The Kinetics of Total Phenolic Content and Monomeric Flavan-3-ols during the Roasting Process of Criollo Cocoa
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chemicals and Standards
2.3. Roasting Process
2.4. Chemical Analysis
2.4.1. Methanolic Extraction of Phenolic Compounds and Monomeric Flavan-3-ols
2.4.2. Total Phenolic Content
2.4.3. Quantification of Epicatechin and Catechin of the Methanolic Extract
2.4.4. TPC and Monomeric Flavan-3-ol Degradation
2.5. Experimental Desing for Kinetics of TPC and Monomeric Flavan-3-ols
2.6. Statistical Analysis
3. Results
3.1. Effect of Roasting on Monomeric Flavan-3-ols and TPC
3.2. Roasting Kinetics of Monomeric Flavan-3-ols and TPC
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Żyżelewicz, D.; Budryn, G.; Oracz, J.; Antolak, H.; Kręgiel, D.; Kaczmarska, M. The effect on bioactive components and characteristics of chocolate by functionalization with raw cocoa beans. Food Res. Int. 2018, 113, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Castro-Alayo, E.M.; Idrogo-Vásquez, G.; Siche, R.; Cardenas-Toro, F.P. Formation of aromatic compounds precursors during fermentation of Criollo and Forastero cocoa. Heliyon 2019, 5, e01157. [Google Scholar] [CrossRef]
- Ascrizzi, R.; Flamini, G.; Tessieri, C.; Pistelli, L. From the raw seed to chocolate: Volatile profile of Blanco de Criollo in different phases of the processing chain. Microchem. J. 2017, 133, 474–479. [Google Scholar] [CrossRef]
- Żyżelewicz, D.; Krysiak, W.; Oracz, J.; Sosnowska, D.; Budryn, G.; Nebesny, E. The influence of the roasting process conditions on the polyphenol content in cocoa beans, nibs and chocolates. Food Res. Int. 2016, 89, 918–929. [Google Scholar] [CrossRef]
- Stanley, T.H.; Van Buiten, C.B.; Baker, S.A.; Elias, R.J.; Anantheswaran, R.C.; Lambert, J.D. Impact of roasting on the flavan-3-ol composition, sensory-related chemistry, and in vitro pancreatic lipase inhibitory activity of cocoa beans. Food Chem. 2018, 255, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Oracz, J.; Nebesny, E. Influence of roasting conditions on the biogenic amine content in cocoa beans of different Theobroma cacao cultivars. Food Res. Int. 2014, 55, 1–10. [Google Scholar] [CrossRef]
- Hu, Y.; Pan, Z.J.; Liao, W.; Li, J.; Gruget, P.; Kitts, D.D.; Lu, X. Determination of antioxidant capacity and phenolic content of chocolate by attenuated total reflectance-Fourier transformed-infrared spectroscopy. Food Chem. 2016, 202, 254–261. [Google Scholar] [CrossRef]
- Sacchetti, G.; Ioannone, F.; De Gregorio, M.; Di Mattia, C.; Serafini, M.; Mastrocola, D. Non enzymatic browning during cocoa roasting as affected by processing time and temperature. J. Food Eng. 2016, 169, 44–52. [Google Scholar] [CrossRef]
- Nascimento, M.M.; Santos, H.M.; Coutinho, J.P.; Lôbo, I.P.; da Silva Junior, A.L.S.; Santos, A.G.; de Jesus, R.M. Optimization of chromatographic separation and classification of artisanal and fine chocolate based on its bioactive compound content through multivariate statistical techniques. Microchem. J. 2020, 152, 104342. [Google Scholar] [CrossRef]
- Steinberg, F.M.; Bearden, M.M.; Keen, C.L. Cocoa and chocolate flavonoids: Implications for cardiovascular health. J. Am. Diet. Assoc. 2003, 103, 215–223. [Google Scholar] [CrossRef]
- Do Carmo Brito, B.D.N.; Campos Chisté, R.; Da Silva Pena, R.; Abreu Gloria, M.B.; Santos Lopes, A. Bioactive amines and phenolic compounds in cocoa beans are affected by fermentation. Food Chem. 2017, 228, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Alean, J.; Chejne, F.; Rojano, B. Degradation of polyphenols during the cocoa drying process. J. Food Eng. 2016, 189, 99–105. [Google Scholar] [CrossRef]
- Wang, Y.; Feltham, B.A.; Suh, M.; Jones, P.J.H. Cocoa flavanols and blood pressure reduction: Is there enough evidence to support a health claim in the United States? Trends Food Sci. Technol. 2019, 83, 203–210. [Google Scholar] [CrossRef]
- Alañón, M.E.; Castle, S.M.; Siswanto, P.J.; Cifuentes-Gómez, T.; Spencer, J.P.E. Assessment of flavanol stereoisomers and caffeine and theobromine content in commercial chocolates. Food Chem. 2016, 208, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Fayeulle, N.; Vallverdu-Queralt, A.; Meudec, E.; Hue, C.; Boulanger, R.; Cheynier, V.; Sommerer, N. Characterization of new flavan-3-ol derivatives in fermented cocoa beans. Food Chem. 2018, 259, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Ioannone, F.; Di Mattia, C.D.; De Gregorio, M.; Sergi, M.; Serafini, M.; Sacchetti, G. Flavanols, proanthocyanidins and antioxidant activity changes during cocoa (Theobroma cacao L.) roasting as affected by temperature and time of processing. Food Chem. 2015, 174, 256–262. [Google Scholar] [CrossRef]
- Krysiak, W. Influence of roasting conditions on coloration of roasted cocoa beans. J. Food Eng. 2006, 77, 449–453. [Google Scholar] [CrossRef]
- Andres-Lacueva, C.; Monagas, M.; Khan, N.; Izquierdo-Pulido, M.; Urpi-Sarda, M.; Permanyer, J.; Lamuela-Raventós, R.M. Flavanol and Flavonol Contents of Cocoa Powder Products: Influence of the Manufacturing Process. J. Agric. Food Chem. 2008, 56, 3111–3117. [Google Scholar] [CrossRef]
- Martín, M.A.; Ramos, S. Cocoa polyphenols in oxidative stress: Potential health implications. J. Funct. Foods 2016, 27, 570–588. [Google Scholar] [CrossRef]
- Martín, M.Á.; Ramos, S. Health beneficial effects of cocoa phenolic compounds: A mini-review. Curr. Opin. Food Sci. 2017, 14, 20–25. [Google Scholar] [CrossRef]
- Della Pelle, F.; Blandón-Naranjo, L.; Alzate, M.; Del Carlo, M.; Compagnone, D. Cocoa powder and catechins as natural mediators to modify carbon-black based screen-printed electrodes. Application to free and total glutathione detection in blood. Talanta 2020, 207, 120349. [Google Scholar] [CrossRef] [PubMed]
- Hii, C.L.; Menon, A.S.; Chiang, C.L.; Sharif, S. Kinetics of hot air roasting of cocoa nibs and product quality. J. Food Process Eng. 2017, 40, e12467. [Google Scholar] [CrossRef]
- Afoakwa, E. Roasting effects on phenolic content and free radical scavening actiivities of pulp preconditioned and fermented (Theobroma cacao) beans. Afr. J. Food Agric. Nutr. Dev. 2015, 15, 9635–9650. [Google Scholar]
- Van Durme, J.; Ingels, I.; De Winne, A. Inline roasting hyphenated with gas chromatography–mass spectrometry as an innovative approach for assessment of cocoa fermentation quality and aroma formation potential. Food Chem. 2016, 205, 66–72. [Google Scholar] [CrossRef]
- Hu, S.; Kim, B.-Y.; Baik, M.-Y. Physicochemical properties and antioxidant capacity of raw, roasted and puffed cacao beans. Food Chem. 2016, 194, 1089–1094. [Google Scholar] [CrossRef]
- Teh, Q.T.M.; Tan, G.L.Y.; Loo, S.M.; Azhar, F.Z.; Menon, A.S.; Hii, C.L. The Drying Kinetics and Polyphenol Degradation of Cocoa Beans: Cocoa Drying and Polyphenol Degradation. J. Food Process Eng. 2016, 39, 484–491. [Google Scholar] [CrossRef]
- Hii, C.L.; Law, C.L.; Cloke, M.; Suzannah, S. Thin layer drying kinetics of cocoa and dried product quality. Biosyst. Eng. 2009, 102, 153–161. [Google Scholar] [CrossRef]
- Kyi, T.M.; Daud, W.R.W.; Mohammad, A.B.; Wahid Samsudin, M.; Kadhum, A.A.H.; Talib, M.Z.M. The kinetics of polyphenol degradation during the drying of Malaysian cocoa beans. Int. J. Food Sci. Technol. 2005, 40, 323–331. [Google Scholar] [CrossRef]
- Summa, C.; Raposo, F.C.; McCourt, J.; Scalzo, R.L.; Wagner, K.-H.; Elmadfa, I.; Anklam, E. Effect of roasting on the radical scavenging activity of cocoa beans. Eur. Food Res. Technol. 2006, 222, 368–375. [Google Scholar] [CrossRef]
- Jonfia-Essien, W.A.; West, G.; Alderson, P.G.; Tucker, G. Phenolic content and antioxidant capacity of hybrid variety cocoa beans. Food Chem. 2008, 108, 1155–1159. [Google Scholar] [CrossRef]
- Singleton, V.; Orthofer, R.; Lamuela-Raventos, R. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin Ciocalteau reagent. In Methods in Enzymology; Academic Press: Cambridge, UK, 1999; pp. 152–178. [Google Scholar]
- Payne, M.J.; Hurst, W.J.; Miller, K.B.; Rank, C.; Stuart, D.A. Impact of Fermentation, Drying, Roasting, and Dutch Processing on Epicatechin and Catechin Content of Cacao Beans and Cocoa Ingredients. J. Agric. Food Chem. 2010, 58, 10518–10527. [Google Scholar] [CrossRef]
- Van Boekel, M.A.J.S.; Tijskens, L.M.M. Kinetic modelling. In Food Process Modelling; Woodhead Publishing Limited: Cambridge, UK, 2001; pp. 35–59. ISBN 978-1-85573-565-1. [Google Scholar]
- Rabeler, F.; Feyissa, A.H. Kinetic Modeling of Texture and Color Changes During Thermal Treatment of Chicken Breast Meat. Food Bioprocess Technol. 2018, 11, 1495–1504. [Google Scholar] [CrossRef]
- García-Alamilla, P.; Lagunes-Gálvez, L.M.; Barajas-Fernández, J.; García-Alamilla, R. Physicochemical Changes of Cocoa Beans during Roasting Process. J. Food Qual. 2017, 2017, 1–11. [Google Scholar] [CrossRef]
- Hurst, W.J.; Krake, S.H.; Bergmeier, S.C.; Payne, M.J.; Miller, K.B.; Stuart, D.A. Impact of fermentation, drying, roasting and Dutch processing on flavan-3-ol stereochemistry in cacao beans and cocoa ingredients. Chem. Cent. J. 2011, 5, 53. [Google Scholar] [CrossRef] [PubMed]
- Baghdadi, Y.M.; Hii, C.L. Mass transfer kinetics and effective diffusivities during cocoa roasting. J. Eng. Sci. Technol. 2017, 12, 127–137. [Google Scholar]
- Menon, A.S.; Hii, C.L.; Law, C.L.; Shariff, S.; Djaeni, M. Effects of drying on the production of polyphenol-rich cocoa beans. Dry. Technol. 2017, 35, 1799–1806. [Google Scholar] [CrossRef]
- Wang, H.; Helliwell, K.; You, X. Isocratic elution system for the determination of catechins, caffeine and gallic acid in green tea using HPLC. Food Chem. 2000, 68, 115–121. [Google Scholar] [CrossRef]
- Martins, L.M.; Sant’Ana, A.S.; Iamanaka, B.T.; Berto, M.I.; Pitt, J.I.; Taniwaki, M.H. Kinetics of aflatoxin degradation during peanut roasting. Food Res. Int. 2017, 97, 178–183. [Google Scholar] [CrossRef]
- Molaveisi, M.; Beigbabaei, A.; Akbari, E.; Noghabi, M.S.; Mohamadi, M. Kinetics of temperature effect on antioxidant activity, phenolic compounds and color of Iranian jujube honey. Heliyon 2019, 5, e01129. [Google Scholar] [CrossRef]
- Kothe, L.; Zimmermann, B.F.; Galensa, R. Temperature influences epimerization and composition of flavanol monomers, dimers and trimers during cocoa bean roasting. Food Chem. 2013, 141, 3656–3663. [Google Scholar] [CrossRef]
- Wollgast, J.; Anklam, E. Review on polyphenols in Theobroma cacao: Changes in composition during the manufacture of chocolate and methodology for identification and quantification. Food Res. Int. 2000, 33, 423–447. [Google Scholar] [CrossRef]
- Quelal-Vásconez, M.A.; Lerma-García, M.J.; Pérez-Esteve, É.; Arnau-Bonachera, A.; Barat, J.M.; Talens, P. Changes in methylxanthines and flavanols during cocoa powder processing and their quantification by near-infrared spectroscopy. LWT 2020, 117, 108598. [Google Scholar] [CrossRef]
- Kim, H.; Keeney, P.G. (-)-Epicatechin Content in Fermented and Unfermented Cocoa Beans. J. Food Sci. 1984, 49, 1090–1092. [Google Scholar] [CrossRef]
- Mazor Jolić, S.; Radojčić Redovniković, I.; Marković, K.; Ivanec Šipušić, Đ.; Delonga, K. Changes of phenolic compounds and antioxidant capacity in cocoa beans processing: Changes of phenolic in cocoa beans processing. Int. J. Food Sci. Technol. 2011, 46, 1793–1800. [Google Scholar] [CrossRef]
- Peláez, P.; Bardón, I.; Camasca, P. Methylxanthine and catechin content of fresh and fermented cocoa beans, dried cocoa beans, and cocoa liquor. Sci. Agropecu. 2016, 7, 355–365. [Google Scholar] [CrossRef]
- Prakash, M.; Basavaraj, B.V.; Chidambara Murthy, K.N. Biological functions of epicatechin: Plant cell to human cell health. J. Funct. Foods 2019, 52, 14–24. [Google Scholar] [CrossRef]
- Miller, K.B.; Hurst, W.J.; Flannigan, N.; Ou, B.; Lee, C.Y.; Smith, N.; Stuart, D.A. Survey of Commercially Available Chocolate- and Cocoa-Containing Products in the United States. 2. Comparison of Flavan-3-ol Content with Nonfat Cocoa Solids, Total Polyphenols, and Percent Cacao. J. Agric. Food Chem. 2009, 57, 9169–9180. [Google Scholar] [CrossRef]
- Djikeng, F.T.; Teyomnou, W.T.; Tenyang, N.; Tiencheu, B.; Morfor, A.T.; Touko, B.A.H.; Houketchang, S.N.; Boungo, G.T.; Karuna, M.S.L.; Ngoufack, F.Z.; et al. Effect of traditional and oven roasting on the physicochemical properties of fermented cocoa beans. Heliyon 2018, 4, e00533. [Google Scholar] [CrossRef]
- Suazo, Y.; Davidov-Pardo, G.; Arozarena, I. Effect of Fermentation and Roasting on the Phenolic Concentration and Antioxidant Activity of Cocoa from Nicaragua: Effect of Process on Cocoa from Nicaragua. J. Food Qual. 2014, 37, 50–56. [Google Scholar] [CrossRef]
- Schroeter, H.; Heiss, C.; Balzer, J.; Kleinbongard, P.; Keen, C.L.; Hollenberg, N.K.; Sies, H.; Kwik-Uribe, C.; Schmitz, H.H.; Kelm, M. (-)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc. Natl. Acad. Sci. USA 2006, 103, 1024–1029. [Google Scholar] [CrossRef]
- Lončarić, A.; Pablo Lamas, J.; Guerra, E.; Kopjar, M.; Lores, M. Thermal stability of catechin and epicatechin upon disaccharides addition. Int. J. Food Sci. Technol. 2018, 53, 1195–1202. [Google Scholar] [CrossRef]
- Bernatova, I. Biological activities of (−)-epicatechin and (−)-epicatechin-containing foods: Focus on cardiovascular and neuropsychological health. Biotechnol. Adv. 2018, 36, 666–681. [Google Scholar] [CrossRef] [PubMed]
- Oracz, J.; Nebesny, E.; Żyżelewicz, D. Changes in the flavan-3-ols, anthocyanins, and flavanols composition of cocoa beans of different Theobroma cacao L. groups affected by roasting conditions. Eur. Food Res. Technol. 2015, 241, 663–681. [Google Scholar] [CrossRef]
- Taoukis, P.S.; Labuza, T.P.; Saguy, I.S. Kinetics of Food Deterioration and Shelf-Life Prediction. In Handbook of Food Engineering Practice; CRC Press: New York, NY, USA, 1997; pp. 366–408. [Google Scholar]
- Henríquez, C.; Córdova, A.; Almonacid, S.; Saavedra, J. Kinetic modeling of phenolic compound degradation during drum-drying of apple peel by-products. J. Food Eng. 2014, 143, 146–153. [Google Scholar] [CrossRef]
- Turturică, M.; Stănciuc, N.; Bahrim, G.; Râpeanu, G. Effect of thermal treatment on phenolic compounds from plum (prunus domestica) extracts—A kinetic study. J. Food Eng. 2016, 171, 200–207. [Google Scholar] [CrossRef]
- Garvín, A.; Ibarz, R.; Ibarz, A. Kinetic and thermodynamic compensation. A current and practical review for foods. Food Res. Int. 2017, 96, 132–153. [Google Scholar] [CrossRef]
- Olivares-Tenorio, M.-L.; Verkerk, R.; van Boekel, M.A.J.S.; Dekker, M. Thermal stability of phytochemicals, HMF and antioxidant activity in cape gooseberry (Physalis peruviana L.). J. Funct. Foods 2017, 32, 46–57. [Google Scholar] [CrossRef]
T (°C) | Time (min) | Concentration 1 | Epi/Cat Ratio 1 | Degradation 1 (%) | ||||
---|---|---|---|---|---|---|---|---|
TPC (mg GAE/gdf) | Epicatechin (mg/gdf) | Catechin (mg/gdf) | TPC | Epicatechin | Catechin 2 | |||
Control | 0 | 110.98 ± 1.43a | 30.29 ± 1.09a | 2.71 ± 0.13a | 11.20 ± 0.40a | |||
90 | 10 | 54.60 ± 10.86b | 14.97 ± 1.45b | 2.48 ± 0.14ab | 6.08 ± 0.96b | 50.84 ± 9.47a | 50.41 ± 6.61a | 8.31 ± 5.43a |
20 | 72.70 ± 7.44b | 17.78 ± 3.13b | 2.48 ± 0.05ab | 7.20 ± 1.37b | 34.44 ± 7.46a | 41.25 ± 10.23a | 8.31 ± 6.24a | |
30 | 45.10 ± 7.61b | 11.78 ± 1.22b | 2.20 ± 0.11b | 5.35 ± 0.32b | 59.41 ± 6.47a | 61.07 ± 4.13a | 18.69 ± 3.99a | |
40 | 62.10 ± 19.80b | 12.92 ± 4.89b | 2.22 ± 0.28b | 5.93 ± 2.62b | 43.90 ± 18.7a | 57.0 ± 17.7a | 18.25 ± 6.22a | |
50 | 51.58 ± 7.44b | 13.75 ± 2.92b | 2.48 ± 0.04ab | 5.55 ± 1.24b | 53.46 ± 7.29a | 54.78 ± 8.05a | 8.08 ± 5.82a | |
110 | 10 | 68.54 ± 4.05c | 27.24 ± 0.53c | 2.60 ± 0.07cd | 10.50 ± 0.36c | 38.21 ± 4.44c | 10.02 ± 2.08d | 2.22 ± 1.45d |
20 | 60.84 ± 5.59cd | 15.36 ± 0.47d | 2.67 ± 0.21c | 5.78 ± 0.50d | 45.14 ± 5.72bc | 49.20 ± 3.07c | 7.78 ± 2.00cd | |
30 | 52.25 ± 3.86d | 11.47 ± 0.46e | 2.28 ± 0.08de | 5.05 ± 0.28de | 52.91 ± 3.59b | 62.10 ± 1.50b | 15.79 ± 4.65bc | |
40 | 48.14 ± 6.12d | 8.28 ± 1.36e | 2.33 ± 0.18cde | 3.54 ± 0.31f | 56.58 ± 5.95b | 72.53 ± 5.49b | 13.59 ± 8.53bcd | |
50 | 58.92 ± 6.57cd | 8.22 ± 2.37e | 2.06 ± 0.12e | 3.96 ± 0.97ef | 46.88 ± 6.30bc | 72.77 ± 8.31b | 24.00 ± 3.58b | |
130 | 10 | 98.85 ± 7.79e | 28.74 ± 0.94f | 3.01 ± 0.03f | 9.55 ± 0.39g | 10.98 ± 6.04f | 8.05 ± 3.01e | 11.46 ± 4.71e |
20 | 52.24 ± 3.68f | 11.21 ± 1.24g | 2.69 ± 0.47f | 4.20 ± 0.26h | 52.93 ± 3.24e | 62.87 ± 5.25d | 14.22 ± 6.08e | |
30 | 35.34 ± 2.19g | 9.47 ± 1.01gh | 2.62 ± 0.23f | 3.66 ± 0.67hi | 68.14 ± 2.34d | 68.77 ± 2.57cd | 5.30 ± 4.23e | |
40 | 44.35 ± 7.73fg | 10.46 ± 1.46g | 3.30 ± 0.36f | 3.23 ± 0.81hi | 60.01 ± 7.15de | 65.40 ± 5.08d | 18.62 ± 7.50e | |
50 | 38.43 ± 3.98fg | 6.98 ± 1.01h | 2.95 ± 0.22f | 2.36 ± 0.20i | 65.40 ± 3.16de | 76.99 ± 2.78c | 9.08 ± 7.50e | |
150 | 10 | 46.71 ± 7.84h | 11.25 ± 2.11i | 2.62 ± 0.24g | 4.26 ± 0.41j | 57.85 ± 7.61h | 62.70 ± 8.19h | 8.66 ± 0.15f |
20 | 48.78 ± 8.12h | 8.70 ± 0.70 i j | 3.49 ± 0.68g | 2.59 ± 0.73k | 56.07 ± 7.02h | 71.29 ± 1.29gh | 32.90 ± 25.60f | |
30 | 31.32 ± 2.25i | 6.32 ± 0.53jk | 3.79 ± 0.75g | 1.70 ± 0.25kl | 71.80 ± 1.72g | 79.14 ± 1.51fg | 39.60 ± 21.10f | |
40 | 31.27 ± 2.17i | 5.72 ± 0.12k | 3.64 ± 0.10g | 1.57 ± 0.07kl | 71.81 ± 2.18g | 81.11 ± 0.84fg | 34.61 ± 8.41f | |
50 | 28.22 ± 1.32i | 4.27 ± 0.68k | 3.01 ± 0.35g | 1.41 ± 0.08l | 74.57 ± 1.37g | 85.95 ± 1.81f | 11.05 ± 8.82f | |
170 | 10 | 42.10 ± 7.56j | 12.33 ± 2.33l | 3.48 ± 0.98hij | 0.08 ± 0.02no | 62.12 ± 6.39j | 59.44 ± 6.36k | 11.58 ± 0.01h |
20 | 33.43 ± 7.28jk | 6.75 ± 0.77m | 4.66 ± 0.31hi | 0.10 ± 0.02n | 69.84 ± 6.81ij | 77.75 ± 1.80j | 72.34 ± 12.07gh | |
30 | 31.50 ± 6.43jk | 5.41 ± 0.69mn | 5.15 ± 1.11h | 0.17 ± 0.05m | 71.66 ± 5.50ij | 82.11 ± 2.36ij | 84.90 ± 37.90g | |
40 | 31.33 ± 7.40jk | 4.16 ± 0.59mn | 3.85 ± 0.66hij | 0.12 ± 0.02mn | 71.82 ± 6.36ij | 86.26 ± 1.77ij | 43.00 ± 30.30gh | |
50 | 19.54 ± 1.05k | 3.12 ± 0.18n | 3.19 ± 0.42ij | 0.11 ± 0.01mn | 82.40 ± 0.89i | 89.70 ± 0.77i | 22.19 ± 14.41h | |
190 | 10 | 41.13 ± 8.69l | 11.61 ± 4.88o | 3.67 ± 0.91l | 3.35 ± 1.62p | 62.95 ± 7.70l | 61.93 ± 15.42m | 42.3 ± 29.40ij |
20 | 38.17 ± 6.69l | 5.70 ± 0.50p | 4.87 ± 0.28 k | 1.18 ± 0.17q | 65.63 ± 5.75l | 81.20 ± 0.99l | 80.50 ± 17.40i | |
30 | 21.35 ± 4.45m | 3.11 ± 0.60pq | 2.77 ± 0.25lm | 1.11 ± 0.12q | 80.79 ± 3.80k | 89.70 ± 2.32kl | 7.32 ± 6.32j | |
40 | 19.81 ± 2.11m | 2.43 ± 0.13pq | 2.67 ± 0.27lm | 0.92 ± 0.10q | 82.17 ± 1.72k | 91.97 ± 0.23kl | 9.97 ± 3.21j | |
50 | 12.31 ± 1.36m | 0.00 ± 0.00q | 2.05 ± 0.07m | 0.00 ± 0.00q | 88.91 ± 1.27k | 100.00 ± 0.00k | 23.96 ± 6.02j | |
200 | 10 | 33.23 ± 2.44n | 8.10 ± 0.88r | 3.20 ± 0.68n | 2.64 ± 0.83r | 70.04 ± 2.60o | 73.21 ± 3.58p | 21.89 ± 14.12k |
20 | 17.33 ± 3.26o | 2.42 ± 0.21s | 2.30 ± 0.30n | 1.06 ± 0.05s | 84.38 ± 2.98n | 92.01 ± 0.39o | 15.17 ± 7.86k | |
30 | 13.76 ± 0.53op | 2.32 ± 0.06s | 2.26 ± 0.07n | 1.03 ± 0.03s | 87.60 ± 0.64mn | 92.34 ± 0.10o | 16.56 ± 1.54k | |
40 | 14.41 ± 1.86o | 2.53 ± 0.45s | 2.35 ± 0.60n | 1.09 ± 0.09st | 87.00 ± 1.85mn | 91.61 ± 1.81o | 22.29 ± 10.34k | |
50 | 8.56 ± 0.10p | 0.00 ± 0.00t | 2.13 ± 0.21n | 0.00 ± 0.00t | 92.29 ± 0.06m | 100.00 ± 0.00n | 21.37 ± 5.74k |
Roasting Temperature (°C) | TPC | Epicatechin | ||||
---|---|---|---|---|---|---|
(min−1) | RMSE | (min−1) | RMSE | |||
90 | 0.02 ± 0.01 | 0.52 | 18.50 | 0.02 ± 0.01 | 0.65 | 4.57 |
110 | 0.02 ± 0.01 | 0.70 | 13.97 | 0.03 ± 0.01 | 0.95 | 2.49 |
130 | 0.03 ± 0.02 | 0.87 | 13.08 | 0.03 ± 0.02 | 0.86 | 4.31 |
150 | 0.04 ± 0.03 | 0.83 | 14.59 | 0.06 ± 0.03 | 0.91 | 3.27 |
170 | 0.07 ± 0.03 | 0.96 | 2.24 | 0.07 ± 0.03 | 0.96 | 2.24 |
190 | 0.06 ± 0.03 | 0.92 | 11.35 | 0.09 ± 0.02 | 0.99 | 1.05 |
200 | 0.10 ± 0.05 | 0.96 | 9.23 | 0.13 ± 0.04 | 0.99 | 1.44 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Romero, E.; Chavez-Quintana, S.G.; Siche, R.; Castro-Alayo, E.M.; Cardenas-Toro, F.P. The Kinetics of Total Phenolic Content and Monomeric Flavan-3-ols during the Roasting Process of Criollo Cocoa. Antioxidants 2020, 9, 146. https://doi.org/10.3390/antiox9020146
Fernández-Romero E, Chavez-Quintana SG, Siche R, Castro-Alayo EM, Cardenas-Toro FP. The Kinetics of Total Phenolic Content and Monomeric Flavan-3-ols during the Roasting Process of Criollo Cocoa. Antioxidants. 2020; 9(2):146. https://doi.org/10.3390/antiox9020146
Chicago/Turabian StyleFernández-Romero, Editha, Segundo G. Chavez-Quintana, Raúl Siche, Efraín M. Castro-Alayo, and Fiorella P. Cardenas-Toro. 2020. "The Kinetics of Total Phenolic Content and Monomeric Flavan-3-ols during the Roasting Process of Criollo Cocoa" Antioxidants 9, no. 2: 146. https://doi.org/10.3390/antiox9020146
APA StyleFernández-Romero, E., Chavez-Quintana, S. G., Siche, R., Castro-Alayo, E. M., & Cardenas-Toro, F. P. (2020). The Kinetics of Total Phenolic Content and Monomeric Flavan-3-ols during the Roasting Process of Criollo Cocoa. Antioxidants, 9(2), 146. https://doi.org/10.3390/antiox9020146