In Vitro Biological Activities of Fruits and Leaves of Elaeagnus multiflora Thunb. and Their Isoprenoids and Polyphenolics Profile
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Materials
2.3. Determination of Polyphenols
2.4. Analysis of Proanthocyanidins by Phloroglucinolysis
2.5. Isoprenoids’ Analysis
2.6. In Vitro Assessment of Health-Promoting Capacities
2.6.1. Extraction Procedure
2.6.2. Antiradical activity
2.6.3. Antiradical Activity
2.6.4. Reducing Activity
2.6.5. The α-Amylase Inhibitor Activity Assay
2.6.6. The α-Glucosidase Inhibitor Activity Assay
2.6.7. Pancreatic Lipase Inhibitor Activity Assay
2.7. Statistical Analysis
3. Results and Discussion
3.1. Polyphenolics’ Profile
3.2. Isoprenoids’ Profile: Chlorophylls and Carotenoids
3.3. In Vitro Assessment of Health-Promoting Capacities
3.3.1. In Vitro Antioxidant Capacity
3.3.2. The Ability to Inhibit α-Amylase, α-Glucosidase, and Pancreatic Lipase Activity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- FAO. The State of the World’s Biodiversity for Food and Agriculture; Bélanger, J., Pilling, D., Eds.; FAO Commission on Genetic Resources for Food and Agriculture Assessments: Rome, Italy, 2019. [Google Scholar]
- Lee, M.S.; Lee, Y.K.; Park, O.J. Cherry silver berry (Elaeagnus multiflora) extracts exert anti-inflammatory effects by inhibiting COX-2 and Akt signals in HT-29 colon cancer cells. Food Sci. Biotechnol. 2010, 19, 1673–1677. [Google Scholar] [CrossRef]
- Lee, J.H.; Seo, W.T.; Cho, K.M. Determination of phytochemical contents and biological activities from the fruits of Elaeagnus multiflora. Prev. Nutr. Food Sci. 2011, 16, 29–36. [Google Scholar] [CrossRef][Green Version]
- Bieniek, A.; Piłat, B.; Szałkiewicz, M.; Markuszewski, B.; Gojło, E. Evaluation of yield, morphology and quality of fruits of cherry silverberry (Elaeagnus multiflora Thunb.) biotypes under conditions of north-eastern Poland. Pol. J. Natl. Sci. 2017, 32, 61–70. [Google Scholar]
- Lachowicz, S.; Bieniek, A.; Gil, Z.; Bielska, N.; Markuszewski, B. Phytochemical parameters and antioxidant activity of new cherry silverberry biotypes (Elaeagnus multiflora Thunb.). Eur. Food Res. Technol. 2019, 245, 1997–2005. [Google Scholar] [CrossRef]
- Klich, M.G. Leaf variations in Elaeagnus angustifolia related to environmental heterogeneity. Environ. Exp. Bot. 2000, 44, 171–183. [Google Scholar] [CrossRef]
- Ahmadiani, A.; Hosseiny, J.; Semnanian, S.; Javan, M.; Saeedi, F.; Kamalinejad, M.; Saremi, S. Antinociceptive and anti-inflammatory effects of Elaeagnus angustifolia fruit extract. J. Ethnopharmacol. 2000, 72, 287–292. [Google Scholar] [CrossRef]
- Patel, S. Plant genus Elaeagnus: Underutilized lycopene and linoleic acid reserve with permaculture potential. Fruits 2015, 70, 191–199. [Google Scholar] [CrossRef]
- Ignat, I.; Volf, I.; Popa, V.I. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem. 2011, 126, 1821–1835. [Google Scholar] [CrossRef]
- Tomás-Barberán, F.A.; Ferreres, F.; Gil, M.I. Antioxidant phenolic metabolites from fruit and vegetables and changes during postharvest storage and processing. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2000; Volume 23, pp. 739–795. [Google Scholar]
- Meléndez-Martínez, A.J. An overview of carotenoids, apocarotenoids and vitamin A in agro-food, nutrition, health and disease. Mol. Nutr. Food Res. 2019, 63, e1801045. [Google Scholar] [CrossRef]
- Meléndez-Martínez, A.J.; Stinco, C.M.; Mapelli-Brahm, P. Skin carotenoids in public health and nutricosmetics: The emerging roles and applications of the UV radiation-absorbing colourless carotenoids phytoene and phytofluene. Nutrients 2019, 11, 1093. [Google Scholar] [CrossRef]
- Delgado-Pelayo, R.; Hornero-Méndez, D. Identification and quantitative analysis of carotenoids and their esters from sarsaparilla (Smilax aspera L.) berries. J. Agric. Food Chem. 2012, 60, 8225–8232. [Google Scholar] [CrossRef] [PubMed]
- Murillo, E.; Meléndez-Martínez, A.J.; Portugal, F. Screening of vegetables and fruits from Panama for rich sources of lutein and zeaxanthin. Food Chem. 2010, 122, 167–172. [Google Scholar] [CrossRef]
- Meléndez-Martínez, A.J.; Paulino, M.; Stinco, C.M.; Mapelli-Brahm, P.; Wang, X.-D. Study of the time-course of cis/trans (Z/E) isomerization of lycopene, phytoene, and phytofluene from tomato. J. Agric. Food Chem. 2014, 62, 12399–12406. [Google Scholar] [CrossRef] [PubMed]
- Stinco, C.M.; Benítez-González, A.M.; Meléndez-Martínez, A.J.; Hernanz, D.; Vicario, I.M. Simultaneous determination of dietary isoprenoids (carotenoids, chlorophylls and tocopherols) in human faeces by rapid resolution liquid chromatography. J. Chromatogr. A 2019, 1583, 63–72. [Google Scholar] [CrossRef]
- Oszmiański, J.; Wojdyło, A.; Lachowicz, S.; Gorzelany, J.; Matłok, N. Comparison of bioactive potential of cranberry fruit and fruit-based products versus leaves. J. Funct. Foods 2016, 22, 232–242. [Google Scholar] [CrossRef]
- Lachowicz, S.; Michalska, A.; Lech, K.; Majerska, J.; Oszmiański, J.; Figiel, A. Comparison of the effect of four drying methods on polyphenols in saskatoon berry. LWT 2019, 111, 727–736. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Slatnar, A.; Stampar, F.; Veberic, R. HPLC–MSn identification and quantification of flavonol glycosides in 28 wild and cultivated berry species. Food Chem. 2012, 135, 2138–2146. [Google Scholar] [CrossRef]
- Ablajan, K.; Abliz, Z.; Shang, X.Y.; He, J.M.; Zhang, R.P.; Shi, J.G. Structural characterization of flavonol 3, 7-di-O-glycosides and determination of the glycosylation position by using negative ion electrospray ionization tandem mass spectrometry. J. Mass Spectrom. 2006, 41, 352–360. [Google Scholar] [CrossRef]
- Püssa, T.; Pällin, R.; Raudsepp, P.; Soidla, R.; Rei, M. Inhibition of lipid oxidation and dynamics of polyphenol content in mechanically deboned meat supplemented with sea buckthorn (Hippophae rhamnoides) berry residues. Food Chem. 2008, 107, 714–721. [Google Scholar] [CrossRef]
- Aguirre-Hernández, E.; González-Trujano, M.E.; Martínez, A.L.; Moreno, J.; Kite, G.; Terrazas, T.; Soto-Hernández, M. HPLC/MS analysis and anxiolytic-like effect of quercetin and kaempferol flavonoids from Tilia americana var. mexicana. J. Ethnopharmacol. 2010, 127, 91–97. [Google Scholar] [CrossRef]
- Lachowicz, S.; Seliga, Ł.; Pluta, S. Distribution of phytochemicals and antioxidant potency in fruit peel, flesh, and seeds of Saskatoon berry. Food Chem. 2020, 305, 125430. [Google Scholar] [CrossRef] [PubMed]
- Toker, G.; Aslan, M.; Yeşilada, E.; Memişoğlu, M.; Ito, S. Comparative evaluation of the flavonoid content in officinal Tiliae flos and Turkish lime species for quality assessment. J. Pharm. Biomed. Anal. 2001, 26, 111–121. [Google Scholar] [CrossRef]
- Olas, B. The beneficial health aspects of sea buckthorn (Elaeagnus rhamnoides L.) A. Nelson) oil. J. Ethnopharmacol. 2018, 213, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Spínola, V.; Pinto, J.; Llorent-Martínez, E.J.; Castilho, P.C. Changes in the phenolic compositions of Elaeagnus umbellata and Sambucus lanceolata after in vitro gastrointestinal digestion and evaluation of their potential anti-diabetic properties. Food Res. Int. 2019, 122, 283–294. [Google Scholar] [CrossRef]
- Mamadalieva, N.Z.; Herrmann, F.; El-Readi, M.Z.; Tahrani, A.; Hamoud, R.; Egamberdieva, D.R.; Wink, M. Flavonoids in Scutellaria immaculata and S. ramosissima (Lamiaceae) and their biological activity. J. Pharm. Pharmacol. 2011, 63, 1346–1357. [Google Scholar] [CrossRef]
- Pawlowska, A.M.; Camangi, F.; Bader, A.; Braca, A. Flavonoids of Zizyphus jujuba L. and Zizyphus spina-christi (L.) Willd (Rhamnaceae) fruits. Food Chem. 2009, 112, 858–862. [Google Scholar] [CrossRef]
- Fernandes, A.; Sousa, A.; Mateus, N.; Cabral, M.; De Freitas, V. Analysis of phenolic compounds in cork from Quercus suber L. by HPLC–DAD/ESI–MS. Food Chem. 2011, 125, 1398–1405. [Google Scholar] [CrossRef]
- Stinco, C.M.; Fernández-Vázquez, R.; Escudero-Gilete, M.L.; Heredia, F.J.; Meléndez-Martínez, A.J.; Vicario, I.M. Effect of orange juices processing on the color, particle size, and bioaccessibility of carotenoids. J. Agric. Food Chem. 2012, 60, 1447–1455. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Shimada, K.; Fujikawa, K.; Yahara, K.; Nakamura, T. Antioxidant properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 1992, 40, 945–948. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a measure of “Antioxidant Power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Jakubczyk, A.; Karaś, M.; Złotek, U.; Szymanowska, U. Identification of potential inhibitory peptides of enzymes involved in the metabolic syndrome obtained by simulated gastrointestinal digestion of fermented bean (Phaseolus vulgaris L.) seeds. Food Res. Int. 2017, 100, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Amaral, J.S.; Seabra, R.M.; Andrade, P.B.; Valentao, P.; Pereira, J.A.; Ferreres, F. Phenolic profile in the quality control of walnut (Juglans regia L.) leaves. Food Chem. 2004, 88, 373–379. [Google Scholar] [CrossRef]
- Teleszko, M.; Wojdyło, A. Comparison of phenolic compounds and antioxidant potential between selected edible fruits and their leaves. J. Funct. Foods 2015, 14, 736–746. [Google Scholar] [CrossRef]
- Cheynier, V.; Comte, G.; Davies, K.M.; Lattanzio, V.; Martens, S. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol. Biochem. 2013, 72, 1–20. [Google Scholar] [CrossRef]
- Poiroux-Gonord, F.; Bidel, L.P.; Fanciullino, A.L.; Gautier, H.; Lauri-Lopez, F.; Urban, L. Health benefits of vitamins and secondary metabolites of fruits and vegetables and prospects to increase their concentrations by agronomic approaches. J. Agric. Food Chem. 2010, 58, 12065–12082. [Google Scholar] [CrossRef]
- Jaakola, L.; Määttä-Riihinen, K.; Kärenlampi, S.; Hohtola, A. Activation of flavonoid biosynthesis by solar radiation in bilberry (Vaccinium myrtillus L.) leaves. Planta 2004, 218, 721–728. [Google Scholar]
- Saboonchian, F.; Jamei, R.; Sarghein, S.H. Phenolic and flavonoid content of Elaeagnus angustifolia L. (leaf and flower). Avicenna J. Phytomed. 2014, 4, 231. [Google Scholar]
- Pei, R.; Yu, M.; Bruno, R.; Bolling, B.W. Phenolic and tocopherol content of autumn olive (Elaeagnus umbellate) berries. J. Funct. Foods 2015, 16, 305–314. [Google Scholar] [CrossRef]
- Telfer, A.; Pascal, A.; Gall, A. Carotenoids in photosynthesis. In Carotenoids; Birkhäuser: Basel, Switzerland, 2008; pp. 265–308. [Google Scholar]
- Britton, G.; Liaaen-Jensen, S.; Pfander, H. Natural functions. In Carotenoids; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008; Volume 4. [Google Scholar]
- Melendez-Martinez, A.J.; Stinco, C.M.; Liu, C.; Wang, X.D. A simple HPLC method for the comprehensive analysis of cis/trans (Z/E) geometrical isomers of carotenoids for nutritional studies. Food Chem. 2013, 138, 1341–1350. [Google Scholar] [CrossRef]
- Eggersdorfer, M.; Wyss, A. Carotenoids in human nutrition and health. Arch. Biochem. Biophys. 2018, 652, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Concepcion, M.; Avalos, J.; Bonet, M.L.; Boronat, A.; Gomez-Gomez, L.; Hornero-Mendez, D.; Zhu, C. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Prog. Lipid Res. 2018, 70, 62–93. [Google Scholar] [CrossRef] [PubMed]
- Burri, B.J.; Chang, J.S.T.; Neidlinger, T.R. βcryptoxanthin- and α-carotene-rich foods have greater apparent bioavailability than βcarotene-rich foods in Western diets. Br. J. Nutr. 2011, 105, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Q.; Cao, W.T.; Liu, J.; Cao, Y.; Su, Y.X.; Chen, Y.M. Greater serum carotenoid concentration associated with higher bone mineral density in Chinese adults. Osteoporos. Int. 2016, 27, 1593–1601. [Google Scholar] [CrossRef]
- Liu, Y.-Z.; Yang, C.-M.; Chen, J.-Y.; Liao, J.-W.; Hu, M.-L. Alpha-carotene inhibits metastasis in Lewis lung carcinoma in vitro, and suppresses lung metastasis and tumor growth in combination with taxol in tumor xenografted C57BL/6 mice. J. Nutr. Biochem. 2015, 26, 607–615. [Google Scholar] [CrossRef]
- Umesawa, M.; Iso, H.; Mikami, K.; Kubo, T.; Suzuki, K.; Watanabe, Y.; Tamakoshi, A. Relationship between vegetable and carotene intake and risk of prostate cancer: The JACC study. Br. J. Cancer 2014, 110, 792–796. [Google Scholar] [CrossRef]
- Meléndez-Martínez, A.J.; Mapelli-Brahm, P.; Benítez-González, A.; Stinco, C.M. A comprehensive review on the colorless carotenoids phytoene and phytofluene. Arch. Biochem. Biophys. 2015, 572, 188–200. [Google Scholar] [CrossRef]
- Dias, M.G.; Olmedilla-Alonso, B.; Hornero-Méndez, D.; Mercadante, A.Z.; Osorio, C.; Vargas-Murga, L.; Meléndez-Martínez, A.J. Comprehensive database of carotenoid contents in ibero-american foods. A valuable tool in the context of functional foods and the establishment of recommended intakes of bioactives. J. Agric. Food Chem. 2018, 66, 5055–5107. [Google Scholar] [CrossRef]
- Rusaczonek, A.; Swiderski, F.; Waszkiewicz-Robak, B. Antioxidant properties of tea and herbal infusions—A short report. Pol. J. Food Nutr. Sci. 2010, 60, 33–35. [Google Scholar]
- Booth, N.L.; Kruger, C.L.; Hayes, A.W.; Clemens, R. An innovative approach to the safety evaluation of natural products: Cranberry (Vaccinium macrocarpon Aiton) leaf aqueous extract as a case study. Food Chem. Toxicol. 2012, 50, 3150–3165. [Google Scholar] [CrossRef]
- Ho, G.T.T.; Nguyen, T.K.Y.; Kase, E.T.; Tadesse, M.; Barsett, H.; Wangensteen, H. Enhanced glucose uptake in human liver cells and inhibition of carbohydrate hydrolyzing enzymes by nordic berry extracts. Molecules 2017, 22, 1806. [Google Scholar] [CrossRef] [PubMed]
- Podsedek, A.; Majewska, I.; Redzynia, M.; Sosnowska, D.; Koziołkiewicz, M. In vitro inhibitory effect on digestive enzymes and antioxidant potential of commonly consumed fruits. J. Agric. Food Chem. 2014, 62, 4610–4617. [Google Scholar] [CrossRef] [PubMed]
- Saltan, F.Z.; Okutucu, B.; Canbay, H.S.; Özel, D. In vitro alpha-Glucosidase and alpha-amylase enzyme inhibitory effects in Elaeagnus angustifolia Leaves Extracts. Eurasian J. Anal. Chem. 2017, 12, 117–126. [Google Scholar] [CrossRef]
- Ho, G.T.T.; Kase, E.T.; Wangensteen, H.; Barsett, H. Phenolic elderberry extracts, anthocyanins, procyanidins, and metabolites influence glucose and fatty acid uptake in human skeletal muscle cells. J. Agric. Food Chem. 2017, 65, 2677–2685. [Google Scholar] [CrossRef] [PubMed]
- Grussu, D.; Stewart, D.; McDougall, G.J. Berry polyphenols inhibit α-amylase in vitro: Identifying active components in rowanberry and raspberry. J. Agric. Food Chem. 2011, 59, 2324–2331. [Google Scholar] [CrossRef] [PubMed]
- McDougall, G.J.; Kulkarni, N.N.; Stewart, D. Berry polyphenols inhibit pancreatic lipase activity in vitro. Food Chem. 2009, 115, 193–199. [Google Scholar] [CrossRef]
- Meng, S.; Cao, J.; Feng, Q.; Peng, J.; Hu, Y. Roles of chlorogenic acid on regulating glucose and lipids metabolism: A review. Evid. Based Complementary Altern. Med. 2013. [Google Scholar] [CrossRef]
- Mounien, L.; Tourniaire, F.; Landrier, J.F. Anti-obesity effect of carotenoids: Direct impact on adipose tissue and adipose tissue-driven indirect effects. Nutrients 2019, 11, 1562. [Google Scholar] [CrossRef]
- Edirisinghe, I.; Burton-Freeman, B. Anti-diabetic actions of Berry polyphenols–Review on proposed mechanisms of action. J. Berry Res. 2016, 6, 237–250. [Google Scholar] [CrossRef]
Peak No. | Tentative Identification Compounds | Rt (min) | MS (m/z) | Fragment Ion (m/z) | UV-Vis (nm) | Jahidka | Sweet Scarlet |
---|---|---|---|---|---|---|---|
Phenolic acids | |||||||
1 | Quinic acid | 1.05 | 191 | 172 | 262 | 0.48 ± 0.06 a | 0.85 ± 0.01 a |
2 | 3-p-coumaroylquinic acid | 1.33 | 337 | 191 | 276 | 0.44 ± 0.09 b | 1.38 ± 0.11 a |
11 | Sinapic acid-O-glucoside | 3.36 | 385 | 223 | 325 | 2.25 ± 0.18 a | 1.23 ± 0.11 b |
Σ Phenolic acid | 3.18 ± 0.04 a | 3.45 ± 0.22 a | |||||
Flavonols | |||||||
3 | Methyl-quercetin 3-O-rhamnoside-pentoside | 1.94 | 609 | 463/331/299 | 317 | 0.26 ± 0.03 a | 0.28 ± 0.01 a |
4 | Quercetin glycoside-pentoside-glycoside | 2.53 | 757 | 595/463/301 | 255/352 | 2.68 ± 0.03 a | 1.79 ± 0.16 b |
5 | Kaempferol 3-O-rutinoside-7-O-glucoside | 2.58 | 755 | 609/447/285 | 267/350 | 4.13 ± 0.50 a | 0.99 ± 0.01 b |
6 | Kaempferol di-rhamnoside-di-glucoside | 2.78 | 901 | 755/609/447/285 | 266/350 | 0.66 ± 0.06 b | 1.33 ± 0.14 a |
7 | Quercetin pentoside-rutinoside | 2.8 | 741 | 609/463/301 | 255/350 | 2.67 ± 0.11 a | 1.11 ± 0.01 b |
8 | Kaempferol 7-O-pentoside | 2.87 | 417 | 285 | 281/340 | 0.56 ± 0.01 a | 0.82 ± 0.07 a |
9 | Kaempferol 3-O-rhamnoside | 3.14 | 431 | 285 | 267/325 | 1.50 ± 0.10 a | 0.69 ± 0.03 b |
10 | Kaempferol glucoside-rutinoside | 3.17 | 755 | 609/285 | 266/319 | 4.62 ± 0.02 a | 0.63 ± 0.01 b |
12 | Kaempferol pentoside-rhamnoside-rutinoside | 3.43 | 887 | 755/609/285 | 264/338 | 1.74 ± 0.08 b | 5.38 ± 0.20 a |
13 | Quercetin 3-O-rutinoside | 3.44 | 609 | 301 | 255/352 | 0.97 ± 0.09 b | 2.03 ± 0.10 a |
14 | Quercetin rhamnoside-pentoside-rhamnoside | 5.45 | 887 | 579/301 | 255/355 | 6.73 ± 0.01 a | 1.72 ± 0.11 b |
15 | Quercetin 3-O-rhamnoside | 3.49 | 447 | 301 | 255/326 | 5.57 ± 0.60 a | 1.33 ± 0.02 b |
16 | Kaempferol rhamnoside-rutinoside | 3.53 | 739 | 593/285 | 265/326 | 4.47 ± 0.01 b | 10.91 ± 0.44 a |
17 | Kaempferol rhamnoside-pentoside-rutinoside | 3.66 | 871 | 563/285 | 266/340 | 2.79 ± 0.25 a | 3.72 ± 0.20 a |
18 | Kaempferol pentoside-rutinoside | 3.71 | 725 | 593//285 | 265/345 | 2.71 ± 0.11 b | 6.61 ± 0.21 a |
19 | Kaempferol rhamnoside-pentoside | 3.79 | 563 | 417/285 | 265/328 | 1.14 ± 0.03 a | 0.60 ± 0.07 b |
20 | Kaempferol 3-O-rutinoside | 3.84 | 593 | 447/285 | 265/334 | 6.30 ± 0.57 a | 3.91 ± 0.17 b |
21 | Kaempferol di-rhamnoside-di-glycoside | 3.97 | 901 | 755/609/447/285 | 264/339 | 1.07 ± 0.04 a | 0.16 ± 0.01 b |
22 | Quercetin-O-glucoside-O-pentoside | 4.16 | 595 | 463/301 | 255/345 | 5.48 ± 0.27 b | 7.52 ± 0.21 a |
23 | Kaempferol di-rhamnoside-glucoside | 4.19 | 739 | 593/447/285 | 264/345 | 120.20 ± 7.83 b | 187.06 ± 29.38 a |
24 | Kaempferol di-rhamnoside-glucoside | 4.37 | 739 | 593/447/285 | 265/338 | 3.00 ± 0.04 a | 3.06 ± 0.04 a |
25 | Quercetin di-rhamnose | 4.47 | 593 | 447/301 | 255/347 | 4.75 ± 0.19 b | 13.04 ± 1.04 a |
26 | Kaempferol pentoside-rhamnoside-glucuronide | 4.59 | 739 | 563/417/285 | 265/324 | 2.22 ± 0.12 b | 3.74 ± 0.34 a |
27 | Kaempferol di-rhamnoside-hexoside | 4.66 | 739 | 593/447/285 | 265/319 | 1.57 ± 0.05 a | 1.28 ± 0.18 a |
28 | Kaempferol pentoside-di-rhamnoside | 4.8 | 709 | 577/431/285 | 265/339 | 9.91 ± 1.14 a | 5.19 ± 0.47 b |
29 | Kaempferol di-rhamnose | 4.89 | 577 | 431/285 | 264/341 | 10.90 ± 0.47 b | 29.15 ± 0.85 a |
30 | Kaempferol-3-O-glucoside | 5.01 | 447 | 285 | 264/319 | 1.08 ± 0.07 b | 1.38 ± 0.23 a |
31 | Kaempferol glucoside-glucuronide | 5.12 | 623 | 447/285 | 264/317 | 0.31 ± 0.01 b | 0.71 ± 0.03 a |
32 | Eriodictyol glucoside-pentoside | 5.19 | 581 | 287 | 265/315 | 2.13 ± 0.33 a | 0.84 ± 0.06 b |
33 | Kaempferol malonyl-glucuronide | 5.27 | 547 | 461/285 | 265/315 | 2.38 ± 0.03 a | 0.97 ± 0.05 b |
34 | Unknown derivatives of Kaempferol | 5.63 | 891 | 285 | 269/325 | 0.64 ± 0.05 a | 0.01 ± 0.00 b |
35 | Kaempferol 3-O-rhamnoside | 5.94 | 431 | 285 | 264/325 | 0.21 ± 0.02 a | 0.26 ± 0.04 a |
36 | Kaempferol 3-O-(6″-p-coumaryl)-galactoside | 6.87 | 593 | 447/285 | 267/312 | 0.34 ± 0.05 a | 0.99 ± 0.15 a |
37 | Kaempferol 3-O-(6″-caffeoyl)-glucoside | 7 | 623 | 447/285 | 264/321 | 0.46 ± 0.04 b | 1.17 ± 0.07 a |
38 | Kaempferol 3-O-(6″-p-coumaryl)-glucoside | 7.11 | 593 | 447/285 | 267/315 | 0.14 ± 0.01 b | 0.29 ± 0.03 a |
Σ Flavonols | 216.30 ± 9.80 b | 300.67 ± 31.19 a | |||||
Polymeric procyanidins | 947.50 ± 2.31 b | 1317 ± 3.91 a | |||||
Degree of polymerization | 6.20 a | 8.62 a | |||||
Σ Phenolic compounds | 1166.98 b | 1621.12 a |
Peak No. | Tentative Identification Compounds | Rt (min) | [M–H]– (m/z) | Fragment Ions (m/z) | UV-Vis (nm) | Jahidka | Sweet Scarlet |
---|---|---|---|---|---|---|---|
Phenolic acids | |||||||
2 | Sinapic acid-O-glucoside | 3.53 | 385 | 223 | 300 | 1.22 ± 0.24 b | 3.80 ± 0.19 a |
Flavonols | |||||||
1 | Quercetin-rhamnoside-pentoside-rutinoside | 3.39 | 887 | 609/579/301 | 255/352 | 1.40 ± 0.17 b | 1.38 ± 0.11 a |
3 | Kaempferol-pentoside-rutinoside | 3.67 | 725 | 579/417/285 | 267/350 | 6.58 ± 0.71 b | 27.45 ± 2.50 a |
5 | Quercetin-pentoside-rutinoside | 3.91 | 741 | 609/433 | 255/350 | 5.08 ± 0.62 b | 10.73 ± 1.15 a |
6 | Quercetin-3-O-rhamnoside-7-O-pentoside | 4.12 | 595 | 433/301 | 255/350 | 1.56 ± 0.14 b | 2.14 ± 0.01 a |
7 | Kaempferol-rhamnoside-rutinoside | 4.24 | 739 | 593/285 | 265/340 | 0.87 ± 0.03 a | 1.33 ± 0.12 a |
8 | Quercetin-tri-rhamnoside | 4.33 | 739 | 593/447/301 | 255/355 | 5.19 ± 0.02 a | 2.79 ± 0.12 b |
9 | Quercetin-rhamnoside-glucopyranoside-rhamnoside | 4.48 | 769 | 593/447/301 | 255/352 | 3.22 ± 0.21 a | 1.85 ± 0.04 b |
11 | Isorhamnetin-7-O-rutinoside | 5.09 | 623 | 477/315 | 253/358 | 6.03 ± 0.49 a | 3.09 ± 0.11 b |
12 | Isorhamnetin-3-O-glucoside | 5.20 | 477 | 315 | 256/380 | 0.95 ± 0.05 a | 0.18 ± 0.01 b |
13 | Isorhamnetin 3-O-(6″malonyl)-glucuronide-rhamnoside | 5.71 | 723 | 491/315 | 270/350 | 0.85 ± 0.08 b | 1.39 ± 0.09 a |
14 | Kaempferol-3-O-(6″-p-coumaryl)-glucoside | 6.85 | 593 | 285 | 267/312 | 0.75 ± 0.01 a | 0.09 ± 0.01 b |
15 | Kaempferol 3-O-(6′-caffeoyl)-glucoside | 7.04 | 623 | 447/285 | 269/350 | 1.55 ± 0.17 a | 0.21 ± 0.01 b |
16 | Kaempferol-3-O-(6″-p-coumaryl)-glucoside | 7.10 | 593 | 285 | 267/330 | 1.00 ± 0.01 a | 1.25 ± 0.07 a |
Σ Flavonols | 37.29 ± 0.86 b | 56.25 ± 3.93 a | |||||
Hydrolyzable tannins | |||||||
4 | Di-galloyl-HHDP-glucoside | 3.73 | 785 | 633/483 | 271 | 3.07 ± 0.04 b | 10.60 ± 0.02 a |
Stilbenes | |||||||
10 | 3′,5′-Di-C-β-D-glucosylphloretin | 597 | 579/507/477 | 285 | 1.71 ± 0.01 a | 0.91 ± 0.08 b | |
Polymeric procyanidins | 861.36 ± 6.57 b | 1197.34 ± 8.31 a | |||||
Degree of polymerization | 11.78 b | 16.37 a | |||||
Σ Polyphenolic compounds | 904.65 b | 1268.90 a |
Leaves | ||
---|---|---|
Compounds | Sweet Scarlet | Jahidka |
Chlorophylls | ||
chlorophyll a- d1 | 94.35 ± 0.92 a | 54.97 ± 2.90 b |
chlorophyll b | 427.99 ± 1.75 a | 408.64 ± 10.43 b |
chlorophyll a | 1116.75 ± 4.57 a | 1096.53 ± 19.80 a |
chlorophyll a- d2 | 36.83 ± 1.52 a | 33.53 ± 2.15 a |
pheophytin a | 18.23 ± 0.11 a | 40.51 ± 2.23 b |
Σ Chlorophylls | 1694.16 ± 7.92 a | 1634.18 ± 35.24 b |
Carotenoids | ||
Z-violaxanthin | 11.29 ± 0.49 a | 10.64 ± 0.43 a |
neoxanthin | 23.78 ± 0.69 a | 22.98 ± 1.59 a |
violaxanthin | 10.11 ± 0.13 a | 8.05 ± 0.31 b |
lutein | 87.63 ± 0.95 a | 86.53 ± 2.50 a |
α-carotene | 58.98 ± 0.87 a | 63.65 ± 1.35 b |
(9Z)-α-carotene | 7.22 ± 0.35 a | 7.61 ± 0.42 a |
β-carotene | 33.04 ± 0.23 a | 37.03 ± 1.69 b |
(9Z)-β-carotene | 4.60 ± 0.03 a | 4.95 ± 0.20 b |
∑α-carotene isomers | 66.20 ± 1.22 a | 71.26 ± 1.68 b |
∑β-carotene isomers | 37.64 ± 0.21 a | 41.98 ± 1.88 b |
Σ Carotenoids | 236.64 ± 3.50 a | 241.45 ± 8.11 a |
Fruits | ||
Compounds | Sweet Scarlet | Jahidka |
Carotenoids | ||
phytoene | 0.97 ± 0.06 a | 0.93 ± 0.06 a |
lutein | 0.08 ± 0.01 a | 0.14 ± 0.01 b |
(15Z)-lycopene | 0.14 ± 0.02 a | 0.19 ± 0.02 b |
(13Z)-lycopene | 0.69 ± 0.05 a | 1.21 ± 0.07 b |
di-Z lycopene | 0.43 ± 0.03 a | 0.78 ± 0.03 b |
(9Z)-lycopene | 0.33 ± 0.02 a | 0.63 ± 0.03 b |
(all-E)-lycopene | 35.23 ± 0.73 a | 87.70 ± 2.34 b |
(5Z)-lycopene | 2.22 ± 0.04 a | 5.56 ± 0.19 b |
∑ lycopene isomers | 39.04 ± 0.83 a | 96.08 ± 2.65 b |
Σ Carotenoids | 40.09 ± 0.85 a | 97.15 ± 2.71 b |
Sample | Cultivar | Inhibition of α-Amylase Activity (U/g) | Inhibition of α-Glucosidase Activity (U/g) | Inhibition of Pancreatic Lipase Activity (U/g) | ABTS (mmolTE/g d.m.) | FRAP (mmolTE/g d.m.) | DPPH (mmolTE/g d.m.) |
---|---|---|---|---|---|---|---|
Fruits | Jahidka | 101.16 ± 4.46 a | 14.99 ± 0.07 a | 1.39 ± 0.17 a | 0.90 ± 0.01 a | 0.13 ± 0.01 a | 0.44 ± 0.02 a |
Sweet Scarlet | 104.83 ± 0.61 a | 13.34 ± 0.19 a | 0.75 ± 0.07 b | 0.52 ± 0.01 b | 0.05 ± 0.01 b | 0.26 ± 0.01 b | |
Leaves | Jahidka | 4.91 ± 0.18 b | 8.73 ± 0.52 a | - | 5.08 ± 0.05 b | 0.30 ± 0.01 a | 2.59 ± 0.03 b |
Sweet Scarlet | 13.59 ± 0.15 a | 6.48 ± 0.51 b | - | 5.56 ± 0.05 a | 0.33 ± 0.01 a | 2.61 ± 0.03 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lachowicz, S.; Kapusta, I.; Świeca, M.; Stinco, C.M.; Meléndez-Martínez, A.J.; Bieniek, A. In Vitro Biological Activities of Fruits and Leaves of Elaeagnus multiflora Thunb. and Their Isoprenoids and Polyphenolics Profile. Antioxidants 2020, 9, 436. https://doi.org/10.3390/antiox9050436
Lachowicz S, Kapusta I, Świeca M, Stinco CM, Meléndez-Martínez AJ, Bieniek A. In Vitro Biological Activities of Fruits and Leaves of Elaeagnus multiflora Thunb. and Their Isoprenoids and Polyphenolics Profile. Antioxidants. 2020; 9(5):436. https://doi.org/10.3390/antiox9050436
Chicago/Turabian StyleLachowicz, Sabina, Ireneusz Kapusta, Michał Świeca, Carla M. Stinco, Antonio J. Meléndez-Martínez, and Anna Bieniek. 2020. "In Vitro Biological Activities of Fruits and Leaves of Elaeagnus multiflora Thunb. and Their Isoprenoids and Polyphenolics Profile" Antioxidants 9, no. 5: 436. https://doi.org/10.3390/antiox9050436
APA StyleLachowicz, S., Kapusta, I., Świeca, M., Stinco, C. M., Meléndez-Martínez, A. J., & Bieniek, A. (2020). In Vitro Biological Activities of Fruits and Leaves of Elaeagnus multiflora Thunb. and Their Isoprenoids and Polyphenolics Profile. Antioxidants, 9(5), 436. https://doi.org/10.3390/antiox9050436