A Short Overview of Changes in Inflammatory Cytokines and Oxidative Stress in Response to Physical Activity and Antioxidant Supplementation
Abstract
:1. Introduction
2. Cytokines Response to Physical Activity
3. Oxidative Stress Responses to Physical Activity
4. Measuring ROS in the Body
5. Oxidation-Reduction (Redox) Control of Cytokine Composition
5.1. Redox-Sensitive NF-κB Signaling Pathway
5.2. Calcineurin-NFAT Signaling Pathway
5.3. Redox-Sensitive Heat Shock Proteins (HSPs) Signaling Pathway
6. The Effect of Antioxidant Supplements on Inflammatory Cytokines
7. The Effect of Different Doses of Antioxidant Supplements on OS
8. Antioxidant Supplements as a Pro-Oxidant
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schirmer, M.; Kumar, V.; Netea, M.G.; Xavier, R.J. The causes and consequences of variation in human cytokine production in health. Curr. Opin. Immunol. 2018, 54, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Totsuka, M.; Nakaji, S.; Yamada, M.; Kudoh, S.; Liu, Q.; Sugawara, K.; Yamaya, K.; Sato, K. Endurance exercise causes interaction among stress hormones, cytokines, neutrophil dynamics, and muscle damage. J. Appl. Physiol. 1999, 87, 1360–1367. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K. Characterization of exercise-induced cytokine release, the impacts on the body, the mechanisms and modulations. Int. J. Sports Exerc. Med. 2019, 5, 122. [Google Scholar] [CrossRef] [Green Version]
- Larsen, B.; Cox, A.J.; Quinn, K.; Fisher, R.; Minahan, C. Immune response in women during exercise in the heat: A spotlight on oral contraception. J. Sport Sci. Med. 2018, 17, 229–236. [Google Scholar]
- Dinarelo, C.A. Impact of basic research on tomorrow’s medicine. Pro-inflammatory cytokines. Chest 2000, 118, 503–508. [Google Scholar]
- Umare, V.; Pradhan, V.; Nadkar, M.; Rajadhyaksha, A.; Patwardhan, M.; Ghosh, K.K.; Nadkarni, A.H. Effect of proinflammatory cytokines (IL-6, TNF-α, and IL-1β) on clinical manifestations in Indian SLE patients. Mediat. Inflamm. 2014, 2014, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Scheller, J.; Chalaris, A.; Schmidt-Arras, D.; Rose-John, S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim. Biophys. Acta BBA Mol. Cell Res. 2011, 1813, 878–888. [Google Scholar] [CrossRef] [Green Version]
- Ostrowski, K.; Rohde, T.; Asp, S.; Schjerling, P.; Pedersen, B.K. Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans. J. Physiol. 1999, 515, 287–291. [Google Scholar] [CrossRef]
- Allen, S. Ageing, exercise and the chemistry of inflammation. Rev. Clin. Gerontol. 2015, 25, 73–80. [Google Scholar] [CrossRef]
- Bushman, B.A. Exercise for prevention of chronic diseases. ACSM Heal. Fit. J. 2020, 24, 5–10. [Google Scholar] [CrossRef]
- Tresoldi, I.; Foti, C.; Masuelli, L.; Frajese, G.V.; Rossi, P.; Modesti, A.; Bei, R.; Giganti, M.G. Effects of dragon boat training on cytokine production and oxidative stress in breast cancer patients: A pilot study. Open. J. Immunol. 2014, 4, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.; Han, G.; Kim, B.; Shoda, J. Regular exercise as a secondary practical treatment for nonalcoholic fatty liver disease. Exerc. Med. 2018, 2, 1–7. [Google Scholar] [CrossRef]
- Amara, A.W.; Wood, K.H.; Joop, A.; Memon, R.A.; Pilkington, J.; Tuggle, S.C.; Reams, J.; Barrett, M.J.; Edwards, D.A.; Weltman, A.L.; et al. Randomized, controlled trial of exercise on objective and subjective sleep in parkinson’s disease. Mov. Disord. 2020, 35, 947–958. [Google Scholar] [CrossRef]
- Conti, V.; Corbi, G.; Russomanno, G.; Simeon, V.; Ferrara, N.; Filippellli, W.; Limongelli, F.; Canonico, R.; Grasso, C.; Stiuso, P.; et al. Oxidative stress effects on endothelial cells treated with different athletes’ sera. Med. Sci. Sports Exerc. 2012, 44, 39–49. [Google Scholar] [CrossRef]
- Guo, R.; Yu, Q.; Liong, E.C.; Fung, M.L.; Tipoe, G.L. Cathepsin-B dependent autophagy ameliorates steatoheaptitis in chronic exercise rats. Histol. Histopathol. 2020, 35, 18204. [Google Scholar]
- Gomez-Cabrera, M.C.; Domenech, E.; Viña, J. Moderate exercise is an antioxidant: Upregulation of antioxidant genes by training. Free. Radic. Biol. Med. 2008, 44, 126–131. [Google Scholar] [CrossRef]
- Rani, V.; Deep, G.; Singh, R.K.; Palle, K.; Yadav, U.C.S. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sci. 2016, 148, 183–193. [Google Scholar] [CrossRef]
- Bloomer, R.J.; Goldfarb, A.H. Anaerobic exercise and oxidative stress: A review. Can. J. Appl. Physiol. 2004, 29, 245–263. [Google Scholar] [CrossRef]
- Radak, Z.; Taylor, A.W.; Ohno, H.; Goto, S. Adaptation to exercise-induced oxidative stress: From muscle to brain. Exerc. Immunol. Rev. 2001, 7, 90–107. [Google Scholar]
- Calle, M.C.; Fernandez, M.L. Effects of resistance training on the inflammatory response. Nutr. Res. Pract. 2010, 4, 259–269. [Google Scholar] [CrossRef] [Green Version]
- Mason, S.A.; Trewin, A.J.; Parker, L.; Wadley, G.D. Antioxidant supplements and endurance exercise: Current evidence and mechanistic insights. Redox. Biol. 2020, 35, 101471. [Google Scholar] [CrossRef] [PubMed]
- Su, D.L.; Lu, Z.M.; Shen, M.N.; Li, X.; Sun, L.Y. Roles of pro- and anti-inflammatory cytokines in the pathogenesis of SLE. Biomed. Res. Int. 2012, 2012, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Peake, J. Interrelations between acute and chronic exercise stress and the immune and endocrine systems. Endocrinol. Phys. Act. Sport 2020, 259–280. [Google Scholar]
- Pedersen, B.K.; Åkerström, T.C.A.; Nielsen, A.R.; Fischer, C.P. Role of myokines in exercise and metabolism. J. Appl. Physiol. 2007, 103, 1093–1098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- You, T.; Arsenis, N.C.; Disanzo, B.L.; Lamonte, M.J. Effects of exercise training on chronic inflammation in obesity: Current evidence and potential mechanisms. Sports Med. 2013, 43, 243–256. [Google Scholar] [CrossRef]
- Andrade, A.; Vilarino, G.T.; Sieczkowska, S.M.; Coimbra, D.R.; de Azevedo Klumb Steffens, R.; Vietta, G.G. Acute effects of physical exercises on the inflammatory markers of patients with fibromyalgia syndrome: A systematic review. J. Neuroimmunol. 2018, 15, 40–49. [Google Scholar] [CrossRef]
- Goh, J.; Lim, C.L.; Suzuki, K. Effects of endurance-, strength-, and concurrent training on cytokines and inflammation. In Concurrent Aerobic and Strength Training; Springer: Berlin/Heidelberg, Germany, 2019; pp. 125–138. [Google Scholar]
- Lim, C.L.; Suzuki, K. Systemic inflammation mediates the effects of endotoxemia in the mechanisms of heat stroke. Biol. Med. 2017, 9, 1000376. [Google Scholar] [CrossRef]
- Moldoveanu, A.I.; Shephard, R.J.; Shek, P.N. The cytokine response to physical activity and training. Sports Med. 2001, 31, 115–144. [Google Scholar] [CrossRef]
- Suzuki, K.; Yamada, M.; Kurakake, S.; Okamura, N.; Yamaya, K.; Liu, Q.; Kudoh, S.; Kowatari, K.; Nakaji, S.; Sugawara, K. Circulating cytokines and hormones with immunosuppressive but neutrophil-priming potentials rise after endurance exercise in humans. Eur. J. Appl. Physiol. 2000, 81, 281–287. [Google Scholar] [CrossRef]
- Dorneles, G.P.; Haddad, D.O.; Fagundes, V.O.; Vargas, B.K.; Kloecker, A.; Romão, P.R.T.; Peres, A. High intensity interval exercise decreases IL-8 and enhances the immunomodulatory cytokine interleukin-10 in lean and overweight-obese individuals. Cytokine 2016, 77, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Forti, L.N.; van Roie, E.; Njemini, R.; Coudyzer, W.; Beyer, I.; Delecluse, C.; Bautmans, I. Effects of resistance training at different loads on inflammatory markers in young adults. Eur. J. Appl. Physiol. 2017, 117, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Sardeli, A.V.; Tomeleri, C.M.; Cyrino, E.S.; Fernhall, B.; Cavaglieri, C.R.; Chacon-Mikahil, M.P.T. Effect of resistance training on inflammatory markers of older adults: A meta-analysis. Exp. Gerontol. 2018, 111, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Zarkovic, N. Antioxidants and second messengers of free radicals. Antioxidants 2018, 7, 158. [Google Scholar] [CrossRef] [Green Version]
- Hopps, E.; Canino, B.; Caimi, G. Effects of exercise on inflammation markers in type 2 diabetic subjects. Acta Diabetol. 2011, 48, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Thirupathi, A.; Pinho, R.A. Effects of reactive oxygen species and interplay of antioxidants during physical exercise in skeletal muscles. J. Physiol. Biochem. 2018, 74, 359–367. [Google Scholar] [CrossRef]
- Liu, M.; Timmons, B.W. The effect of acute exercise on neutrophil reactive oxygen species production and inflammatory markers in healthy prepubertal and adult males. Pediatr. Exerc. Sci. 2016, 28, 55–63. [Google Scholar] [CrossRef]
- Munro, D.; Treberg, J.R. A radical shift in perspective: Mitochondria as regulators of reactive oxygen species. J. Exp. Biol. 2017, 220, 1170–1180. [Google Scholar] [CrossRef] [Green Version]
- Nemes, R.; Koltai, E.; Taylor, A.W.; Suzuki, K.; Gyori, F.; Radak, Z. Reactive oxygen and nitrogen species regulate key metabolic, anabolic, and catabolic pathways in skeletal muscle. Antioxidants 2018, 7, 85. [Google Scholar] [CrossRef] [Green Version]
- Radak, Z.; Torma, F.; Berkes, I.; Goto, S.; Mimura, T.; Posa, A.; Balogh, L.; Boldogh, I.; Suzuki, K.; Higuchi, M.; et al. Exercise effects on physiological function during aging. Free. Radic. Biol. Med. 2019, 132, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Biolo, G.; di Girolamo, F.G.; Fiotti, N.; Mearelli, F.; Sarto, P. Exercise-mediated reactive oxygen species generation in athletes and in patients with chronic disease. Intern. Emerg. Med. 2017, 12, 741–744. [Google Scholar] [CrossRef]
- King, M.A.; Clanton, T.L.; Laitano, O. Hyperthermia, dehydration, and osmotic stress: Unconventional sources of exercise-induced reactive oxygen species. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016, 310, R105–R114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misu, H.; Takayama, H.; Saito, Y.; Mita, Y.; Kikuchi, A.; Ishii, K.; Chikamoto, K.; Chikamoto, K.; Kanamori, T.; Tajima, N.; et al. Deficiency of the hepatokine selenoprotein P increases responsiveness to exercise in mice through upregulation of reactive oxygen species and AMP-activated protein kinase in muscle. Nat. Med. 2017, 23, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K. Chronic inflammation as an immunological abnormality and effectiveness of exercise. Biomolecules 2019, 9, 223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zielonka, J.; Lambeth, J.D.; Kalyanaraman, B. On the use of L-012, a luminol-based chemiluminescent probe, for detecting superoxide and identifying inhibitors of NADPH oxidase: A reevaluation. Free. Radic. Biol. Med. 2013, 65, 1310–1314. [Google Scholar] [CrossRef] [Green Version]
- Schwenck, J.; Mehling, R.; Thaiss, W.M.; Kramer, D.; Menendez, I.G.; Öz, H.H.; Hartl, D.; Schulze-Osthoff, K.; Hailfinger, S.; Ghoreschi, K.; et al. Temporal dynamics of reactive oxygen and nitrogen species and NF-κB activation during acute and chronic T cell–driven inflammation. Mol. Imaging Biol. 2020, 22, 504–514. [Google Scholar] [CrossRef] [Green Version]
- Siomek, A. NF-κB signaling pathway and free radical impact. Acta Biochim. Pol. 2012, 59, 323–331. [Google Scholar] [CrossRef] [Green Version]
- Siggers, T.; Chang, A.B.; Teixeira, A.; Wong, D.; Williams, K.J.; Ahmed, B.; Ragoussis, J.; Udalova, I.A.; Smale, S.T.; Bulyk, M.L. Principles of dimer-specific gene regulation revealed by a comprehensive characterization of NF-κB family DNA binding. Nat. Immunol. 2012, 13, 95–102. [Google Scholar] [CrossRef]
- Kramer, H.F.; Goodyear, L.J. Exercise, MAPK, and NF-κB signaling in skeletal muscle. J. Appl. Physiol. 2007, 103, 388–395. [Google Scholar] [CrossRef]
- Morgan, M.J.; Liu, Z.G. Crosstalk of reactive oxygen species and NF-κB signaling. Cell. Res. 2011, 21, 103–115. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Wan, Y.; Huang, C. The biological functions of NF-κB1 (p50) and its potential as an anti-cancer target. Curr. Cancer Drug Targets 2009, 9, 566–571. [Google Scholar] [CrossRef]
- Ho, E.; Bray, T.M. Antioxidants, NFκB activation, and diabetogenesis. Proc. Soc. Exp. Biol. Med. 1999, 222, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.L.; Gomez-Cabrera, M.C.; Steinhafel, N.; Vina, J. Acute exercise activates nuclear factor (NF)-ΚB signaling pathway in rat skeletal muscle. FASEB J. 2004, 18, 1499–1506. [Google Scholar] [CrossRef] [PubMed]
- Falcão, H.G.; Silva, M.B.R.; De Camargo, A.C.; Shahidi, F.; Franchin, M.; Rosalen, P.L.; de Alencar, S.M.; Kurozawa, L.E.; Ida, E.I. Optimizing the potential bioactivity of isoflavones from soybeans via ultrasound pretreatment: Antioxidant potential and NF-κB activation. J. Food Biochem. 2019, 43, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Hayden, M.S.; Ghosh, S. Shared Principles in NF-κB Signaling. Cell 2008, 132, P344–P362. [Google Scholar] [CrossRef] [Green Version]
- Bonizzi, G.; Karin, M. The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 2004, 25, 280–288. [Google Scholar] [CrossRef]
- Beinke, S.; Ley, S.C. Functions of NF-κB1 and NF-κB2 in immune cell biology. Biochem. J. 2004, 382, 393–409. [Google Scholar] [CrossRef]
- Annemann, M.; Plaza-Sirvent, C.; Schuster, M.; Katsoulis-Dimitriou, K.; Kliche, S.; Schraven, B.; Schmitz, I. Atypical IkB proteins in immune cell differentiation and function. Immunol. Lett. 2016, 171, 26–35. [Google Scholar] [CrossRef]
- Chiba, T.; Inoko, H.; Kimura, M.; Sato, T. Role of nuclear IκBs in inflammation regulation. Biomol. Concepts 2013, 4, 187–196. [Google Scholar] [CrossRef]
- Ma, Q.; Kinneer, K.; Ye, J.; Chen, B.J. Inhibition of nuclear factor κB by phenolic antioxidants: Interplay between antioxidant signaling and inflammatory cytokine expression. Mol. Pharmacol. 2003, 64, 211–219. [Google Scholar] [CrossRef] [Green Version]
- De Camargo, A.C.; Biasoto, A.C.T.; Schwember, A.R.; Granato, D.; Rasera, G.B.; Franchin, M.; Rosalen, P.L.; Alencar, S.M.; Shahidi, F. Should we ban total phenolics and antioxidant screening methods? The link between antioxidant potential and activation of NF-κB using phenolic compounds from grape by-products. Food. Chem. 2019, 290, 229–238. [Google Scholar] [CrossRef]
- Pinkus, R.; Weiner, L.M.; Daniel, V. Role of oxidants and antioxidants in the induction of AP-1, NF-κB, and glutathione S-transferase gene expression. J. Biol. Chem. 1996, 271, 13422–13429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gessner, D.K.; Fiesel, A.; Most, E.; Dinges, J.; Wen, G.; Ringseis, R.; Eder, K. Supplementation of a grape seed and grape marc meal extract decreases activities of the oxidative stress-responsive transcription factors NF-κB and Nrf2 in the duodenal mucosa of pigs. Acta Vet. Scand. 2013, 55, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, Y.J.; Packer, L. Inhibition of NF-κB activation by vitamin E derivatives. Biochem. Biophys. Res. Commun. 1993, 193, 277–283. [Google Scholar] [CrossRef]
- Klee, C.B.; Draetta, G.F.; Hubbard, M.J. Calcineurin. Adv. Enzymol. Relat. Areas. Mol. Biol. 1988, 61, 149–200. [Google Scholar]
- Zádor, E. DnRas stimulates autocrine—Paracrine growth of regenerating muscle via calcineurin-NFAT-IL-4 pathway. Biochem. Biophys. Res. Commun. 2008, 375, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Peake, J.M.; Suzuki, K.; Coombes, J.S. The influence of antioxidant supplementation on markers of inflammation and the relationship to oxidative stress after exercise. J. Nutr. Biochem. 2007, 18, 357–371. [Google Scholar] [CrossRef]
- Vaeth, M.; Feske, S. NFAT control of immune function: New frontiers for an abiding trooper. F1000 Res. 2018, 7, 260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaslavsky, A.; Chou, S.T.; Schadler, K.; Lieberman, A.; Pimkin, M.; Kim, Y.J.; Baek, K.H.; Aird, W.C.; Weiss, M.J.; Ryeom, S. The calcineurin-NFAT pathway negatively regulates megakaryopoiesis. Blood 2013, 121, 3205–3215. [Google Scholar] [CrossRef] [Green Version]
- Pan, M.G.; Xiong, Y.; Chen, F. NFAT gene family in inflammation and cancer. Curr. Mol. Med. 2008, 13, 543–544. [Google Scholar] [CrossRef] [Green Version]
- Kaufmann, S.H. Heat shock proteins and the immune response. Immunol. Today 1990, 11, 129–136. [Google Scholar] [CrossRef]
- Bausinger, H.; Lipskar, D.; Hanau, D. Heat-shock proteins as activators of the innate immune system. Trends. Immunol. 2002, 23, 342–343. [Google Scholar] [CrossRef]
- Macian, F.; Cruz-Guilloty, F. Chapter 254—The NFAT family: Structure, regulation, and biological functions. In Handbook of Cell Signaling, 2nd ed.; Academic Press: Cambridge, MA, USA, 2010; pp. 2083–2091. [Google Scholar]
- Oh-hora, M.; Rao, A. The calcium/NFAT pathway: Role in development and function of regulatory T cells. Microbes Infect. 2009, 11, 612–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikwegbue, P.C.; Masamba, P.; Oyinloye, B.E.; Kappo, A.P. Roles of heat shock proteins in apoptosis, oxidative stress, human inflammatory diseases, and cancer. Pharmaceuticals 2018, 11, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurashova, N.A.; Madaeva, L.M.; Kolesnikova, L.I. Expression of HSP70 heat-shock proteins under oxidative Stress. Adv. Gerontol. 2020, 10, 20–25. [Google Scholar] [CrossRef]
- Kalmar, B.; Greensmith, L. Induction of heat shock proteins for protection against oxidative stress. Adv. Drug Deliv. Rev. 2009, 61, 310–318. [Google Scholar] [CrossRef] [PubMed]
- Mayer, M.P.; Bukau, B. Hsp70 chaperones: Cellular functions and molecular mechanism. Cell. Mol. Life Sci. 2005, 62, 670–684. [Google Scholar] [CrossRef] [Green Version]
- Wan, T.; Zhou, X.; Chen, G.; An, H.; Chen, T.; Zhang, W.; Liu, S.; Jiang, Y.; Yang, F.; Wu, Y.; et al. Novel heat shock protein Hsp70L1 activates dendritic cells and acts as a Th1 polarizing adjuvant. Blood 2004, 103, 1747–1754. [Google Scholar] [CrossRef] [Green Version]
- Tsan, M.F.; Gao, B. Heat shock proteins and immune system. J. Leukoc. Biol. 2009, 85, 905–910. [Google Scholar] [CrossRef]
- Westman, J.; Drieu, K.; Sharma, H.S. Antioxidant compounds EGB-761 and BN-520 21 attenuate heat shock protein (HSP 72 kD) response, edema and cell changes following hyperthermic brain injury. An experimental study using immunohistochemistry in the rat. Amino Acids 2000, 19, 339–350. [Google Scholar] [CrossRef]
- Dimauro, I.; Mercatelli, N.; Caporossi, D. Exercise-induced ROS in heat shock proteins response. Free. Radic. Biol. Med. 2016, 98, 46–55. [Google Scholar] [CrossRef]
- Ohishi, T.; Goto, S.; Monira, P.; Isemura, M.; Nakamura, Y. Anti-inflammatory action of green tea. Antiinflamm. Antiallergy Agents Med. Chem. 2016, 15, 74–90. [Google Scholar] [CrossRef] [PubMed]
- Gorman, A.M.; Heavey, B.; Creagh, E.; Cotter, T.G.; Samali, A. Antioxidant-mediated inhibition of the heat shock response leads to apoptosis. FEBS Lett. 1999, 445, 98–102. [Google Scholar] [CrossRef]
- Suzuki, K.; Nakaji, S.; Yamada, M.; Totsuka, M.; Sato, K.; Sugawara, K. Systemic inflammatory response to exhaustive exercise: Cytokine kinetics. Exerc. Immunol. Rev. 2002, 8, 6–48. [Google Scholar] [PubMed]
- Gomes, E.C.; Silva, A.N.; de Oliveira, M.R. Oxidants, antioxidants, and the beneficial roles of exercise-induced production of reactive species. Oxid. Med. Cell. Longev. 2012, 2012, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Nakaji, S.; Yamada, M.; Liu, Q.; Kurakake, S.; Okamura, N.; Kumae, T.; Umeda, T.; Sugawara, K. Impact of a competitive marathon race on systemic cytokine and neutrophil responses. Med. Sci. Sports Exerc. 2003, 35, 348–355. [Google Scholar] [CrossRef]
- Yfanti, C.; Ficcher, C.P.; Nielsen, S.; Akerstrom, T.; Nielsen, A.R.; Veskoukis, A.S.; Kouretas, D.; Lykkesfeldt, J.; Pilegaard, H.; Pedersen, B.K. Role of vitamin C and E supplementation on IL-6 in response to training. J. Appl. Physiol. 2012, 112, 990–1000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Righi, N.C.; Schuch, F.B.; De Nardi, A.T.; Pippi, C.M.; Righi, G.A.; Puntel, G.O.; da Silva, A.M.V.; Signori, L.U. Effects of vitamin C on oxidative stress, inflammation, muscle soreness, and strength following acute exercise: Meta-analyses of randomized clinical trials. Eur. J. Nutr. 2020, 1–13. [Google Scholar] [CrossRef]
- Davison, G.; Gleeson, M. The effect of 2 weeks vitamin C supplementation on immunoendocrine responses to 2.5 h cycling exercise in man. Eur. J. Appl. Physiol. 2006, 97, 454–461. [Google Scholar] [CrossRef]
- Aguiló, A.; Monjo, M.; Moreno, C.; Martinez, P.; Martínez, S.; Tauler, P. Vitamin C supplementation does not influence plasma and blood mononuclear cell IL-6 and IL-10 levels after exercise. J. Sports Sci. 2014, 32, 1659–1669. [Google Scholar] [CrossRef]
- Vassilakopoulos, T.; Katsaounou, P.; Karatza, M.H.; Kollintza, A.; Zakynthinos, S.; Roussos, C. Strenuous resistive breathing induces plasma cytokines role of antioxidants and monocytes. Am. J. Respir. Crit. Care Med. 2002, 166, 1572–1578. [Google Scholar] [CrossRef]
- McAnulty, L.S.; Miller, L.E.; Hosick, P.A.; Utter, A.C.; Quindry, J.C.; McAnulty, S.R. Effect of resveratrol and quercetin supplementation on redox status and inflammation after exercise. Appl. Physiol. Nutr. Metab. 2013, 38, 760–765. [Google Scholar] [CrossRef] [PubMed]
- Bailey, D.M.; Williams, C.; Betts, J.A.; Thompson, D.; Hurst, T. Oxidative stress, inflammation and recovery of muscle function after damaging exercise: Effect of 6-week mixed antioxidant supplementation. Eur. J. Appl. Physiol. 2011, 111, 925–936. [Google Scholar] [CrossRef] [PubMed]
- Keohane, D.M.; Woods, T.; McCarthy, Y.; O’Connor, P.; Underwood, S.; Molloy, M.G. A repeated-measures case series of physiological responses to a transoceanic rowing race. Int. J. Sports Med. 2019, 40, 152–157. [Google Scholar] [CrossRef]
- Jeukendrup, A.E.; Vet-Joop, K.; Sturk, A.; Stegen, J.H.; Senden, J.; Saris, W.H.; Wagenmakers, A.J. Relationship between gastro-intestinal complaints and endotoxaemia, cytokine release and the acute-phase reaction during and after a long-distance triathlon in highly trained men. Clin. Sci. 2000, 98, 47–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alcock, R.; McCubbin, A.; Camões-Costa, V.; Costa, R.J.S. Case study: Providing nutritional support to an ultraendurance runner in preparation for a self-sufficient multistage ultramarathon: Rationed versus full energy provisions. Wilderness Environ. Med. 2018, 29, 508–520. [Google Scholar] [CrossRef]
- Nieman, D.C.; Henson, D.A.; Davis, J.M.; Dumke, C.L.; Gross, S.J.; Jekins, D.P.; Murphy, E.A.; Carmichael, M.D.; Quindry, J.C.; McAnulty, S.R.; et al. Quercetin ingestion does not alter cytokine changes in athletes competing in the western states endurance run. J. Interferon Cytokine Res. 2007, 27, 1003–1011. [Google Scholar] [CrossRef] [Green Version]
- Tongtako, W.; Klaewsongkram, J.; Mickleborough, T.D.; Suksom, D. Effects of aerobic exercise and vitamin C supplementation on rhinitis symptoms in allergic rhinitis patients. Asian Pac. J. Allergy Immunol. 2018, 36, 222–231. [Google Scholar]
- Castro, J.D.; Guisado, R.; Kajarabille, N.; García, C.; Guisado, I.M.; De Teresa, C.; Ochoa, J.J. Phlebodium decumanum is a natural supplement that ameliorates the oxidative stress and inflammatory signalling induced by strenuous exercise in adult humans. Eur. J. Appl. Physiol. 2012, 112, 3119–3128. [Google Scholar] [CrossRef]
- Caceres, A.; Cruz, S.M. Application of calahuala (Phlebodium spp) fern complex for the formulation of diverse medicinal and cosmetic products. Int. J. Phytocos. Nat. Ingred. 2018, 5, 11. [Google Scholar] [CrossRef] [Green Version]
- Castro, J.D.; Guisado, R.; Kajarabille, N.; García, C.; Guisado, I.M.; De Teresa, C.; Ochoa, J.J. Coenzyme Q10 supplementation ameliorates inflammatory signaling and oxidative stress associated with strenuous exercise. Eur. J. Nutr. 2012, 51, 791–799. [Google Scholar] [CrossRef]
- Ochoa, J.J.; Castro, J.D.; Kajarabille, N.; García, C.; Guisado, I.M.; De Teresa, C.; Guisado, R. Melatonin supplementation ameliorates oxidative stress and inflammatory signaling induced by strenuous exercise in adult human males. J. Pineal Res. 2011, 51, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Ekblom, B. Co-Enzyme Q10. In Nutritional Supplements in Sport, Exercise and Health: An A-Z Guide; Castell, L.M., Stear, S.J., Burke, L.M., Eds.; Routledge: Abingdon, UK, 2015; pp. 90–91. [Google Scholar]
- Ratamess, N.A.; Alvar, B.A.; Evetoch, T.K.; Housh, T.J.; Kibler, W.B.; Kraemer, W.J.; Triplett, T. Progression models in resistance training for healthy adults. Med. Sci. Sports Exerc. 2009, 41, 687–708. [Google Scholar]
- Campbell, M.S.; Carlini, N.A.; Fleenor, B.S. Influence of curcumin on performance and post-exercise recovery. Crit. Rev. Food Sci. Nutr. 2020, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Lázaro, D.; Mielgo-Ayuso, J.; Calvo, J.S.; Martínez, A.C.; García, A.C.; Fernandez-Lazaro, C.I. Modulation of exercise-induced muscle damage, inflammation, and oxidative markers by curcumin supplementation in a physically active population: A systematic review. Nutrients 2020, 12, 501. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.C.; Wu, J.F.; Saovieng, S.; Chien, W.H.; Hsu, M.F.; Li, X.F.; Lee, S.D.; Huang, C.Y.; Kuo, C.H. Doxorubicin inhibits muscle inflammation after eccentric exercise. J. Cachexia Sarcopenia Muscle 2017, 8, 277–284. [Google Scholar] [CrossRef]
- Hosseinzageh, M.; Andersen, O.K.; Nielsen, L.A.; Samani, A.; Kamavuako, E.N.; Madeleine, P. Adaptation of local muscle blood flow and surface electromyography to repeated bouts of eccentric exercise. J. Strength Cond. Res. 2015, 29, 1017–1026. [Google Scholar] [CrossRef]
- Kanda, K.; Sugama, K.; Hayashida, H.; Sakuma, J.; Kawakami, Y.; Miura, S.; Yoshioka, H.; Mori, Y.; Suzuki, K. Eccentric exercise-induced delayed-onset muscle soreness and changes in markers of muscle damage and inflammation. Exerc. Immunol. Rev. 2013, 19, 72–85. [Google Scholar]
- Clifford, T.; Bell, O.; West, D.J.; Howatson, G.; Stevenson, E.J. The effects of beetroot juice supplementation on indices of muscle damage following eccentric exercise. Eur. J. Appl. Physiol. 2016, 116, 353–362. [Google Scholar] [CrossRef]
- Koenig, R.T.; Dickman, J.R.; Kang, C.H.; Zhang, T.; Chu, Y.F.; Ji, L.L. Avenanthramide supplementation attenuates eccentric exercise-inflicted blood inflammatory markers in women. Eur. J. Appl. Physiol. 2016, 116, 67–76. [Google Scholar] [CrossRef]
- Chen, Z.; Li, S.; Wang, X.; Zhang, C.L. Protective effects of Radix Pseudostellariae polysaccharides against exercise-induced oxidative stress in male rats. Exp. Ther. Med. 2013, 5, 1089–1092. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Zhao, M.; Wang, H.; Cui, C.; You, L. Effects of supplementation with Grass Carp protein versus peptide on swimming endurance in mice. Nutrition 2011, 27, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Luo, Y.; Shen, H.; You, J. Antioxidant activities and functional properties of grass carp (Ctenopharyngodon idellus) protein hydrolysates. J. Sci. Food Agric. 2012, 92, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Yang, X.; Liu, J.; Qian, P.; Hao, L.; Wang, Z.; Guo, S. Effects of wheat peptide supplementation on anti-fatigue and immunoregulation during incremental swimming exercise in rats. RSC Adv. 2017, 7, 43345–43355. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.-C.; Huang, C.-C.; Lin, W.-T.; Hsieh, C.-C.; Huang, S.-Y.; Lin, S.-J.; Yang, S.-C. Lycopene supplementation attenuated xanthine oxidase and myeloperoxidase activities in skeletal muscle tissues of rats after exhaustive exercise. Br. J. Nutr. 2005, 94, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Ranchordas, M.K.; Rogerson, D.; Soltani, H.; Costello, J.T. Antioxidants for preventing and reducing muscle soreness after exercise. Cochrane Database Syst. Rev. 2017, 2017, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahal, A.; Kumar, A.; Singh, V.; Yadav, B.; Tiwari, R.; Chakraborty, S.; Dhama, K. Oxidative stress, prooxidants, and antioxidants: The interplay. Biomed. Res. Int. 2014, 2014, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Childs, A.; Jacobs, C.; Kaminski, T.; Halliwell, B.; Leeuwenburgh, C. Supplementation with vitamin C and N-acetyl-cysteine increases oxidative stress in humans after an acute muscle injury induced by eccentric exercise. Free Radic. Biol. Med. 2001, 31, 745–753. [Google Scholar] [CrossRef]
- Yada, K.; Roberts, L.A.; Oginome, N.; Suzuki, K. Effect of acacia polyphenol supplementation on exercise-induced oxidative stress in mice liver and skeletal muscle. Antioxidants 2019, 9, 29. [Google Scholar] [CrossRef] [Green Version]
- Kurutas, E.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutr. J. 2016, 15, 71. [Google Scholar] [CrossRef] [Green Version]
- Ruhee, R.T.; Suzuki, K. The integrative role of sulforaphane in preventing inflammation, oxidative stress and fatigue: A review of a potential protective phytochemical. Antioxidants 2020, 9, 521. [Google Scholar] [CrossRef]
- Ma, Q. Role of Nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 401–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milkovic, L.; Zarkovic, N.; Saso, L. Controversy about pharmacological modulation of Nrf2 for cancer therapy. Redox. Biol. 2017, 12, 727–732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, K.; Tominaga, T.; Ruhee, R.T.; Ma, S. Characterization and modulation of systemic inflammatory response to exhaustive exercise in relation to oxidative stress. Antioxidants 2020, 9, 401. [Google Scholar] [CrossRef] [PubMed]
Typical | Atypical |
---|---|
IκBα | IκBζ |
IκBβ | Bcl-3 |
IκBε | IκBNS |
IκBδ (p100) | IκBη |
IκBL |
Reference | Subjects | Exercise | Design | Supplement | Parameters | Results |
---|---|---|---|---|---|---|
Davison and Gleeson [90] | Healthy endurance trained males | 2.5 h at 60% VO2max | Crossover (n = 9) | Placebo or Vitamin C (1000 mg day-1) | Cortisol | No positive effect on neutrophil function |
Adrenocorticotrophic Hormone | ||||||
Interleukin-6 | ||||||
Oxidative stress | ||||||
Neutrophil | ||||||
Aguiló et al. [91] | voluntary male recreational well-trained athletes | 15-km run competition | A double-blinded study (n= 31) | Placebo or Vitamin C (500 mg day-1) | Vitamin A | No positive effect on reducing the inflammatory cytokines |
α-tocopherol | ||||||
Malondialdehyde (MDA) | ||||||
Cortisol | ||||||
Creatine kinase | ||||||
Aspartate aminotransferase | ||||||
Lipid hydroperoxide | ||||||
Vitamin C | ||||||
IL-6 | ||||||
IL-10 | ||||||
Vassilakopoulos et al. [92] | Healthy males | two resistive breathing sessions at 75% of maximum inspiratory pressure | Crossover (n = 6) | Allopurinol 600 mg/day | IL-1β | OS is responsible for increased respiratory resistance due to inflammatory cytokines |
Vitamin A 50,000 IU, vitamin C 1000 mg and vitamin E 200 mg per day | IL-6 | |||||
N-acetylcysteine 2 g/day | TNF-α | |||||
McAnulty et al. [93] | Healthy trained male adults | a 1-h run at a 3% grade and at ~80% VO2max | double-blind crossover (n = 14) | Resveratrol and quercetin (RQ) | ORAC | positive effect on reducing lipid peroxidation No positive effect on altering plasma antioxidant status and inflammation |
450 mg quercetin and 240 mg resveratrol on day 7 just prior to exercise and 225 mg quercetin and 120 mg resveratrol for 6 days prior to day 7 | FRAP | |||||
TEAC | ||||||
protein carbonyls | ||||||
F2-isoprostanes | ||||||
CRP | ||||||
IL-8 | ||||||
Bailey et al. [94] | healthy young men | 90 min of intermittent shuttle-running | double-blind crossover (n = 38) | Combination of antioxidant supplements (vitamin C and E) 400 mg vitamin C (ascorbic acid), 268 mg vitamin E (RRR-α-tocopherol), 2 mg vitamin B6 (pyridoxine hydrochloride), 200 µg vitamin B9 (folic acid), 5 µg zinc sulphate monohydrate, and 1 µg vitamin B12 (cyanocobalamin) | Vitamin C | No positive effect on reducing inflammation and OS |
Vitamin E | ||||||
F2-isoprostanes | ||||||
Cortisol | ||||||
Interleukin-6 | ||||||
Nieman et al. [98] | ultramarathon athletes | 160-km Western States Endurance Run (WSER) | double-blind crossover (n = 39) | Placebo or quercetin (1000 mg day−1) | proinflammatory and anti-inflammatory plasma cytokines | Positive effect on enhancing quercetin plasma levels muscle damage and No positive effect on reducing inflammatory cytokines |
cortisol | ||||||
serum C-reactive protein (CRP) | ||||||
creatine kinase (CK) | ||||||
Tongtako et al. [99] | patients with allergic rhinitis | walking and/or running on a treadmill at 65–70% heart rate reserve | (n = 27) | vitamin C 2 times/day (one pill of 1000 mg in the morning and one in the evening) | IL-2 | Positive effect on reducing cytokine profiles |
IL-4 | ||||||
Díaz-Castro et al. [100] | amateur athletes | run to Sierra Nevada from the city of Granada | - | Placebo or Phlebodium group (PG) Five capsules of 400 mg (250 mg of leaf extract and 150 mg of rhizome extract) | 8-hydroxy-2-deoxyguanosine (8-OHdG) | Created a strong defense against inflammatory cytokines such as TNF-α |
Isoprostane | ||||||
TNF-α | ||||||
IL-6 | ||||||
IL-1ra | ||||||
Díaz-Castro et al. [102] | male amateur athletes | constant run (50 km) that combined several degrees of high effort (mountain run and ultraendurance) | - | Placebo or CoQ10 group | TNF-a | Positive effect on reducing muscle damage, oxidative stress and inflammatory cytokines |
IL-6 | ||||||
8-OHdG | ||||||
Isoprostane | ||||||
Ochoa et al. [103] | amateur athletes | Run 50 km with almost 2800 m of ramp | - | melatonin-treated men (MG) and placebo-treated individuals (controls group, CG) (Five capsules of 3 mg) | TNF-αIL-6 | Positive effect on reducing muscle damage, oxidative stress and inflammatory cytokines |
IL-1ra | ||||||
8-OHdG | ||||||
Isoprostane | ||||||
Clifford et al. [111] | recreationally active males | 100-drop jumps | a double blind, independent groups design (n = 30) | high dose of beetroot juice (H-BT; 250 mL), low dose of beetroot juice (L-BT; 125 mL), or an isocaloric placebo (PLA; 250 mL) | countermovement jumps (CMJ) | Positive effect on reducing muscle pain Positive effect on enhancing CMJ |
pressure pain threshold | ||||||
CK | ||||||
IL-6 | ||||||
IL-8 | ||||||
TNF-α | ||||||
Koenig et al. [112] | Young women | downhill running (DR) on a treadmill at −9% grade | double-blind crossover (n = 16) | oat flour providing 9.2 mg AVA (AVA) or 0.4 mg AVA (Control, C) | TNF-α | Positive effect on reducing inflammatory cytokines |
neutrophil respiratory burst | ||||||
CK | ||||||
NF-κB | ||||||
resting plasma GSH |
Reference | Subjects | Exercise | Design | Supplement | Parameters | Results |
---|---|---|---|---|---|---|
Chen et al. [113] | Wistar rats | Exhaustive swimming | (n = 40) | Radix Pseudostellariae polysaccharides (RPPs) antioxidant supplement in different doses (100, 200, and 400 mg/kg body weight) | Hemoglobin | high-dose antioxidant supplementation was more effective in improving levels of SOD, GPx, and CAT further reduction in OS indicators |
blood lactate | ||||||
Antioxidant enzymes (SOD, CAT) | ||||||
GPx | ||||||
MDA | ||||||
Ren et al. [114] | healthy mice | swimming exercise | (n = 90) | grass carp protein or peptide with low (1 mg/g.d) and high (5 mg/g.d) | liver glycogen | Positive effect on enhancing levels of SOD, GPX, and CAT |
gastrocnemius muscle glycogen | ||||||
plasma glucose | ||||||
serum lactic acid | ||||||
blood urea nitrogen | ||||||
SOD | ||||||
GPx | ||||||
CAT | ||||||
Zheng et al. [116] | pathogen free (SPF) Sprague-Dawley (SD) rats | incremental swimming exercise | (n = 60) | grass carp protein or peptide with low (1 mg/g.d) and high (5 mg/(g.d). low (20 mg kg−1 d−1) and high dose (100 mg kg−1 d−1) wheat peptide. | Exhaustive time | taking both doses of the supplement could boost GPx antioxidant levels. fatigue was delayed by taking a high-dose supplement over a lower dose |
MDA | ||||||
Secretory | ||||||
immunoglobulin A | ||||||
5-hydroxytryptamine (5-HT) | ||||||
SOD | ||||||
GPx | ||||||
Acetylcholinesterase | ||||||
Caspase-3 | ||||||
IL-6 | ||||||
IL-8 | ||||||
Liu et al. [117] | Sprague-Dawley rats | Strenuous exercise | experimental animal model | lycopene (a relatively high dose (7·8 mg/kg per d) and a relatively low dose (2·6 mg/kg per d)) | Xanthine oxidase (XO) | No significant difference between the use of different antioxidant doses in the enhancement of Glutathione antioxidant enzymes |
myeloperoxidase (MPO) | ||||||
MDA | ||||||
GSH | ||||||
Ranchordas et al. [118] | Male and female sedentary-moderate trained | DOMS-inducing exercise | 50 studies (n = 1089) | Antioxidant doses higher than Recommended Dietary Allowances (RDA) | Wide range of antioxidants, placebo-controlled | Exercise-induced muscle pain did not decrease even with high-dose antioxidant supplements |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taherkhani, S.; Suzuki, K.; Castell, L. A Short Overview of Changes in Inflammatory Cytokines and Oxidative Stress in Response to Physical Activity and Antioxidant Supplementation. Antioxidants 2020, 9, 886. https://doi.org/10.3390/antiox9090886
Taherkhani S, Suzuki K, Castell L. A Short Overview of Changes in Inflammatory Cytokines and Oxidative Stress in Response to Physical Activity and Antioxidant Supplementation. Antioxidants. 2020; 9(9):886. https://doi.org/10.3390/antiox9090886
Chicago/Turabian StyleTaherkhani, Shima, Katsuhiko Suzuki, and Lindy Castell. 2020. "A Short Overview of Changes in Inflammatory Cytokines and Oxidative Stress in Response to Physical Activity and Antioxidant Supplementation" Antioxidants 9, no. 9: 886. https://doi.org/10.3390/antiox9090886
APA StyleTaherkhani, S., Suzuki, K., & Castell, L. (2020). A Short Overview of Changes in Inflammatory Cytokines and Oxidative Stress in Response to Physical Activity and Antioxidant Supplementation. Antioxidants, 9(9), 886. https://doi.org/10.3390/antiox9090886