, S.C. Vaccine platforms for the prevention of Lassa fever. Immunol. Lett. 2019, 215, 1–11. [Google Scholar] [CrossRef] [PubMed]
- NIH U.S. National Library of Medicine. Dose-Ranging Study: Safety, Tolerability and Immunogenicity of INO-4500 in Healthy Volunteers in Ghana. Case Medical Research. 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT04093076 (accessed on 27 September 2022).
- Stein, D.R.; Warner, B.M.; Soule, G.; Tierney, K.; Frost, K.L.; Booth, S.; Safronetz, D. A recombinant vesicular stomatitis-based Lassa fever vaccine elicits rapid and long-term protection from lethal Lassa virus infection in guinea pigs. Npj Vaccines 2019, 4. [Google Scholar] [CrossRef]
- NIH U.S. National Library of Medicine. Immunogenicity, Safety, and Tolerability of a Recombinant Measles-Virus-Based Chikungunya Vaccine: A Randomised, Double-Blind, Placebo-Controlled, Active-Comparator, First-in-Man Trial. 2021. Available online: https://clinicaltrials.gov/ct2/show/NCT02861586 (accessed on 27 September 2022).
- NIH U.S. National Library of Medicine. Study to Evaluate the Dosage and Safety of Two Intramuscular Injections of an Investigational Clade B HIV Vaccine—NCT01320176. 2012. Available online: https://clinicaltrials.gov/ct2/show/NCT01320176 (accessed on 27 September 2022).
- Vrba, S.M.; Kirk, N.M.; Brisse, M.E.; Liang, Y.; Ly, H. Development and applications of viral vectored vaccines to combat zoonotic and emerging public health threats. Vaccines 2020, 8, 680. [Google Scholar] [CrossRef]
- Chen, J.; Wang, J.; Zhang, J.; Ly, H. Advances in Development and Application of Influenza Vaccines. Front. Immunol. 2020, 12, 2740. [Google Scholar] [CrossRef]
- Mateo, M.; Reynard, S.; Carnec, X.; Journeaux, A.; Baillet, N.; Schaeffer, J.; Picard, C.; Legras-Lachuer, C.; Allan, R.; Perthame, E.; et al. Vaccines inducing immunity to Lassa virus glycoprotein and nucleoprotein protect macaques after a single shot. Sci. Transl. Med. 2019, 11. [Google Scholar] [CrossRef]
- NIH U.S. National Library of Medicine. A Trial to Evaluate the Optimal Dose of MV-LASV (V182-001). 2022. Available online: https://clinicaltrials.gov/ct2/show/results/NCT04055454 (accessed on 27 September 2022).
- Mateo, M.; Reynard, S.; Journeaux, A.; Germain, C.; Hortion, J.; Carnec, X.; Picard, C.; Baillet, N.; Borges-Cardoso, V.; Merabet, O.; et al. A single-shot Lassa vaccine induces long-term immunity and protects cynomolgus monkeys against heterologous strains. Sci. Transl. Med. 2021, 13. [Google Scholar] [CrossRef]
- Maruyama, J.; Mateer, E.J.; Manning, J.T.; Sattler, R.; Seregin, A.V.; Bukreyeva, N.; Jones, F.R.; Balint, J.P.; Gabitzsch, E.S.; Huang, C.; et al. Adenoviral vector-based vaccine is fully protective against lethal Lassa fever challenge in Hartley guinea pigs. Vaccine 2019, 37, 6824–6831. [Google Scholar] [CrossRef]
- Fischer, R.J.; Purushotham, J.N.; van Doremalen, N.; Sebastian, S.; Meade-White, K.; Cordova, K.; Letko, M.; Jeremiah Matson, M.; Feldmann, F.; Haddock, E.; et al. ChAdOx1-vectored Lassa fever vaccine elicits a robust cellular and humoral immune response and protects guinea pigs against lethal Lassa virus challenge. Npj Vaccines 2021, 6. [Google Scholar] [CrossRef]
- Lukashevich, I.S.; Patterson, J.; Carrion, R.; Moshkoff, D.; Ticer, A.; Zapata, J.; Brasky, K.; Geiger, R.; Hubbard, G.B.; Bryant, J.; et al. A Live Attenuated Vaccine for Lassa Fever Made by Reassortment of Lassa and Mopeia Viruses. J. Virol. 2005, 79, 13934–13942. [Google Scholar] [CrossRef] [PubMed]
- Carrion, R.; Patterson, J.L.; Johnson, C.; Gonzales, M.; Moreira, C.R.; Ticer, A.; Brasky, K.; Hubbard, G.B.; Moshkoff, D.; Zapata, J.; et al. A ML29 reassortant virus protects guinea pigs against a distantly related Nigerian strain of Lassa virus and can provide sterilizing immunity. Vaccine 2007, 25, 4093–4102. [Google Scholar] [CrossRef] [PubMed]
- Carrion, R.; Patterson, J.L. An animal model that reflects human disease: The common marmoset (Callithrix jacchus). Curr. Opin. Virol. 2012, 2, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.M.; Cubitt, B.; Pfeffer, T.L.; de la Torre, J.C.; Lukashevich, I.S. Lassa virus vaccine candidate ml29 generates truncated viral rnas which contribute to interfering activity and attenuation. Viruses 2021, 13, 214. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Ye, C.; Cheng, B.; Nogales, A.; Iwasaki, M.; Yu, S.; Cooper, K.; Liu, D.X.; Hart, R.; Adams, R.; et al. A Lassa Fever Live-Attenuated Vaccine Based on Codon Deoptimization of the Viral Glycoprotein Gene. MBio 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.R.; Hirsch, V.M. SIV infection of macaques as a model for AIDS pathogenesis. Int. Rev. Immunol. 1992, 8, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Zapata, J.; Medina-Moreno, S.; Guzmán-Cardozo, C.; Salvato, M. Improving the Breadth of the Host’s Immune Response to Lassa Virus. Pathogens 2018, 7, 84. [Google Scholar] [CrossRef]
- Zapata, J.C.; Poonia, B.; Bryant, J.; Davis, H.; Ateh, E.; George, L.; Crasta, O.; Zhang, Y.; Slezak, T.; Jaing, C.; et al. An attenuated Lassa vaccine in SIV-infected rhesus macaques does not persist or cause arenavirus disease but does elicit Lassa virus-specific immunity. Virol. J. 2013, 10. [Google Scholar] [CrossRef]
- Mueller, S.; Papamichail, D.; Coleman, J.R.; Skiena, S.; Wimmer, E. Reduction of the Rate of Poliovirus Protein Synthesis through Large-Scale Codon Deoptimization Causes Attenuation of Viral Virulence by Lowering Specific Infectivity. J. Virol. 2006, 80, 9687–9696. [Google Scholar] [CrossRef]
- Meng, J.; Lee, S.; Hotard, A.L.; Moore, M.L. Refining the balance of attenuation and immunogenicity of respiratory syncytial virus by Targeted codon deoptimization of virulence genes. MBio 2014, 5, e01704-14. [Google Scholar] [CrossRef]
- Diaz-San Segundo, F.; Medina, G.N.; Ramirez-Medina,, E.; Velazquez-Salinas, L.; Koster, M.; Grubman, M.J.; de los Santos, T. Synonymous Deoptimization of Foot-and-Mouth Disease Virus Causes Attenuation In Vivo while Inducing a Strong Neutralizing Antibody Response. J. Virol. 2016, 90, 1298–1310. [Google Scholar] [CrossRef] [PubMed]
- Nogales, A.; Baker, S.F.; Ortiz-Riaño, E.; Dewhurst, S.; Topham, D.J.; Martínez-Sobrido, L. Influenza A Virus Attenuation by Codon Deoptimization of the NS Gene for Vaccine Development. J. Virol. 2014, 88, 10525–10540. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Ke, X.; Wang, T.; Tan, Z.; Luo, D.; Miao, Y.; Sun, J.; Zhang, Y.; Liu, Y.; Hu, Q.; et al. Zika Virus Attenuation by Codon Pair Deoptimization Induces Sterilizing Immunity in Mouse Models. J. Virol. 2018, 92. [Google Scholar] [CrossRef]
- Cai, Y.; Iwasaki, M.; Motooka, D.; Liu, D.X.; Yu, S.; Cooper, K.; Hart, R.; Adams, R.; Burdette, T.; Postnikova, E.N.; et al. A Lassa Virus Live-Attenuated Vaccine Candidate Based on Rearrangement of the Intergenic Region. MBio 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Henao-Restrepo, A.M.; Camacho, A.; Longini, I.M.; Watson, C.H.; Edmunds, W.J.; Egger, M.; Carroll, M.W.; Dean, N.E.; Diatta, I.; Doumbia, M.; et al. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: Final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!). Lancet 2017, 389, 505–518. [Google Scholar] [CrossRef]
- Huttner, A.; Europe PMC Funders Group. The effect of dose on the safety and immunogenicity of the VSV Ebola candidate vaccine: A randomised double-blind, placebo-controlled phase 1/2 trial. Lancet 2019, 15, 1156–1166. [Google Scholar] [CrossRef]
- Geisbert, T.W.; Jones, S.; Fritz, E.A.; Shurtleff, A.C.; Geisbert, J.B.; Liebscher, R.; Grolla, A.; Ströher, U.; Fernando, L.; Daddario, K.M.; et al. Development of a New Vaccine for the Prevention of Lassa Fever. PLoS Med. 2005, 2, e183. [Google Scholar] [CrossRef]
- Fathi, A.; Dahlke, C.; Addo, M.M. Recombinant vesicular stomatitis virus vector vaccines for WHO blueprint priority pathogens. Hum. Vaccines Immunother. 2019, 15, 2269–2285. [Google Scholar] [CrossRef]
- IAVI Announces First Vaccinations at Liberia Site in Phase I Clinical Trial of Lassa Fever Vaccine Candidate. 2022. Available online: https://www.iavi.org/news-resources/press-releases/2022/iavi-announces-first-vaccinations-at-liberia-site-in-phase-i-clinical-trial-of-lassa-fever-vaccine-candidate (accessed on 27 September 2022).
- Cross, R.W.; Xu, R.; Matassov, D.; Hamm, S.; Latham, T.E.; Gerardi, C.S.; Nowak, R.M.; Geisbert, J.B.; Ota-Setlik, A.; Agans, K.N.; et al. Quadrivalent VesiculoVax vaccine protects nonhuman primates from viral-induced hemorrhagic fever and death. J. Clin. Investig. 2019, 130, 539–551. [Google Scholar] [CrossRef]
- Cross, R.W.; Woolsey, C.; Prasad, A.N.; Borisevich, V.; Agans, K.N.; Deer, D.J.; Geisbert, J.B.; Dobias, N.S.; Fenton, K.A.; Geisbert, T.W. A recombinant VSV-vectored vaccine rapidly protects nonhuman primates against heterologous lethal Lassa fever. Cell Rep. 2022, 40, 111094. [Google Scholar] [CrossRef]
- Sattler, R.A.; Paessler, S.; Ly, H.; Huang, C. Animal models of lassa fever. Pathogens 2020, 9, 197. [Google Scholar] [CrossRef] [PubMed]
- Lundstrom, K. Replicon RNA viral vectors as vaccines. Vaccines 2016, 4, 39. [Google Scholar] [CrossRef] [PubMed]
- Kainulainen, M.H.; Spengler, J.; Spiropoulou, C. Protection from Lethal Lassa Disease Can Be Achieved Both Before and After Virus Exposure by Administration of Single-Cycle Replicating Lassa Virus Replicon Particles. J. Infect. Dis. 2019, 220, 1281–1289. [Google Scholar] [CrossRef] [PubMed]
- Spengler, J.R.; Kainulainen, M.H.; Welch, S.R.; Coleman-McCray, J.D.; Harmon, J.R.; Condrey, J.A.; Scholte, F.E.M.; Nichol, S.T.; Montgomery, J.M.; Albariño, C.G.; et al. Lassa Virus Replicon Particle Vaccine Protects Strain 13/N Guinea Pigs Against Challenge With Geographically and Genetically Diverse Viral Strains. J. Infect. Dis. 2022. [Google Scholar] [CrossRef]
- Safronetz, D.; Rosenke, K.; Fischer, R.J.; LaCasse, R.A.; Scott, D.P.; Saturday, G.; Hanley, P.W.; Maiga, O.; Sogoba, N.; Schwan, T.G.; et al. Establishment of a Genetically Confirmed Breeding Colony of Mastomys natalensis from Wild-Caught Founders from West Africa. Viruses 2021, 13, 590. [Google Scholar] [CrossRef]
- Hoffmann, C.; Wurr, S.; Pallasch, E.; Bockholt, S.; Rieger, T.; Günther, S.; Oestereich, L. Experimental Morogoro Virus Infection in Its Natural Host, Mastomys natalensis. Viruses 2021, 13, 851. [Google Scholar] [CrossRef]
- Tang-Huau, T.L.; Rosenke, K.; Meade-White, K.; Carmody, A.; Smith, B.J.; Bosio, C.M.; Jarvis, M.A.; Feldmann, H. Mastomys natalensis Has a Cellular Immune Response Profile Distinct from Laboratory Mice. Viruses 2021, 13, 729. [Google Scholar] [CrossRef]
- Jahrling, P.B.; Hesse, R.A.; Eddy, G.A.; Johnson, K.M.; Callis, R.T.; Stephen, E.L. Lassa virus infection of rhesus monkeys: Pathogenesis and treatment with ribavirin. J. Infect. Dis. 1980, 141, 580–589. [Google Scholar] [CrossRef]
- Golden, J.W.; Hammerbeck, C.D.; Mucker, E.M.; Brocato, R.L. Animal Models for the Study of Rodent-Borne Hemorrhagic Fever Viruses: Arenaviruses and Hantaviruses. Biomed Res. Int. 2015, 2015, 793257. [Google Scholar] [CrossRef]
- Lange, J.V.; Mitchell, S.W.; McCormick, J.B.; Walker, D.H.; Evatt, B.L.; Ramsey, R.R. Kinetic study of platelets and fibrinogen in Lassa virus-infected monkeys and early pathologic events in Mopeia virus-infected monkeys. Am. J. Trop. Med. Hyg. 1985, 34, 999–1007. [Google Scholar] [CrossRef]
- Yun, N.E.; Poussard, A.L.; Seregin, A.V.; Walker, A.G.; Smith, J.K.; Aronson, J.F.; Smith, J.N.; Soong, L.; Paessler, S. Functional Interferon System Is Required for Clearance of Lassa Virus. J. Virol. 2012, 86, 3389–3392. [Google Scholar] [CrossRef] [PubMed]
- Yun, N.E.; Seregin, A.V.; Walker, D.H.; Popov, V.L.; Walker, A.G.; Smith, J.N.; Miller, M.; de la Torre, J.C.; Smith, J.K.; Borisevich, V.; et al. Mice Lacking Functional STAT1 Are Highly Susceptible to Lethal Infection with Lassa Virus. J. Virol. 2013, 87, 10908–10911. [Google Scholar] [CrossRef] [PubMed]
- Yun, N.E.; Ronca, S.; Tamura, A.; Koma, T.; Seregin, A.V.; Dineley, K.T.; Miller, M.; Cook, R.; Shimizu, N.; Walker, A.G.; et al. Animal Model of Sensorineural Hearing Loss Associated with Lassa Virus Infection. J. Virol. 2016, 90, 2920–2927. [Google Scholar] [CrossRef] [PubMed]
- Jahrling, P.B.; Smith, S.; Hesse, R.A.; Rhoderick, J.B. Pathogenesis of Lassa virus infection in guinea pigs. Infect. Immun. 1982, 37, 771–778. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, J.; Manning, J.T.; Mateer, E.J.; Sattler, R.; Bukreyeva, N.; Huang, C.; Paessler, S. Lethal Infection of Lassa Virus Isolated from a Human Clinical Sample in Outbred Guinea Pigs without Adaptation. MSphere 2019, 4. [Google Scholar] [CrossRef]
- Shieh, W.J.; Lan, S.; Huang, Q.; Zaki, S.R.; Liang, Y.; Ly, H. Pichinde Virus Infection of Outbred Hartley Guinea Pigs as a Surrogate Animal Model for Human Lassa Fever: Histopathological and Immunohistochemical Analyses. Virulence 2020, 9, 579. [Google Scholar] [CrossRef]
- Lan, S.; Shieh, W.J.; Huang, Q.; Zaki, S.R.; Liang, Y.; Ly, H. Virulent infection of outbred Hartley guinea pigs with recombinant Pichinde virus as a surrogate small animal model for human Lassa fever. Virulence 2020, 11, 1131–1141. [Google Scholar] [CrossRef]
- Rodas, J.D.; Lukashevich, I.S.; Zapata, J.C.; Cairo, C.; Tikhonov, I.; Djavani, M.; Pauza, C.D.; Salvato, M.S. Mucosal arenavirus infection of primates can protect them from lethal hemorrhagic fever. J. Med. Virol. 2004, 72, 424–435. [Google Scholar] [CrossRef]
- Djavani, M.M.; Crasta, O.R.; Zapata, J.C.; Fei, Z.; Folkerts, O.; Sobral, B.; Swindells, M.; Bryant, J.; Davis, H.; Pauza, C.D.; et al. Early Blood Profiles of Virus Infection in a Monkey Model for Lassa Fever. J. Virol. 2007, 81, 7960–7973. [Google Scholar] [CrossRef]
- Zhang, L.; Marriott, K.; Aronson, J.F. Sequence analysis of the small RNA segment of guinea pig-passaged Pichinde virus variants. Am. J. Trop. Med. Hyg. 1999, 61, 220–225. [Google Scholar] [CrossRef]
- Zhang, L.; Marriott, K.A.; Harnish, D.G.; Aronson, J.F. Reassortant Analysis of Guinea Pig Virulence of Pichinde Virus Variants. Virology 2001, 290, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Lan, S.; Schelde, L.M.; Wang, J.; Kumar, N.; Ly, H.; Liang, Y. Development of Infectious Clones for Virulent and Avirulent Pichinde Viruses: A Model Virus to Study Arenavirus-Induced Hemorrhagic Fevers. J. Virol. 2009, 83, 6357–6362. [Google Scholar] [CrossRef] [PubMed]
- Murphy, H.L.; Ly, H. Pathogenicity and virulence mechanisms of Lassa virus and its animal modeling, diagnostic, prophylactic, and therapeutic developments. Virulence 2021, 12, 2989–3014. [Google Scholar] [CrossRef] [PubMed]
- WHO. Immunization Coverage. Fact Sheet. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/immunization-coverage (accessed on 27 September 2022).
- Safronetz, D.; Mire, C.; Rosenke, K.; Feldmann, F.; Haddock, E.; Geisbert, T.; Feldmann, H. A Recombinant Vesicular Stomatitis Virus-Based Lassa Fever Vaccine Protects Guinea Pigs and Macaques against Challenge with Geographically and Genetically Distinct Lassa Viruses. PLOS Negl. Trop. Dis. 2015, 9, e0003736. [Google Scholar] [CrossRef]
- Cashman, K.; Broderick, K.; Wilkinson, E.; Shaia, C.; Bell, T.; Shurtleff, A.; Spik, K.; Badger, C.; Guttieri, M.; Sardesai, N.; et al. Enhanced Efficacy of a Codon-Optimized DNA Vaccine Encoding the Glycoprotein Precursor Gene of Lassa Virus in a Guinea Pig Disease Model When Delivered by Dermal Electroporation. Vaccines 2013, 1, 262–277. [Google Scholar] [CrossRef]
- Bredenbeek, P.J.; Molenkamp, R.; Spaan, W.J.; Deubel, V.; Marianneau, P.; Salvato, M.S.; Moshkoff, D.; Zapata, J.; Tikhonov, I.; Patterson, J.; et al. A recombinant Yellow Fever 17D vaccine expressing Lassa virus glycoproteins. Virology 2006, 345, 299–304. [Google Scholar] [CrossRef]
- Jiang, X.; Dalebout, T.; Lukasheivich, I. Yellow fever 17D-vectored vaccines expressing Lassa virus GP1 and GP2 glycoproteins provide protection against fatal disease in guinea pigs. Vaccine 2011, 29, 1248–1257. [Google Scholar] [CrossRef]
- Ye, C.; de la Torre, J.C.; Martinez-Sobrido, L. Reverse genetics approaches for the development of mammarenavirus live-attenuated vaccines. Curr. Opin. Virol. 2020, 44, 66–72. [Google Scholar] [CrossRef]
- Fisher-Hoch, S.P.; McCormick, J.B.; Auperin, D.; Brown, B.G.; Castor, M.; Perez, G.; Ruo, S.; Conaty, A.; Brammer, L.; Bauer, S. Protection of rhesus monkeys from fatal Lassa fever by vaccination with a recombinant vaccinia virus containing the Lassa virus glycoprotein gene. Proc. Natl. Acad. Sci. USA 1989, 86, 317–321. [Google Scholar] [CrossRef]
- Torriani, G.; Galan-Navarro, C.; Kunz, S. Lassa Virus Cell Entry Reveals New Aspects of Virus-Host Cell Interaction. J. Virol. 2017, 91, e01902-16. [Google Scholar] [CrossRef]
- McCormick, J.B.; Mitchell, S.W.; Kiley, M.P.; Ruo, S.; Fisher-Hoch, S.P. Inactivated Lassa virus elicits a non protective immune response in rhesus monkeys. J. Med. Virol. 1992, 37, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Jokinen, J.; Lukashevich, I. Alphavirus vector-based replicon particles expressing multivalent cross-protective Lassa virus glycoproteins. Vaccine 2019, 36, 683–690. [Google Scholar] [CrossRef] [PubMed]
- Pushko, P.; Geisbert, J.; Parker, M.; Jahrling, P.; Smith, J. Individual and Bivalent Vaccines Based on Alphavirus Replicons Protect Guinea Pigs against Infection with Lassa and Ebola Viruses. J. Virol. 2001, 75, 11677–11685. [Google Scholar] [CrossRef] [PubMed]
- Jahrling, P.B.; Peters, C.J.; Stephen, E.L. Enhanced treatment of lassa fever by immune plasma combined with ribavirin in cynomolgus monkeys. J. Infect. Dis. 1984, 149, 420–427. [Google Scholar] [CrossRef]
- Jahrling, P.B.; Hesse, R.A.; Rhoderick, J.B.; Elwell, M.A.; Moet, J.B. Pathogenesis of a pichinde virus strain adapted to produce lethal infections in guinea pigs. Infect. Immun. 1981, 32, 872–880. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murphy, H.; Ly, H. Understanding Immune Responses to Lassa Virus Infection and to Its Candidate Vaccines. Vaccines 2022, 10, 1668. https://doi.org/10.3390/vaccines10101668
Murphy H, Ly H. Understanding Immune Responses to Lassa Virus Infection and to Its Candidate Vaccines. Vaccines. 2022; 10(10):1668. https://doi.org/10.3390/vaccines10101668
Chicago/Turabian StyleMurphy, Hannah, and Hinh Ly. 2022. "Understanding Immune Responses to Lassa Virus Infection and to Its Candidate Vaccines" Vaccines 10, no. 10: 1668. https://doi.org/10.3390/vaccines10101668
APA StyleMurphy, H., & Ly, H. (2022). Understanding Immune Responses to Lassa Virus Infection and to Its Candidate Vaccines. Vaccines, 10(10), 1668. https://doi.org/10.3390/vaccines10101668