In Vitro Biological Activities of Fruits and Leaves of Elaeagnus multiflora Thunb. and Their Isoprenoids and Polyphenolics Profile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Materials
2.3. Determination of Polyphenols
2.4. Analysis of Proanthocyanidins by Phloroglucinolysis
2.5. Isoprenoids’ Analysis
2.6. In Vitro Assessment of Health-Promoting Capacities
2.6.1. Extraction Procedure
2.6.2. Antiradical activity
2.6.3. Antiradical Activity
2.6.4. Reducing Activity
2.6.5. The α-Amylase Inhibitor Activity Assay
2.6.6. The α-Glucosidase Inhibitor Activity Assay
2.6.7. Pancreatic Lipase Inhibitor Activity Assay
2.7. Statistical Analysis
3. Results and Discussion
3.1. Polyphenolics’ Profile
3.2. Isoprenoids’ Profile: Chlorophylls and Carotenoids
3.3. In Vitro Assessment of Health-Promoting Capacities
3.3.1. In Vitro Antioxidant Capacity
3.3.2. The Ability to Inhibit α-Amylase, α-Glucosidase, and Pancreatic Lipase Activity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- FAO. The State of the World’s Biodiversity for Food and Agriculture; Bélanger, J., Pilling, D., Eds.; FAO Commission on Genetic Resources for Food and Agriculture Assessments: Rome, Italy, 2019. [Google Scholar]
- Lee, M.S.; Lee, Y.K.; Park, O.J. Cherry silver berry (Elaeagnus multiflora) extracts exert anti-inflammatory effects by inhibiting COX-2 and Akt signals in HT-29 colon cancer cells. Food Sci. Biotechnol. 2010, 19, 1673–1677. [Google Scholar] [CrossRef]
- Lee, J.H.; Seo, W.T.; Cho, K.M. Determination of phytochemical contents and biological activities from the fruits of Elaeagnus multiflora. Prev. Nutr. Food Sci. 2011, 16, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Bieniek, A.; Piłat, B.; Szałkiewicz, M.; Markuszewski, B.; Gojło, E. Evaluation of yield, morphology and quality of fruits of cherry silverberry (Elaeagnus multiflora Thunb.) biotypes under conditions of north-eastern Poland. Pol. J. Natl. Sci. 2017, 32, 61–70. [Google Scholar]
- Lachowicz, S.; Bieniek, A.; Gil, Z.; Bielska, N.; Markuszewski, B. Phytochemical parameters and antioxidant activity of new cherry silverberry biotypes (Elaeagnus multiflora Thunb.). Eur. Food Res. Technol. 2019, 245, 1997–2005. [Google Scholar] [CrossRef] [Green Version]
- Klich, M.G. Leaf variations in Elaeagnus angustifolia related to environmental heterogeneity. Environ. Exp. Bot. 2000, 44, 171–183. [Google Scholar] [CrossRef]
- Ahmadiani, A.; Hosseiny, J.; Semnanian, S.; Javan, M.; Saeedi, F.; Kamalinejad, M.; Saremi, S. Antinociceptive and anti-inflammatory effects of Elaeagnus angustifolia fruit extract. J. Ethnopharmacol. 2000, 72, 287–292. [Google Scholar] [CrossRef]
- Patel, S. Plant genus Elaeagnus: Underutilized lycopene and linoleic acid reserve with permaculture potential. Fruits 2015, 70, 191–199. [Google Scholar] [CrossRef] [Green Version]
- Ignat, I.; Volf, I.; Popa, V.I. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem. 2011, 126, 1821–1835. [Google Scholar] [CrossRef]
- Tomás-Barberán, F.A.; Ferreres, F.; Gil, M.I. Antioxidant phenolic metabolites from fruit and vegetables and changes during postharvest storage and processing. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2000; Volume 23, pp. 739–795. [Google Scholar]
- Meléndez-Martínez, A.J. An overview of carotenoids, apocarotenoids and vitamin A in agro-food, nutrition, health and disease. Mol. Nutr. Food Res. 2019, 63, e1801045. [Google Scholar] [CrossRef] [Green Version]
- Meléndez-Martínez, A.J.; Stinco, C.M.; Mapelli-Brahm, P. Skin carotenoids in public health and nutricosmetics: The emerging roles and applications of the UV radiation-absorbing colourless carotenoids phytoene and phytofluene. Nutrients 2019, 11, 1093. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Pelayo, R.; Hornero-Méndez, D. Identification and quantitative analysis of carotenoids and their esters from sarsaparilla (Smilax aspera L.) berries. J. Agric. Food Chem. 2012, 60, 8225–8232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murillo, E.; Meléndez-Martínez, A.J.; Portugal, F. Screening of vegetables and fruits from Panama for rich sources of lutein and zeaxanthin. Food Chem. 2010, 122, 167–172. [Google Scholar] [CrossRef]
- Meléndez-Martínez, A.J.; Paulino, M.; Stinco, C.M.; Mapelli-Brahm, P.; Wang, X.-D. Study of the time-course of cis/trans (Z/E) isomerization of lycopene, phytoene, and phytofluene from tomato. J. Agric. Food Chem. 2014, 62, 12399–12406. [Google Scholar] [CrossRef] [PubMed]
- Stinco, C.M.; Benítez-González, A.M.; Meléndez-Martínez, A.J.; Hernanz, D.; Vicario, I.M. Simultaneous determination of dietary isoprenoids (carotenoids, chlorophylls and tocopherols) in human faeces by rapid resolution liquid chromatography. J. Chromatogr. A 2019, 1583, 63–72. [Google Scholar] [CrossRef]
- Oszmiański, J.; Wojdyło, A.; Lachowicz, S.; Gorzelany, J.; Matłok, N. Comparison of bioactive potential of cranberry fruit and fruit-based products versus leaves. J. Funct. Foods 2016, 22, 232–242. [Google Scholar] [CrossRef]
- Lachowicz, S.; Michalska, A.; Lech, K.; Majerska, J.; Oszmiański, J.; Figiel, A. Comparison of the effect of four drying methods on polyphenols in saskatoon berry. LWT 2019, 111, 727–736. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Slatnar, A.; Stampar, F.; Veberic, R. HPLC–MSn identification and quantification of flavonol glycosides in 28 wild and cultivated berry species. Food Chem. 2012, 135, 2138–2146. [Google Scholar] [CrossRef]
- Ablajan, K.; Abliz, Z.; Shang, X.Y.; He, J.M.; Zhang, R.P.; Shi, J.G. Structural characterization of flavonol 3, 7-di-O-glycosides and determination of the glycosylation position by using negative ion electrospray ionization tandem mass spectrometry. J. Mass Spectrom. 2006, 41, 352–360. [Google Scholar] [CrossRef]
- Püssa, T.; Pällin, R.; Raudsepp, P.; Soidla, R.; Rei, M. Inhibition of lipid oxidation and dynamics of polyphenol content in mechanically deboned meat supplemented with sea buckthorn (Hippophae rhamnoides) berry residues. Food Chem. 2008, 107, 714–721. [Google Scholar] [CrossRef]
- Aguirre-Hernández, E.; González-Trujano, M.E.; Martínez, A.L.; Moreno, J.; Kite, G.; Terrazas, T.; Soto-Hernández, M. HPLC/MS analysis and anxiolytic-like effect of quercetin and kaempferol flavonoids from Tilia americana var. mexicana. J. Ethnopharmacol. 2010, 127, 91–97. [Google Scholar] [CrossRef]
- Lachowicz, S.; Seliga, Ł.; Pluta, S. Distribution of phytochemicals and antioxidant potency in fruit peel, flesh, and seeds of Saskatoon berry. Food Chem. 2020, 305, 125430. [Google Scholar] [CrossRef] [PubMed]
- Toker, G.; Aslan, M.; Yeşilada, E.; Memişoğlu, M.; Ito, S. Comparative evaluation of the flavonoid content in officinal Tiliae flos and Turkish lime species for quality assessment. J. Pharm. Biomed. Anal. 2001, 26, 111–121. [Google Scholar] [CrossRef]
- Olas, B. The beneficial health aspects of sea buckthorn (Elaeagnus rhamnoides L.) A. Nelson) oil. J. Ethnopharmacol. 2018, 213, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Spínola, V.; Pinto, J.; Llorent-Martínez, E.J.; Castilho, P.C. Changes in the phenolic compositions of Elaeagnus umbellata and Sambucus lanceolata after in vitro gastrointestinal digestion and evaluation of their potential anti-diabetic properties. Food Res. Int. 2019, 122, 283–294. [Google Scholar] [CrossRef]
- Mamadalieva, N.Z.; Herrmann, F.; El-Readi, M.Z.; Tahrani, A.; Hamoud, R.; Egamberdieva, D.R.; Wink, M. Flavonoids in Scutellaria immaculata and S. ramosissima (Lamiaceae) and their biological activity. J. Pharm. Pharmacol. 2011, 63, 1346–1357. [Google Scholar] [CrossRef]
- Pawlowska, A.M.; Camangi, F.; Bader, A.; Braca, A. Flavonoids of Zizyphus jujuba L. and Zizyphus spina-christi (L.) Willd (Rhamnaceae) fruits. Food Chem. 2009, 112, 858–862. [Google Scholar] [CrossRef]
- Fernandes, A.; Sousa, A.; Mateus, N.; Cabral, M.; De Freitas, V. Analysis of phenolic compounds in cork from Quercus suber L. by HPLC–DAD/ESI–MS. Food Chem. 2011, 125, 1398–1405. [Google Scholar] [CrossRef]
- Stinco, C.M.; Fernández-Vázquez, R.; Escudero-Gilete, M.L.; Heredia, F.J.; Meléndez-Martínez, A.J.; Vicario, I.M. Effect of orange juices processing on the color, particle size, and bioaccessibility of carotenoids. J. Agric. Food Chem. 2012, 60, 1447–1455. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Shimada, K.; Fujikawa, K.; Yahara, K.; Nakamura, T. Antioxidant properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 1992, 40, 945–948. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a measure of “Antioxidant Power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakubczyk, A.; Karaś, M.; Złotek, U.; Szymanowska, U. Identification of potential inhibitory peptides of enzymes involved in the metabolic syndrome obtained by simulated gastrointestinal digestion of fermented bean (Phaseolus vulgaris L.) seeds. Food Res. Int. 2017, 100, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Amaral, J.S.; Seabra, R.M.; Andrade, P.B.; Valentao, P.; Pereira, J.A.; Ferreres, F. Phenolic profile in the quality control of walnut (Juglans regia L.) leaves. Food Chem. 2004, 88, 373–379. [Google Scholar] [CrossRef]
- Teleszko, M.; Wojdyło, A. Comparison of phenolic compounds and antioxidant potential between selected edible fruits and their leaves. J. Funct. Foods 2015, 14, 736–746. [Google Scholar] [CrossRef]
- Cheynier, V.; Comte, G.; Davies, K.M.; Lattanzio, V.; Martens, S. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol. Biochem. 2013, 72, 1–20. [Google Scholar] [CrossRef]
- Poiroux-Gonord, F.; Bidel, L.P.; Fanciullino, A.L.; Gautier, H.; Lauri-Lopez, F.; Urban, L. Health benefits of vitamins and secondary metabolites of fruits and vegetables and prospects to increase their concentrations by agronomic approaches. J. Agric. Food Chem. 2010, 58, 12065–12082. [Google Scholar] [CrossRef]
- Jaakola, L.; Määttä-Riihinen, K.; Kärenlampi, S.; Hohtola, A. Activation of flavonoid biosynthesis by solar radiation in bilberry (Vaccinium myrtillus L.) leaves. Planta 2004, 218, 721–728. [Google Scholar]
- Saboonchian, F.; Jamei, R.; Sarghein, S.H. Phenolic and flavonoid content of Elaeagnus angustifolia L. (leaf and flower). Avicenna J. Phytomed. 2014, 4, 231. [Google Scholar]
- Pei, R.; Yu, M.; Bruno, R.; Bolling, B.W. Phenolic and tocopherol content of autumn olive (Elaeagnus umbellate) berries. J. Funct. Foods 2015, 16, 305–314. [Google Scholar] [CrossRef]
- Telfer, A.; Pascal, A.; Gall, A. Carotenoids in photosynthesis. In Carotenoids; Birkhäuser: Basel, Switzerland, 2008; pp. 265–308. [Google Scholar]
- Britton, G.; Liaaen-Jensen, S.; Pfander, H. Natural functions. In Carotenoids; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008; Volume 4. [Google Scholar]
- Melendez-Martinez, A.J.; Stinco, C.M.; Liu, C.; Wang, X.D. A simple HPLC method for the comprehensive analysis of cis/trans (Z/E) geometrical isomers of carotenoids for nutritional studies. Food Chem. 2013, 138, 1341–1350. [Google Scholar] [CrossRef]
- Eggersdorfer, M.; Wyss, A. Carotenoids in human nutrition and health. Arch. Biochem. Biophys. 2018, 652, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Concepcion, M.; Avalos, J.; Bonet, M.L.; Boronat, A.; Gomez-Gomez, L.; Hornero-Mendez, D.; Zhu, C. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Prog. Lipid Res. 2018, 70, 62–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burri, B.J.; Chang, J.S.T.; Neidlinger, T.R. βcryptoxanthin- and α-carotene-rich foods have greater apparent bioavailability than βcarotene-rich foods in Western diets. Br. J. Nutr. 2011, 105, 212–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.Q.; Cao, W.T.; Liu, J.; Cao, Y.; Su, Y.X.; Chen, Y.M. Greater serum carotenoid concentration associated with higher bone mineral density in Chinese adults. Osteoporos. Int. 2016, 27, 1593–1601. [Google Scholar] [CrossRef]
- Liu, Y.-Z.; Yang, C.-M.; Chen, J.-Y.; Liao, J.-W.; Hu, M.-L. Alpha-carotene inhibits metastasis in Lewis lung carcinoma in vitro, and suppresses lung metastasis and tumor growth in combination with taxol in tumor xenografted C57BL/6 mice. J. Nutr. Biochem. 2015, 26, 607–615. [Google Scholar] [CrossRef]
- Umesawa, M.; Iso, H.; Mikami, K.; Kubo, T.; Suzuki, K.; Watanabe, Y.; Tamakoshi, A. Relationship between vegetable and carotene intake and risk of prostate cancer: The JACC study. Br. J. Cancer 2014, 110, 792–796. [Google Scholar] [CrossRef] [Green Version]
- Meléndez-Martínez, A.J.; Mapelli-Brahm, P.; Benítez-González, A.; Stinco, C.M. A comprehensive review on the colorless carotenoids phytoene and phytofluene. Arch. Biochem. Biophys. 2015, 572, 188–200. [Google Scholar] [CrossRef] [Green Version]
- Dias, M.G.; Olmedilla-Alonso, B.; Hornero-Méndez, D.; Mercadante, A.Z.; Osorio, C.; Vargas-Murga, L.; Meléndez-Martínez, A.J. Comprehensive database of carotenoid contents in ibero-american foods. A valuable tool in the context of functional foods and the establishment of recommended intakes of bioactives. J. Agric. Food Chem. 2018, 66, 5055–5107. [Google Scholar] [CrossRef] [Green Version]
- Rusaczonek, A.; Swiderski, F.; Waszkiewicz-Robak, B. Antioxidant properties of tea and herbal infusions—A short report. Pol. J. Food Nutr. Sci. 2010, 60, 33–35. [Google Scholar]
- Booth, N.L.; Kruger, C.L.; Hayes, A.W.; Clemens, R. An innovative approach to the safety evaluation of natural products: Cranberry (Vaccinium macrocarpon Aiton) leaf aqueous extract as a case study. Food Chem. Toxicol. 2012, 50, 3150–3165. [Google Scholar] [CrossRef]
- Ho, G.T.T.; Nguyen, T.K.Y.; Kase, E.T.; Tadesse, M.; Barsett, H.; Wangensteen, H. Enhanced glucose uptake in human liver cells and inhibition of carbohydrate hydrolyzing enzymes by nordic berry extracts. Molecules 2017, 22, 1806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Podsedek, A.; Majewska, I.; Redzynia, M.; Sosnowska, D.; Koziołkiewicz, M. In vitro inhibitory effect on digestive enzymes and antioxidant potential of commonly consumed fruits. J. Agric. Food Chem. 2014, 62, 4610–4617. [Google Scholar] [CrossRef] [PubMed]
- Saltan, F.Z.; Okutucu, B.; Canbay, H.S.; Özel, D. In vitro alpha-Glucosidase and alpha-amylase enzyme inhibitory effects in Elaeagnus angustifolia Leaves Extracts. Eurasian J. Anal. Chem. 2017, 12, 117–126. [Google Scholar] [CrossRef]
- Ho, G.T.T.; Kase, E.T.; Wangensteen, H.; Barsett, H. Phenolic elderberry extracts, anthocyanins, procyanidins, and metabolites influence glucose and fatty acid uptake in human skeletal muscle cells. J. Agric. Food Chem. 2017, 65, 2677–2685. [Google Scholar] [CrossRef] [PubMed]
- Grussu, D.; Stewart, D.; McDougall, G.J. Berry polyphenols inhibit α-amylase in vitro: Identifying active components in rowanberry and raspberry. J. Agric. Food Chem. 2011, 59, 2324–2331. [Google Scholar] [CrossRef] [PubMed]
- McDougall, G.J.; Kulkarni, N.N.; Stewart, D. Berry polyphenols inhibit pancreatic lipase activity in vitro. Food Chem. 2009, 115, 193–199. [Google Scholar] [CrossRef]
- Meng, S.; Cao, J.; Feng, Q.; Peng, J.; Hu, Y. Roles of chlorogenic acid on regulating glucose and lipids metabolism: A review. Evid. Based Complementary Altern. Med. 2013. [Google Scholar] [CrossRef]
- Mounien, L.; Tourniaire, F.; Landrier, J.F. Anti-obesity effect of carotenoids: Direct impact on adipose tissue and adipose tissue-driven indirect effects. Nutrients 2019, 11, 1562. [Google Scholar] [CrossRef] [Green Version]
- Edirisinghe, I.; Burton-Freeman, B. Anti-diabetic actions of Berry polyphenols–Review on proposed mechanisms of action. J. Berry Res. 2016, 6, 237–250. [Google Scholar] [CrossRef] [Green Version]
Peak No. | Tentative Identification Compounds | Rt (min) | MS (m/z) | Fragment Ion (m/z) | UV-Vis (nm) | Jahidka | Sweet Scarlet |
---|---|---|---|---|---|---|---|
Phenolic acids | |||||||
1 | Quinic acid | 1.05 | 191 | 172 | 262 | 0.48 ± 0.06 a | 0.85 ± 0.01 a |
2 | 3-p-coumaroylquinic acid | 1.33 | 337 | 191 | 276 | 0.44 ± 0.09 b | 1.38 ± 0.11 a |
11 | Sinapic acid-O-glucoside | 3.36 | 385 | 223 | 325 | 2.25 ± 0.18 a | 1.23 ± 0.11 b |
Σ Phenolic acid | 3.18 ± 0.04 a | 3.45 ± 0.22 a | |||||
Flavonols | |||||||
3 | Methyl-quercetin 3-O-rhamnoside-pentoside | 1.94 | 609 | 463/331/299 | 317 | 0.26 ± 0.03 a | 0.28 ± 0.01 a |
4 | Quercetin glycoside-pentoside-glycoside | 2.53 | 757 | 595/463/301 | 255/352 | 2.68 ± 0.03 a | 1.79 ± 0.16 b |
5 | Kaempferol 3-O-rutinoside-7-O-glucoside | 2.58 | 755 | 609/447/285 | 267/350 | 4.13 ± 0.50 a | 0.99 ± 0.01 b |
6 | Kaempferol di-rhamnoside-di-glucoside | 2.78 | 901 | 755/609/447/285 | 266/350 | 0.66 ± 0.06 b | 1.33 ± 0.14 a |
7 | Quercetin pentoside-rutinoside | 2.8 | 741 | 609/463/301 | 255/350 | 2.67 ± 0.11 a | 1.11 ± 0.01 b |
8 | Kaempferol 7-O-pentoside | 2.87 | 417 | 285 | 281/340 | 0.56 ± 0.01 a | 0.82 ± 0.07 a |
9 | Kaempferol 3-O-rhamnoside | 3.14 | 431 | 285 | 267/325 | 1.50 ± 0.10 a | 0.69 ± 0.03 b |
10 | Kaempferol glucoside-rutinoside | 3.17 | 755 | 609/285 | 266/319 | 4.62 ± 0.02 a | 0.63 ± 0.01 b |
12 | Kaempferol pentoside-rhamnoside-rutinoside | 3.43 | 887 | 755/609/285 | 264/338 | 1.74 ± 0.08 b | 5.38 ± 0.20 a |
13 | Quercetin 3-O-rutinoside | 3.44 | 609 | 301 | 255/352 | 0.97 ± 0.09 b | 2.03 ± 0.10 a |
14 | Quercetin rhamnoside-pentoside-rhamnoside | 5.45 | 887 | 579/301 | 255/355 | 6.73 ± 0.01 a | 1.72 ± 0.11 b |
15 | Quercetin 3-O-rhamnoside | 3.49 | 447 | 301 | 255/326 | 5.57 ± 0.60 a | 1.33 ± 0.02 b |
16 | Kaempferol rhamnoside-rutinoside | 3.53 | 739 | 593/285 | 265/326 | 4.47 ± 0.01 b | 10.91 ± 0.44 a |
17 | Kaempferol rhamnoside-pentoside-rutinoside | 3.66 | 871 | 563/285 | 266/340 | 2.79 ± 0.25 a | 3.72 ± 0.20 a |
18 | Kaempferol pentoside-rutinoside | 3.71 | 725 | 593//285 | 265/345 | 2.71 ± 0.11 b | 6.61 ± 0.21 a |
19 | Kaempferol rhamnoside-pentoside | 3.79 | 563 | 417/285 | 265/328 | 1.14 ± 0.03 a | 0.60 ± 0.07 b |
20 | Kaempferol 3-O-rutinoside | 3.84 | 593 | 447/285 | 265/334 | 6.30 ± 0.57 a | 3.91 ± 0.17 b |
21 | Kaempferol di-rhamnoside-di-glycoside | 3.97 | 901 | 755/609/447/285 | 264/339 | 1.07 ± 0.04 a | 0.16 ± 0.01 b |
22 | Quercetin-O-glucoside-O-pentoside | 4.16 | 595 | 463/301 | 255/345 | 5.48 ± 0.27 b | 7.52 ± 0.21 a |
23 | Kaempferol di-rhamnoside-glucoside | 4.19 | 739 | 593/447/285 | 264/345 | 120.20 ± 7.83 b | 187.06 ± 29.38 a |
24 | Kaempferol di-rhamnoside-glucoside | 4.37 | 739 | 593/447/285 | 265/338 | 3.00 ± 0.04 a | 3.06 ± 0.04 a |
25 | Quercetin di-rhamnose | 4.47 | 593 | 447/301 | 255/347 | 4.75 ± 0.19 b | 13.04 ± 1.04 a |
26 | Kaempferol pentoside-rhamnoside-glucuronide | 4.59 | 739 | 563/417/285 | 265/324 | 2.22 ± 0.12 b | 3.74 ± 0.34 a |
27 | Kaempferol di-rhamnoside-hexoside | 4.66 | 739 | 593/447/285 | 265/319 | 1.57 ± 0.05 a | 1.28 ± 0.18 a |
28 | Kaempferol pentoside-di-rhamnoside | 4.8 | 709 | 577/431/285 | 265/339 | 9.91 ± 1.14 a | 5.19 ± 0.47 b |
29 | Kaempferol di-rhamnose | 4.89 | 577 | 431/285 | 264/341 | 10.90 ± 0.47 b | 29.15 ± 0.85 a |
30 | Kaempferol-3-O-glucoside | 5.01 | 447 | 285 | 264/319 | 1.08 ± 0.07 b | 1.38 ± 0.23 a |
31 | Kaempferol glucoside-glucuronide | 5.12 | 623 | 447/285 | 264/317 | 0.31 ± 0.01 b | 0.71 ± 0.03 a |
32 | Eriodictyol glucoside-pentoside | 5.19 | 581 | 287 | 265/315 | 2.13 ± 0.33 a | 0.84 ± 0.06 b |
33 | Kaempferol malonyl-glucuronide | 5.27 | 547 | 461/285 | 265/315 | 2.38 ± 0.03 a | 0.97 ± 0.05 b |
34 | Unknown derivatives of Kaempferol | 5.63 | 891 | 285 | 269/325 | 0.64 ± 0.05 a | 0.01 ± 0.00 b |
35 | Kaempferol 3-O-rhamnoside | 5.94 | 431 | 285 | 264/325 | 0.21 ± 0.02 a | 0.26 ± 0.04 a |
36 | Kaempferol 3-O-(6″-p-coumaryl)-galactoside | 6.87 | 593 | 447/285 | 267/312 | 0.34 ± 0.05 a | 0.99 ± 0.15 a |
37 | Kaempferol 3-O-(6″-caffeoyl)-glucoside | 7 | 623 | 447/285 | 264/321 | 0.46 ± 0.04 b | 1.17 ± 0.07 a |
38 | Kaempferol 3-O-(6″-p-coumaryl)-glucoside | 7.11 | 593 | 447/285 | 267/315 | 0.14 ± 0.01 b | 0.29 ± 0.03 a |
Σ Flavonols | 216.30 ± 9.80 b | 300.67 ± 31.19 a | |||||
Polymeric procyanidins | 947.50 ± 2.31 b | 1317 ± 3.91 a | |||||
Degree of polymerization | 6.20 a | 8.62 a | |||||
Σ Phenolic compounds | 1166.98 b | 1621.12 a |
Peak No. | Tentative Identification Compounds | Rt (min) | [M–H]– (m/z) | Fragment Ions (m/z) | UV-Vis (nm) | Jahidka | Sweet Scarlet |
---|---|---|---|---|---|---|---|
Phenolic acids | |||||||
2 | Sinapic acid-O-glucoside | 3.53 | 385 | 223 | 300 | 1.22 ± 0.24 b | 3.80 ± 0.19 a |
Flavonols | |||||||
1 | Quercetin-rhamnoside-pentoside-rutinoside | 3.39 | 887 | 609/579/301 | 255/352 | 1.40 ± 0.17 b | 1.38 ± 0.11 a |
3 | Kaempferol-pentoside-rutinoside | 3.67 | 725 | 579/417/285 | 267/350 | 6.58 ± 0.71 b | 27.45 ± 2.50 a |
5 | Quercetin-pentoside-rutinoside | 3.91 | 741 | 609/433 | 255/350 | 5.08 ± 0.62 b | 10.73 ± 1.15 a |
6 | Quercetin-3-O-rhamnoside-7-O-pentoside | 4.12 | 595 | 433/301 | 255/350 | 1.56 ± 0.14 b | 2.14 ± 0.01 a |
7 | Kaempferol-rhamnoside-rutinoside | 4.24 | 739 | 593/285 | 265/340 | 0.87 ± 0.03 a | 1.33 ± 0.12 a |
8 | Quercetin-tri-rhamnoside | 4.33 | 739 | 593/447/301 | 255/355 | 5.19 ± 0.02 a | 2.79 ± 0.12 b |
9 | Quercetin-rhamnoside-glucopyranoside-rhamnoside | 4.48 | 769 | 593/447/301 | 255/352 | 3.22 ± 0.21 a | 1.85 ± 0.04 b |
11 | Isorhamnetin-7-O-rutinoside | 5.09 | 623 | 477/315 | 253/358 | 6.03 ± 0.49 a | 3.09 ± 0.11 b |
12 | Isorhamnetin-3-O-glucoside | 5.20 | 477 | 315 | 256/380 | 0.95 ± 0.05 a | 0.18 ± 0.01 b |
13 | Isorhamnetin 3-O-(6″malonyl)-glucuronide-rhamnoside | 5.71 | 723 | 491/315 | 270/350 | 0.85 ± 0.08 b | 1.39 ± 0.09 a |
14 | Kaempferol-3-O-(6″-p-coumaryl)-glucoside | 6.85 | 593 | 285 | 267/312 | 0.75 ± 0.01 a | 0.09 ± 0.01 b |
15 | Kaempferol 3-O-(6′-caffeoyl)-glucoside | 7.04 | 623 | 447/285 | 269/350 | 1.55 ± 0.17 a | 0.21 ± 0.01 b |
16 | Kaempferol-3-O-(6″-p-coumaryl)-glucoside | 7.10 | 593 | 285 | 267/330 | 1.00 ± 0.01 a | 1.25 ± 0.07 a |
Σ Flavonols | 37.29 ± 0.86 b | 56.25 ± 3.93 a | |||||
Hydrolyzable tannins | |||||||
4 | Di-galloyl-HHDP-glucoside | 3.73 | 785 | 633/483 | 271 | 3.07 ± 0.04 b | 10.60 ± 0.02 a |
Stilbenes | |||||||
10 | 3′,5′-Di-C-β-D-glucosylphloretin | 597 | 579/507/477 | 285 | 1.71 ± 0.01 a | 0.91 ± 0.08 b | |
Polymeric procyanidins | 861.36 ± 6.57 b | 1197.34 ± 8.31 a | |||||
Degree of polymerization | 11.78 b | 16.37 a | |||||
Σ Polyphenolic compounds | 904.65 b | 1268.90 a |
Leaves | ||
---|---|---|
Compounds | Sweet Scarlet | Jahidka |
Chlorophylls | ||
chlorophyll a- d1 | 94.35 ± 0.92 a | 54.97 ± 2.90 b |
chlorophyll b | 427.99 ± 1.75 a | 408.64 ± 10.43 b |
chlorophyll a | 1116.75 ± 4.57 a | 1096.53 ± 19.80 a |
chlorophyll a- d2 | 36.83 ± 1.52 a | 33.53 ± 2.15 a |
pheophytin a | 18.23 ± 0.11 a | 40.51 ± 2.23 b |
Σ Chlorophylls | 1694.16 ± 7.92 a | 1634.18 ± 35.24 b |
Carotenoids | ||
Z-violaxanthin | 11.29 ± 0.49 a | 10.64 ± 0.43 a |
neoxanthin | 23.78 ± 0.69 a | 22.98 ± 1.59 a |
violaxanthin | 10.11 ± 0.13 a | 8.05 ± 0.31 b |
lutein | 87.63 ± 0.95 a | 86.53 ± 2.50 a |
α-carotene | 58.98 ± 0.87 a | 63.65 ± 1.35 b |
(9Z)-α-carotene | 7.22 ± 0.35 a | 7.61 ± 0.42 a |
β-carotene | 33.04 ± 0.23 a | 37.03 ± 1.69 b |
(9Z)-β-carotene | 4.60 ± 0.03 a | 4.95 ± 0.20 b |
∑α-carotene isomers | 66.20 ± 1.22 a | 71.26 ± 1.68 b |
∑β-carotene isomers | 37.64 ± 0.21 a | 41.98 ± 1.88 b |
Σ Carotenoids | 236.64 ± 3.50 a | 241.45 ± 8.11 a |
Fruits | ||
Compounds | Sweet Scarlet | Jahidka |
Carotenoids | ||
phytoene | 0.97 ± 0.06 a | 0.93 ± 0.06 a |
lutein | 0.08 ± 0.01 a | 0.14 ± 0.01 b |
(15Z)-lycopene | 0.14 ± 0.02 a | 0.19 ± 0.02 b |
(13Z)-lycopene | 0.69 ± 0.05 a | 1.21 ± 0.07 b |
di-Z lycopene | 0.43 ± 0.03 a | 0.78 ± 0.03 b |
(9Z)-lycopene | 0.33 ± 0.02 a | 0.63 ± 0.03 b |
(all-E)-lycopene | 35.23 ± 0.73 a | 87.70 ± 2.34 b |
(5Z)-lycopene | 2.22 ± 0.04 a | 5.56 ± 0.19 b |
∑ lycopene isomers | 39.04 ± 0.83 a | 96.08 ± 2.65 b |
Σ Carotenoids | 40.09 ± 0.85 a | 97.15 ± 2.71 b |
Sample | Cultivar | Inhibition of α-Amylase Activity (U/g) | Inhibition of α-Glucosidase Activity (U/g) | Inhibition of Pancreatic Lipase Activity (U/g) | ABTS (mmolTE/g d.m.) | FRAP (mmolTE/g d.m.) | DPPH (mmolTE/g d.m.) |
---|---|---|---|---|---|---|---|
Fruits | Jahidka | 101.16 ± 4.46 a | 14.99 ± 0.07 a | 1.39 ± 0.17 a | 0.90 ± 0.01 a | 0.13 ± 0.01 a | 0.44 ± 0.02 a |
Sweet Scarlet | 104.83 ± 0.61 a | 13.34 ± 0.19 a | 0.75 ± 0.07 b | 0.52 ± 0.01 b | 0.05 ± 0.01 b | 0.26 ± 0.01 b | |
Leaves | Jahidka | 4.91 ± 0.18 b | 8.73 ± 0.52 a | - | 5.08 ± 0.05 b | 0.30 ± 0.01 a | 2.59 ± 0.03 b |
Sweet Scarlet | 13.59 ± 0.15 a | 6.48 ± 0.51 b | - | 5.56 ± 0.05 a | 0.33 ± 0.01 a | 2.61 ± 0.03 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lachowicz, S.; Kapusta, I.; Świeca, M.; Stinco, C.M.; Meléndez-Martínez, A.J.; Bieniek, A. In Vitro Biological Activities of Fruits and Leaves of Elaeagnus multiflora Thunb. and Their Isoprenoids and Polyphenolics Profile. Antioxidants 2020, 9, 436. https://doi.org/10.3390/antiox9050436
Lachowicz S, Kapusta I, Świeca M, Stinco CM, Meléndez-Martínez AJ, Bieniek A. In Vitro Biological Activities of Fruits and Leaves of Elaeagnus multiflora Thunb. and Their Isoprenoids and Polyphenolics Profile. Antioxidants. 2020; 9(5):436. https://doi.org/10.3390/antiox9050436
Chicago/Turabian StyleLachowicz, Sabina, Ireneusz Kapusta, Michał Świeca, Carla M. Stinco, Antonio J. Meléndez-Martínez, and Anna Bieniek. 2020. "In Vitro Biological Activities of Fruits and Leaves of Elaeagnus multiflora Thunb. and Their Isoprenoids and Polyphenolics Profile" Antioxidants 9, no. 5: 436. https://doi.org/10.3390/antiox9050436
APA StyleLachowicz, S., Kapusta, I., Świeca, M., Stinco, C. M., Meléndez-Martínez, A. J., & Bieniek, A. (2020). In Vitro Biological Activities of Fruits and Leaves of Elaeagnus multiflora Thunb. and Their Isoprenoids and Polyphenolics Profile. Antioxidants, 9(5), 436. https://doi.org/10.3390/antiox9050436