Domestic Sautéing with EVOO: Change in the Phenolic Profile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Standards
2.2. Samples
2.3. Domestic Sauté Process
2.4. Polyphenol Extraction and Analysis
2.4.1. Polyphenol Extraction
2.4.2. Polyphenol Analysis by UPLC-ESI-QqQ-MS/MS
2.5. Statistical Analysis
3. Results and Discussion
3.1. Total Polyphenols
3.2. Secoiridoids
3.3. Phenolic Alcohols and Others
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cicerale, S.; Lucas, L.; Keast, R. Biological activities of phenolic compounds present in virgin olive oil. Int. J. Mol. Sci. 2010, 11, 458–479. [Google Scholar] [CrossRef] [Green Version]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet. N. Engl. J. Med. 2013, 368, 1279–1290. [Google Scholar] [CrossRef] [Green Version]
- Gotsis, E.; Anagnostis, P.; Mariolis, A.; Vlachou, A.; Katsiki, N.; Karagiannis, A. Health benefits of the mediterranean diet: An update of research over the last 5 years. Angiology 2015, 66, 304–318. [Google Scholar] [CrossRef]
- Nocella, C.; Cammisotto, V.; Fianchini, L.; D’Amico, A.; Novo, M.; Castellani, V.; Stefanini, L.; Violi, F.; Carnevale, R. Extra Virgin Olive Oil and Cardiovascular Diseases: Benefits for Human Health. Endocr. Metab. Immune Disord. Drug Targets 2017, 18, 4–13. [Google Scholar] [CrossRef]
- Martínez-Lapiscina, E.H.; Clavero, P.; Toledo, E.; Estruch, R.; Salas-Salvadó, J.; San Julián, B.; Sanchez-Tainta, A.; Ros, E.; Valls-Pedret, C.; Martinez-Gonzalez, M.Á. Mediterranean diet improves cognition: The PREDIMED-NAVARRA randomised trial. J. Neurol. Neurosurg. Psychiatry 2013, 84, 1318–1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Estruch, R.; Ros, E. Prevention of Diabetes with Mediterranean Diets. Ann. Intern. Med. 2014, 161, 157. [Google Scholar] [CrossRef] [PubMed]
- Hussein, Z.; Fawole, O.A.; Opara, U.L. Preharvest factors influencing bruise damage of fresh fruits—A review. Sci. Hortic. 2018, 229, 45–58. [Google Scholar] [CrossRef]
- Goulas, V.; Orphanides, A.; Pelava, E.; Gekas, V. Impact of Thermal Processing Methods on Polyphenols and Antioxidant Activity of Olive Oil Polar Fraction. J. Food Process. Preserv. 2015, 39, 1919–1924. [Google Scholar] [CrossRef]
- Ramírez-Anaya, J.D.P.; Samaniego-Sánchez, C.; Castañeda-Saucedo, M.C.; Villalón-Mir, M.; De La Serrana, H.L.G. Phenols and the antioxidant capacity of Mediterranean vegetables prepared with extra virgin olive oil using different domestic cooking techniques. Food Chem. 2015, 188, 430–438. [Google Scholar] [CrossRef]
- Engelsen, S.B. Explorative Spectrometric Evaluations of Frying Oil Deterioration. JAOCS J. Am. Oil Chem. Soc. 1997, 74, 1495–1508. [Google Scholar] [CrossRef]
- Rannou, C.; Laroque, D.; Renault, E.; Prost, C.; Sérot, T. Mitigation strategies of acrylamide, furans, heterocyclic amines and browning during the Maillard reaction in foods. Food Res. Int. 2016, 90, 154–176. [Google Scholar] [CrossRef]
- Persson, E.; Graziani, G.; Ferracane, R.; Fogliano, V.; Skog, K. Influence of antioxidants in virgin olive oil on the formation of heterocyclic amines in fried beefburgers. Food Chem. Toxicol. 2003, 41, 1587–1597. [Google Scholar] [CrossRef]
- Sordini, B.; Veneziani, G.; Servili, M.; Esposto, S.; Selvaggini, R.; Lorefice, A.; Taticchi, A. A quanti-qualitative study of a phenolic extract as a natural antioxidant in the frying processes. Food Chem. 2019, 279, 426–434. [Google Scholar] [CrossRef]
- Zamora, R.; Hidalgo, F.J. Carbonyl-Phenol Adducts: An Alternative Sink for Reactive and Potentially Toxic Lipid Oxidation Products. J. Agric. Food Chem. 2018, 66, 1320–1324. [Google Scholar] [CrossRef] [Green Version]
- Esposto, S.; Taticchi, A.; Di Maio, I.; Urbani, S.; Veneziani, G.; Selvaggini, R.; Sordini, B.; Servili, M. Effect of an olive phenolic extract on the quality of vegetable oils during frying. Food Chem. 2015, 176, 184–192. [Google Scholar] [CrossRef]
- Attya, M.; Benabdelkamel, H.; Perri, E.; Russo, A.; Sindona, G. Effects of conventional heating on the stability of major olive oil phenolic compounds by tandem mass spectrometry and isotope dilution assay. Molecules 2010, 15, 8734–8746. [Google Scholar] [CrossRef]
- Cerretani, L.; Bendini, A.; Rodriguez-Estrada, M.T.; Vittadini, E.; Chiavaro, E. Microwave heating of different commercial categories of olive oil: Part I. Effect on chemical oxidative stability indices and phenolic compounds. Food Chem. 2009, 115, 1381–1388. [Google Scholar] [CrossRef]
- Taticchi, A.; Esposto, S.; Urbani, S.; Veneziani, G.; Selvaggini, R.; Sordini, B.; Servili, M. Effect of an olive phenolic extract added to the oily phase of a tomato sauce, on the preservation of phenols and carotenoids during domestic cooking. LWT Food Sci. Technol. 2017, 84, 572–578. [Google Scholar] [CrossRef]
- Bendini, A.; Cerretani, L.; Salvador, M.D.; Fregapane, G.; Lercker, G. Stability of the sensory quality of virgin olive oil during storage: An overview. Ital. J. Food Sci. 2009, 21, 389–406. [Google Scholar]
- Kalogeropoulos, N.; Mylona, A.; Chiou, A.; Ioannou, M.S.; Andrikopoulos, N.K. Retention and distribution of natural antioxidants (α-tocopherol, polyphenols and terpenic acids) after shallow frying of vegetables in virgin olive oil. LWT Food Sci. Technol. 2007, 40, 1008–1017. [Google Scholar] [CrossRef]
- Brenes, M.; García, A.; Dobarganes, M.C.; Velasco, J.; Romero, C. Influence of thermal treatments simulating cooking processes on the polyphenol content in virgin olive oil. J. Agric. Food Chem. 2002, 50, 5962–5967. [Google Scholar] [CrossRef]
- Allouche, Y.; Jiménez, A.; Gaforio, J.J.; Uceda, M.; Beltrán, G. How Heating Affects Extra Virgin Olive Oil Quality Indexes and Chemical Composition. J. Agric. Food Chem. 2007, 55, 9646–9654. [Google Scholar] [CrossRef]
- Casal, S.; Malheiro, R.; Sendas, A.; Oliveira, B.P.P.; Pereira, J.A. Olive oil stability under deep-frying conditions. Food Chem. Toxicol. 2010, 48, 2972–2979. [Google Scholar] [CrossRef]
- Aubaile-Sallenave, F. La Méditerranée, une cuisine, des cuisines. In Anthropologie de L’Alimentation; SAGE: London, UK; Thousand Oaks, CA, USA; New Delhi, India, 1996; pp. 139–194. [Google Scholar]
- García, A.; Brenes, M.; García, P.; Romero, C.; Garrido, A. Phenolic content of commercial olive oils. Eur. Food Res. Technol. 2003, 216, 520–525. [Google Scholar] [CrossRef]
- Kalogeropoulos, N.; Chiou, A.; Mylona, A.; Ioannou, M.S.; Andrikopoulos, N.K. Recovery and distribution of natural antioxidants (α-tocopherol, polyphenols and terpenic acids) after pan-frying of Mediterranean finfish in virgin olive oil. Food Chem. 2007, 100, 509–517. [Google Scholar] [CrossRef]
- Suárez, M.; Macià, A.; Romero, M.-P.; Motilva, M.-J. Improved liquid chromatography tandem mass spectrometry method for the determination of phenolic compounds in virgin olive oil. J. Chromatogr. A 2008, 1214, 90–99. [Google Scholar] [CrossRef]
- López-Yerena, A.; Lozano-Castellón, J.; Olmo-Cunillera, A.; Tresserra-Rimbau, A.; Quifer-Rada, P.; Jiménez, B.; Pérez, M.; Vallverdú-Queralt, A. Effects of organic and conventional growing systems on the phenolic profile of extra-virgin olive oil. Molecules 2019, 24, 1986. [Google Scholar] [CrossRef] [Green Version]
- Sánchez de Medina, V.; Miho, H.; Melliou, E.; Magiatis, P.; Priego-Capote, F.; Luque de Castro, M.D. Quantitative method for determination of oleocanthal and oleacein in virgin olive oils by liquid chromatography–tandem mass spectrometry. Talanta 2017, 162, 24–31. [Google Scholar] [CrossRef]
- Douglas, C. Montgomery: Design and Analysis of Experiments; John Willy Sons: Hoboken, NJ, USA, 2000; p. 734. [Google Scholar]
- Mariod, A.A.; Ibrahim, R.M.; Ismail, M.; Ismail, N. Antioxidant activity of the phenolic leaf extracts from monechma ciliatum in stabilization of corn oil. JAOCS J. Am. Oil Chem. Soc. 2010, 87, 35–43. [Google Scholar] [CrossRef]
- Xiangli, F.; Wei, W.; Chen, Y.; Jin, W.; Xu, N. Optimization of preparation conditions for polydimethylsiloxane (PDMS)/ceramic composite pervaporation membranes using response surface methodology. J. Membr. Sci. 2008, 311, 23–33. [Google Scholar] [CrossRef]
- Ramírez-Anaya, J.; Castañeda-Saucedo, M.C.; Olalla-Herrera, M.; Villalón-Mir, M.; De la Serrana, H.L.G.; Samaniego-Sánchez, C. Changes in the antioxidant properties of extra virgin olive oil after cooking typical mediterranean vegetables. Antioxidants 2019, 8, 246. [Google Scholar]
- Lozano-Castellón, J.; López-Yerena, A.; Rinaldi de Alvarenga, J.F.; Romero del Castillo-alba, J.; Vallverdú-queralt, A.; Escribano-ferrer, E.; Lamuela-raventós, R.M. Health-promoting properties of oleocanthal and oleacein: Two secoiridoids from extra-virgin olive oil. Crit. Rev. Food Sci. Nutr. 2019, 1–17. [Google Scholar] [CrossRef]
- Beauchamp, G.K.; Keast, R.S.J.; Morel, D.; Lin, J.; Pika, J.; Han, Q.; Lee, C.H.; Smith, A.B.; Breslin, P.A.S. Ibuprofen-like activity in extra-virgin olive oil. Nature 2005, 437, 45–46. [Google Scholar] [CrossRef]
- Hansen, K.; Adsersen, A.; Christensen, S.B.; Jensen, S.R.; Nyman, U.; Smitt, U.W. Isolation of an angiotensin converting enzyme (ACE) inhibitor from Olea europaea and Olea lancea. Phytomedicine 2011, 2, 319–325. [Google Scholar] [CrossRef]
- Czerwińska, M.E.; Kiss, A.K.; Naruszewicz, M. Inhibition of human neutrophils NEP activity, CD11b/CD18 expression and elastase release by 3,4-dihydroxyphenylethanol-elenolic acid dialdehyde, oleacein. Food Chem. 2014, 153, 1–8. [Google Scholar] [CrossRef]
- Obied, H.K.; Prenzler, P.D.; Ryan, D.; Servili, M.; Taticchi, A.; Esposto, S.; Robards, K. Biosynthesis and biotransformations of phenol-conjugated oleosidic secoiridoids from Olea europaea L. Nat. Prod. Rep. 2008, 25, 1167. [Google Scholar] [CrossRef]
- Singleton, V.L. Oxygen with phenols and related reactions in musts, wines, and model systems: Observations and practical implications. Am. J. Enol. Vitic. 1987, 38, 69–77. [Google Scholar]
- Hvattum, E.; Ekeberg, D. Study of the collision-induced radical cleavage of flavonoid glycosides using negative electrospray ionization tandem quadrupole mass spectrometry. J. Mass Spectrom. 2003, 38, 43–49. [Google Scholar] [CrossRef]
- Vallverdu-Queralt, A.; Regueiro, J.; Rinaldi de Alvarenga, J.; Torrado, X.; Lamuela-Ravento, R.M. Home Cooking and Phenolics: Effect of Thermal Treatment and Addition of Extra Virgin Olive Oil on the Phenolic Profile of Tomato Sauces. J. Agric. Food Chem. 2014, 62, 3314–3320. [Google Scholar] [CrossRef]
- Krichene, D.; Salvador, M.D.; Fregapane, G. Stability of Virgin Olive Oil Phenolic Compounds during Long-Term Storage (18 Months) at Temperatures of 5–50 °C. J. Agric. Food Chem. 2015, 63, 6779–6786. [Google Scholar] [CrossRef]
- European Commission. European Commission Regulation EC No. 432/2012 establishing a list of permitted health claims made on foods, other than those referring to the reduction of disease risk and to children’s development and health. Off. J. Eur. Union L 2012, 136, 1–40. [Google Scholar]
- Daskalaki, D.; Kefi, G.; Kotsiou, K.; Tasioula-Margari, M. Evaluation of phenolic compounds degradation in virgin olive oil during storage and heating. J. Food Nutr. Res. 2009, 48, 31–41. [Google Scholar]
Experiment | Temperature (Level) | Time (Level) | Temperature | Time |
---|---|---|---|---|
1 | –1 | –1 | 120 °C | 30 |
2 | 1 | –1 | 170 °C | 15 |
3 | –1 | 1 | 120 °C | 60 |
4 | 1 | 1 | 170 °C | 30 |
Group/Compound | Raw | ↓T ↓t | ↓T ↑t | ↑T ↓t | ↑T ↑t |
---|---|---|---|---|---|
Sum of phenols | 860 ± 22 | 487 ± 29 | 498 ± 32 | 240 ± 19 | 218 ± 12 |
Secoiridoids | 835 ± 22 | 466 ± 30 | 481 ± 31 | 231 ± 20 | 213 ± 12 |
Ligstroside aglycone | 368 ± 7 | 190 ± 13 | 193 ± 11 | 94 ± 21 | 97 ± 7 |
Oleocanthal | 81 ± 4 | 51 ± 3 | 53 ± 5 | 41 ± 3 | 41 ± 3 |
Oleuropein aglycone | 79 ± 2 | 45 ± 3 | 47 ± 3 | 15 ± 2 | 12 ± 1 |
Oleacein | 252 ± 9 | 134 ± 13 | 139 ± 15 | 46 ± 6 | 32 ± 4 |
HDCM-OA | 23.6 ± 0.9 | 21 ± 2 | 22 ± 3 | 16 ± 2 | 9 ± 1 |
HOA | 3.2 ± 0.2 | 2.3 ± 0.3 | 3.3 ± 0.5 | 2.3 ± 0.3 | 0.7 ± 0.1 |
Elenolic acid | 25.1 ± 0.2 | 16 ± 2 | 16 ± 1 | 10 ± 1 | 10.9 ± 0.6 |
Hydroxyelenolic acid | 1.9 ± 0.1 | 8 ± 1 | 8 ± 1 | 6.7 ± 0.8 | 9.1 ± 0.9 |
Phenolic alcohols | 19.6 ± 0.5 | 18 ± 1 | 14 ± 1 | 5.9 ± 0.6 | 2.8 ± 0.2 |
Hydroxytyrosol acetate | 4.5 ± 0.2 | 3.9 ± 0.3 | 4.0 ± 0.2 | 1.8 ± 0.2 | 1.4 ± 0.1 |
Hydroxytyrosol | 15.2 ± 0.7 | 14 ± 1 | 10.0 ± 0.9 | 4.1 ± 0.5 | 1.5 ± 0.2 |
Flavonoids | 1.8 ± 0.2 | 1.3 ± 0.4 | 1.3 ± 0.4 | 0.79 ± 0.08 | 0.86 ± 0.05 |
Apigenin | 0.61 ± 0.04 | 0.7 ± 0.4 | 0.7 ± 0.4 | 0.48 ± 0.05 | 0.54 ± 0.03 |
Luteolin | 1.16 ± 0.15 | 0.54 ± 0.08 | 0.61 ± 0.06 | 0.31 ± 0.04 | 0.32 ± 0.02 |
Phenolic acids | 3.7 ± 0.3 | 1.4 ± 0.7 | 1.2 ± 0.4 | 1.2 ± 0.3 | 0.8 ± 0.2 |
Ferulic acid | 3.3 ± 0.3 | 0.9 ± 0.7 | 0.7 ± 0.4 | 0.7 ± 0.3 | 0.4 ± 0.2 |
p-Coumaric acid | 0.45 ± 0.01 | 0.49 ± 0.06 | 0.47 ± 0.04 | 0.47 ± 0.04 | 0.40 ± 0.02 |
Lignans | 0.44 ± 0.05 | 0.48 ± 0.07 | 0.49 ± 0.05 | 0.60 ± 0.06 | 0.64 ± 0.07 |
Pinoresinol | 0.44 ± 0.05 | 0.48 ± 0.07 | 0.49 ± 0.05 | 0.60 ± 0.06 | 0.64 ± 0.07 |
Group/Compound | R2 | β0 | Temperature | Time | Interaction | |||
---|---|---|---|---|---|---|---|---|
F-Value | β1 | F-Value | β2 | F-Value | β3 | |||
Sum of phenols | 0.968 | 360.8 * | 1038.8 * | −131.9 * | 0.458 | - | 3.87 | −8.05 |
Secoiridoids | 0.965 | 347.9 * | 946.9 * | −125.8 * | 0.057 | - | 4.04 | −8.22 * |
Ligstroside aglycone | 0.927 | 143.2 * | 427.4 * | −47.8 * | 0.443 | - | 0.0018 | - |
Oleocanthal | 0.703 | 46.5 * | 81.0 * | −5.31 * | 0.603 | - | 0.232 | - |
Oleuropein aglycone | 0.973 | 29.7 * | 1276.1 * | −16.2 * | 0.402 | −0.287 | 8.96 * | −1.35 * |
Oleacein | 0.955 | 87.9 * | 736.9 * | −48.6 * | 1.59 | −2.26 | 6.83 * | −4.68 * |
HDCM-OA | 0.845 | 17.2 * | 144.3 * | −4.34 * | 15.5 * | −1.42 * | 33.7 * | −2.10 * |
HOA | 0.888 | 2.18 * | 369.9 * | −0.660 * | 0.718 | −0.147 * | 142.7 * | −0.645 * |
Elenolic acid | 0.824 | 13.2 * | 159.8 * | −2.99 * | 4.26 * | 0.488 * | 0.678 | - |
Hydroxyelenolic acid | 0.444 | 7.92 * | 0.002 | - | 17.1 * | 0.654 * | 11.9 * | 0.546 * |
Phenolic alcohols | 0.978 | 10.1 * | 1427.7 * | −5.78 * | 124.6 * | −1.71 * | 1.36 | 0.178 |
Hydroxytyrosol acetate | 0.964 | 2.77 * | 916.5 * | −1.18 * | 3.28 | −0.0705 | 12.6 * | −0.138 * |
Hydroxytyrosol | 0.971 | 7.37 * | 1026.5 * | −4.60 * | 129.9 * | −1.64 * | 4.86 * | 0.316 * |
Flavonoids | 0.396 | 1.06 * | 23.1 * | −0.236 * | 0.723 | - | 0.0038 | - |
Apigenin | 0.121 | 0.615 * | 5.54 * | −0.105 * | 0.265 | - | 0.0648 | - |
Luteolin | 0.855 | 0.446 * | 202.4 * | −0.131 * | 4.17 * | 0.0187 * | 2.44 | −0.0144 |
Phenolic acids | 0.090 | 1.15 * | 3.35 | −0.147 | 3.08 | −0.141 | 0.0288 | −0.0136 |
Ferulic acid | 0.085 | 0.682 * | 3.27 | −0.133 | 2.97 | −0.127 | 0.0158 | −0.00927 |
p-Coumaric acid | 0.111 | 0.463 * | 3.43 | −0.013 | 3.60 | −0.0138 | 0.354 | −0.00433 |
Lignans | 0.520 | 0.553 * | 39.2 * | 0.068 * | 1.16 | 0.0116 | 0.583 | 0.00827 |
Pinoresinol | 0.526 | 0.553 * | 39.2 * | 0.068 * | 1.16 | 0.0116 | 0.583 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lozano-Castellón, J.; Vallverdú-Queralt, A.; Rinaldi de Alvarenga, J.F.; Illán, M.; Torrado-Prat, X.; Lamuela-Raventós, R.M. Domestic Sautéing with EVOO: Change in the Phenolic Profile. Antioxidants 2020, 9, 77. https://doi.org/10.3390/antiox9010077
Lozano-Castellón J, Vallverdú-Queralt A, Rinaldi de Alvarenga JF, Illán M, Torrado-Prat X, Lamuela-Raventós RM. Domestic Sautéing with EVOO: Change in the Phenolic Profile. Antioxidants. 2020; 9(1):77. https://doi.org/10.3390/antiox9010077
Chicago/Turabian StyleLozano-Castellón, Julián, Anna Vallverdú-Queralt, José Fernando Rinaldi de Alvarenga, Montserrat Illán, Xavier Torrado-Prat, and Rosa Maria Lamuela-Raventós. 2020. "Domestic Sautéing with EVOO: Change in the Phenolic Profile" Antioxidants 9, no. 1: 77. https://doi.org/10.3390/antiox9010077
APA StyleLozano-Castellón, J., Vallverdú-Queralt, A., Rinaldi de Alvarenga, J. F., Illán, M., Torrado-Prat, X., & Lamuela-Raventós, R. M. (2020). Domestic Sautéing with EVOO: Change in the Phenolic Profile. Antioxidants, 9(1), 77. https://doi.org/10.3390/antiox9010077