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Abstract: Extra-virgin olive oil (EVOO) is largely appreciated for its proven nutritional properties.
Additionally, organic foods are perceived as healthier by consumers. In this context, the aim of
the present study was to compare the phenolic profiles of EVOO from olives of the Hojiblanca
variety, cultivated under organic and conventional systems. The quantification and identification of
individual polyphenols was carried out by liquid chromatography coupled to mass spectrometry in
tandem mode (LC-MS/MS). Significantly higher levels (p < 0.05) of phenolic compounds were found
in organic EVOOs. The methodology used was able to detect previously unreported differences in
bioactive components between organic and conventional EVOOs.

Keywords: phenolic compounds; Hojiblanca; variety; organic; conventional; agriculture; mass
spectrometry; oleocanthal; secoiridoids; ripening; NMR

1. Introduction

Extra virgin olive oil (EVOO), a key component of the Mediterranean diet, is highly appreciated
for its nutritional and organoleptic attributes. The minor compounds include aliphatic and triterpene
alcohols, sterols, hydrocarbons, volatile compounds and antioxidants such as carotenoids and
polyphenols, which contribute to the organoleptic characteristics, stability and nutritional value
of EVOO [1,2]. The qualitative and quantitative composition of polyphenols in EVOO is affected by
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many variables, such as the degree of olive ripeness, the technological production process and storage
conditions [3,4]. The most important changes in the polyphenol content occur during the crushing and
malaxation of olives [5,6] as well as during the storage and filtration of EVOO [7]. Other influential
factors include the use of organic and conventional growing systems [8,9].

The market for organic products, generally perceived as healthier and safer than conventional
foods, is growing annually [10], despite the higher costs and lower productivity of organic compared
to traditional agriculture. In 2016, on a global level, up to 178 countries practiced organic agriculture,
on an extension of 57.8 million hectares, with a market size of 89.7 billion US dollars [11]. A key
difference between the two growing systems is soil fertility management, which can affect the
nutritive composition of plants, including levels of secondary metabolites [12]. In organic agriculture,
which is associated with the promotion of biodiversity and biological cycles, crops obtain nitrogen and
nutrients from a diverse soil ecosystem. Contrastingly, conventional farming uses fertilizers containing
soluble inorganic nitrogen and other nutrients, which are more directly available to plants [13].
Phenolic biosynthesis in plants is known to be strongly affected by the cultivar, the environmental
conditions (especially light), as well as the type of fertilization [14,15]. Previous studies demonstrate
that the organic fruits have higher phenolic content than conventional ones [16–18].

Therefore, the objective of our study was to compare the content of polyphenols (secoiridoids,
flavones, phenolic alcohols, phenolic acids and lignans) in Hojiblanca EVOO produced by organic and
conventional production systems under the same environmental conditions. Moreover, we applied
a quantitative 1H nuclear magnetic resonance (qNMR) method to corroborate the concentration of
oleocanthal (OLC) in our EVOOs obtained by LC-MS.

2. Results

2.1. Total Amount of Phenolic Compounds

The average of total phenols (TP) in organic and conventional EVOO, with the p-value for the
differences assessed by the Mann–Whitney test, are shown in Table 1. In order to control the ripening
factor when assessing the differences in phenolic concentrations between the two types of EVOO,
generalized linear models adjusting for ripening index (RI) were used (Table S1). The mean TP content
of organic and conventional EVOO was 456.89 ± 56.74 and 338.19 ± 42.96 mg·kg−1, respectively,
being 26% higher in EVOO produced by the organic system (Figure 1).
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Table 1. Phenolic compound contents (mg·kg−1) of conventional and organic EVOO made from
Hojiblanca olives. * p-values of U Mann–Whitney test.

Organic Conventional p *

Total Phenols 456.89 ± 56.74 338.19 ± 42.96 <0.001
Secoiridoids 420.72 ± 59.42 306.48 ± 48.09 <0.001
Oleuropein 0.82 ± 0.02 0.81 ± 0.02 0.2

Oleuropein derivatives
Oleuropein der I 22.77 ± 3.01 34.83 ± 4.44 <0.001
Oleuropein der II 3.21 ± 0.54 1.67 ± 0.25 <0.001
Oleuropein der III 3.63 ± 0.58 2.33 ± 0.33 <0.001

me-3,4-DHPEA-EA 1.46 ± 0.25 0.97 ± 0.07 <0.001
Hydroxy oleuropein aglycone I (HOA I) 1.44 ± 0.34 1.17 ± 0.18 0.007
Hydroxy oleuropein aglycone II (HOA II) 2.18 ± 0.77 1.67 ± 0.41 0.02

HDCM OA 9.13 ± 3.53 6.37 ± 1.94 0.01
3,4-DHPEA-EA I 7.18 ± 0.98 4.74 ± 0.42 <0.001
3,4-DHPEA-EA II 5.82 ± 0.94 3.02 ± 0.74 <0.001

Lactone 0.19 ± 0.04 0.33 ± 0.20 <0.001
Ligstroside derivatives

Ligstroside I 20.45 ± 2.77 12.32 ± 2.47 <0.001
Ligstroside II 41.61 ± 3.68 24.41 ± 4.02 <0.001
Ligstroside III 54.59 ± 10.63 34.75 ± 8.00 <0.001
Oleocanthal 186.72 ± 40.61 132.10 ± 37.02 <0.001
Elenolic acid 55.35 ± 8.10 40.37 ± 7.39 <0.001

Elenolic acid derivatives
Hydroxyelenolic acid 3.41 ± 1.42 3.19 ± 1.70 0.5

Flavones 28.21 ± 5.55 25.53 ± 5.85 0.09
Luteolin 22.69 ± 5.09 19.35 ± 5.38 0.03
Apigenin 5.51 ± 0.69 6.17 ± 0.78 0.008

Phenolic alcohols 7.11 ± 1.15 6.21 ± 1.37 0.07
Hydroxytyrosol 4.47 ± 1.10 3.65 ± 1.32 0.01

Dihydroxytyrosol 1.73 ± 0.09 1.78 ± 0.10 0.001
3,4-DHPEA-AC 0.91 ± 0.02 0.91 ± 0.03 0.51

Lignans 0.47 ± 0.06 0.79 ± 0.09 <0.001
Pinoresinol 0.47 ± 0.06 0.79 ± 0.09 <0.001

Phenolic acids 1.08 ± 0.26 2.05 ± 0.71 <0.001
Ferulic acid 0.05 ± 0.01 0.07 ± 0.01 0.003

p-coumaric acid 0.67 ± 0.15 1.04 ± 0.36 <0.001
Vanillic acid 0.35 ± 0.12 0.93 ± 0.37 <0.001
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2.2. Concentrations of Phenolic Groups and Selected Phenolic Compounds

The major phenolic compounds in EVOO were secoiridoids (SEC), whereas lignans, phenolic
acids and flavones were present in low concentrations. The SEC represented 91–92% of the phenolic
compounds, with higher levels in the organic than conventional EVOO (420.72 ± 59.42 and 306.48 ±
48.09 mg·kg−1, respectively). OLC was the predominant ligstroside derivative found in organic and
conventional EVOO samples (186.72 ± 40.61 and 132.10 ± 37.02 mg·kg−1, respectively), being 30%
higher in the former. Also, the elenolic acid concentration was positively affected by the organic system
(55.35 ± 8.10 mg·kg−1), being 27% lower in conventional EVOO (40.37 ± 7.39 mg·kg−1).

Luteolin was the predominant flavonoid in both organic and conventional EVOO (22.69 ± 5.09
and 19.35 ± 5.38 mg·kg−1, respectively) and the apigenin represented 20–24% of the total flavonoids
and its content was not affected by the agronomic conditions (6.17 ± 0.78 and 5.51 ± 0.69 mg·kg−1,
conventional and organic, respectively).

The concentration of the total phenolic alcohols was not affected by the organic or conventional
growing systems (7.11 ± 1.15 and 6.21 ± 1.37 mg·kg−1, respectively). However, the content of
hydroxytyrosol was higher under the organic than the conventional system (4.47 ± 1.10 and
3.65 ± 1.32 mg·kg−1, respectively).

The content of lignans and phenolic acids, which are important phenolic components of EVOO,
were higher under the conventional system (0.79 ± 0.09 and 2.05 ± 0.71 mg·kg−1, respectively). The only
lignan found was pinoresinol and the phenolic acids were p-coumaric, ferulic and vanillic acid
(1.04 ± 0.36, 0.07 ± 0.01, and 0.93 ± 0.37 mg·kg−1, respectively).

2.3. EVOO Phenolic Profile and Olive Fruit Ripening

The concentration of total SEC, phenolic acids, flavones and lignans in EVOO samples extracted
from olives of the Hojiblanca cultivar, grown in conventional and organic conditions and harvested
at different RI, are presented in Figure 1. To assess the effect of the RI of the olives on the content of
phenolic compounds in conventional and organic EVOO, regression models were fitted (Table 2).

Table 2. Linear regressions (polyphenol content vs. RI) by type of cultivation.

Organic Conventional

Coefficient p Coefficient p

Total phenols −27.4 0.004 −40.2 <0.001
Secoiridoids −31.2 0.001 −44.7 <0.001

Phenolic alcohols 0.05 0.81 −0.76 0.002
Phenolic acids 0.02 0.74 −0.29 0.04

Flavones 3.77 <0.001 4.23 <0.001
Lignans −0.02 0.01 0.003 0.9

The concentration of TP and SEC decreased during ripening in both conventional and organic
EVOO (Table 2). Conversely, an increase in the content of flavones was correlated with ripeness in
both organic and conventional EVOO (p < 0.001). The total phenolic acids and phenolic alcohols were
affected by the olive ripening stage only in the conventional system, showing lower levels with later
harvests. Lignans were not affected by the RI in any system.

2.4. Analysis of Oleocanthal by NMR

The qNMR showed that the level of OLC was higher (168.96 mg·kg−1) in the EVOO made from
organic vs. conventionally cultivated olives (118.21 mg·kg−1) (Table 3). Thus, the significant variation
in OLC concentrations among the samples of the Hojiblanca EVOO is in accordance with previous
studies recently reviewed [19] and the results of our OLC analysis by mass spectrometry (MS).
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Table 3. Concentration of oleocanthal (OLC) measured by qNMR in EVOOs of Hojiblanca variety.

Integration Concentration (mg·kg−1)

Conventional 0.477 118.21
Organic 0.684 168.96

As 1D 1H NMR typically provides an excellent linear response to component concentrations,
it was envisaged as a simple and reliable methodology to validate the UPLC-MS monitoring of OLC
levels. The aldehydic proton region of the target compound in the 1H NMR spectrum of EVOO
acetonitrile extracts, when recorded in CDCl3, presented a well-resolved set of peaks, making feasible
the integration of one of the aldehydic protons and its comparison with the peak of the internal
standard. OLC was quantified by integrating the singlet at 9.632 ppm (Figure 2).
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3. Discussion

3.1. Total Amount of Phenolic Compounds

Recent studies found a higher polyphenol content in organic EVOO [20] and a different acid
composition, as well as a higher degree of bitterness (cv. Leccino and Frantoio) and pungency (cv.
Frantoio) and less sweetness (cv. Frantoio) [21]. A similar enhancing effect of organic cultivation on TP
content was observed in EVOO extracted from olives of the Casaliva variety, both unripe (51% increase)
and ripe (40% increases), whereas in a multi-varietal organic EVOO this effect was only observed with
unripe olives [22]. However, in other studies, agronomic factors did not play a clear role in the TP
content of EVOO made from olives of different cultivars, which instead was mainly affected by the
year of the harvest [8], or water availability [23]. The type of farming (organic or conventional) only
becomes a major factor in the TP content of tomatoes [24], pepper [25] and fruits [26] when these are
grown under similar environmental conditions.

3.2. Concentrations of Phenolic Groups and Selected Phenolic Compounds

Organic agriculture is associated with a natural increase in the amount of defense substances, as the
plant is exposed to greater stress in the absence of synthetic pesticides. In addition, without synthetic
fertilizers there is less bioavailable nitrogen, with concomitant lower plant growth rates and an
enhanced production of secondary metabolites such as phenolic compounds [27,28].

Previous studies have established that SEC (oleuropein and oleuropein, ligstroside and elenolic acid
derivatives) are the most complex and abundant family of polyphenols in EVOO polar fractions [29–31]
and are the principal contributors to organoleptic traits [32]. SEC are synthesized through the
secologanin pathway, which does not depend on nitrogen or phosphorus, so their production is
not impeded with the low nitrogen and phosphorus availability of organic soil [33]. A recent study
demonstrated that the foliar fertilization with a biofertilizer rich in calcium increased oleuropein
aglycone and OLC levels in EVOO, which in contrast, decreased significantly with the use of a
biofertilizer rich in nitrogen, phosphorus and potassium [34]. Therefore, conventional practices could
explain the lower content of most of the SEC compounds (oleuropein derivatives and ligstrosides
derivatives) compared to organic practices. The ester breakdown of SEC leads to the formation of
elenolic acid and derivatives [35]. In our study, the elenolic acid concentration was in accordance
with previously reported results in different EVOO (16.8–58.6 mg·kg−1) [36,37]. Since the content of
SEC was higher in organic EVOO, it is also logical to have higher content of elenolic acid (Table 1),
because the more SEC, the more elenolic acid is released from SEC breakdown.

The main flavonoids present in EVOO are luteolin and apigenin [38,39] and a high luteolin
content is of great interest, as it has been associated with health-promoting and antioxidant properties
of foods [40,41]. The luteolin concentration reported here (Table 1) is higher than in other studies
(3.12 and 7.57 mg·kg−1) [36,42], including one in which EVOO was also extracted from Hojiblanca
olives (3.69–6.67 mg·kg−1) [43]. These differences among studies are not surprising, since it has been
shown that the concentration of luteolin depends considerably on the olive variety, geographical
area, season, environmental conditions and cultivation method [36,44]. In another study, the use of a
biofertilizer rich in nitrogen, phosphorus and potassium led to a significant increase in the apigenin
content of EVOO (1.66 ± 0.32 mg·kg−1), whereas luteolin levels increased when the biofertilizer was
supplemented with calcium (2.12 ± 0.39 mg·kg−1) [34].

In our work, the concentration of the total phenolic alcohols is similar to that of another
study comparing organic and conventional EVOO made from the same type of olives (8.33–11.0
and 10.5–16.3 mg·kg−1, respectively) [43]. Other authors reported a decrease in hydroxytyrosol
concentration in EVOO when olive trees were fertilized with nitrogen, phosphorus and potassium,
as occurred with SEC [34]. The phenolic alcohols are derived from the SEC, so their biosynthesis does
not depend on the nitrogen or the phosphorus [33].
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Both lignans and phenolic acids are synthesized through the phenylpropanoid pathway [45,46]
and depend on the shikimic pathway, in which nitrogen and phosphorus take part [47]. The greater
availability of nitrogen and phosphorus in conventional farming could thus explain the lower lignan
and phenolic acid concentration in the organic EVOO.

3.3. EVOO Phenolic Profile and Olive Fruit Ripening

During ripening, the chemical structure and concentrations of compounds in olives can be
modified by chemical reactions and the enzymatic activity of glycosidases, phenol oxidases and phenol
polymerases [48,49]. The amount of these enzymes depends on the cultivar and maturation stage [41].
Thus, the degree of olive fruit ripeness is a crucial parameter in EVOO quality [50]. Previous studies
have reported a reduction in TP, beginning at a maturation index of 2.5–3 [51], or a significant gradual
decrease from the first to the fifth harvest [23]. It has been suggested that the TP content depends more
on the olive cultivar than an early or late harvest [52].

The amount of SEC decreases significantly with ripeness, both in organic and conventional
systems, as reported in the literature [48,53,54]. The SEC concentration was found to decrease by
31% (92.1–63.0 mg·kg−1) between the first and last harvests (maturation index of 2.4–5.6), due to
oleuropein degradation during ripening [55]. Also, Gutierrez-Rosales et al. [56] showed that high
contents of oleuropein aglycone at the initial stage of ripening were caused by a high activity of
β-glucosidase. This indicates that oleuropein biosynthesis combines with enzymatic hydrolysis to
produce the aglycone form. Thus, when the olive is in a green stage, the level of β-glucosidase activity
increases proportionally with the amount of oleuropein and ligstroside, whereas in the black stage,
when the phenolic glycoside concentration is reduced, the glucosidase activity is low [49].

Reports in the literature on the influence of ripening on flavonoid content are contradictory.
The content of flavones (luteolin and apigenin) in olives was observed to increase up to a maturation
index close to 4, decreasing thereafter [38], whereas elsewhere this tendency was found at an index of
0.76–1.27 [54]. Furthermore, an increase in flavonoid concentration has been reported in EVOO made
from olives at an intermediate ripening stage [57,58]. In Hojiblanca EVOO, a higher content of luteolin
was obtained by harvesting medium-ripe olives (6.10 and 6.59 mg·kg−1, conventional and organic
EVOO, respectively), whereas an early harvest resulted in increased apigenin (3.32 and 3.65 mg·kg−1,
conventional and organic EVOO, respectively) [43]. The association of a higher concentration of luteolin
with an intermediate ripening stage could be because apigenin is the substrate for a hydroxylase
enzyme in the flavonoid pathway, giving rise to luteolin [53].

With respect to phenolic acids, our results are in agreement with those of Jimenez et al.,
who reported that p-coumaric and ferulic acid contents were higher in EVOO extracted from olives
at an early RI, decreasing progressively thereafter, and that the concentration of vanillic acid was
apparently not affected by the ripening process [59]. Another study found an increase in phenolic acids
in EVOO extracted from more mature olives, which may be due to the activity of hydrolytic enzymes
on the complex phenols [53].

3.4. Analysis of Oleocanthal by NMR

The various extraction procedures and analytical methods developed for the quantification of
EVOO phenolic compounds have generated ambiguous results that are difficult to compare. The most
commonly used methods are liquid chromatography (LC), followed by UV-Vis or detection by
MS [60,61]. However, OLC can react with different solvents and consequently both liquid–liquid
extraction and chromatographic analysis may interfere with its determination by LC-MS, leading in
some cases to broader or multiple peaks in MS detection. [62]. A promising new method has been
published recently by Sánchez de Medina et al. [63], but further studies are needed to assess its
accuracy and reliability. For this reason, the chromatographic results obtained with this method were
validated by acetonitrile extraction from random samples of EVOO and directly measured OLC levels
by qNMR, as described by Karkoula et al. [64]. The interest of qNMR is due to the repeatability and
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reproducibility of measurements, as well as its rapidity compared to more classical methods, and its
reliability [65]. Other advantages include simple sample preparation, low sample consumption and
non-destructive measurement.

This validation study was performed by NMR using CDCl3 as the solvent, avoiding both the
undesired interactions of other solvents like methanol or water with the target compound, and the
overlap of the aldehydic proton peaks. We chose 4-hydroxybenzaldehyde as the internal standard due
to its price, stability, and solubility in our deuterated solvent, and the simplicity of the resulting 1H
NMR spectrum. Moreover, the aldehydic proton peaks of this compound and OLC do not overlap.

4. Material and Methods

4.1. Chemicals

OLC was purchased from PhytoLab GmbH (Vestenbergsgreuth, Germany); oleuropein, lutein,
m-coumaric acid, pinoresinol, lariciresinol, isolariciresinol, secoisolariciresinol and taxifolin were
obtained from Sigma-Aldrich (Madrid, Spain). p-Coumaric acid, vanillic acid, ferulic acid and
apigenin were obtained from Fluka (Buchs, Switzerland), hydroxytyrosol from Extrasynthese (Genay,
France), and verbascoside from HWI ANALYTIK GmbH (Rülzheim, Germany). Hexane, methanol,
acetonitrile, and chloroform-d were purchased from Sigma-Aldrich and cyclohexane from Carlo Erba
(Madrid, Spain).

4.2. Olive Fruit Samples

Olive fruits were collected from olive trees of the Hojiblanca cultivar, which were cultivated using
organic and conventional agricultural practices without irrigation. The orchard was located on the
experimental farm of the Agricultural Research Training Centre in Cabra in the province of Cordoba,
at an altitude of approximately 547 m. The soil pH was 8 and its composition was limestone and sand.
The climate was continental Mediterranean, with hot summers and cold winters, and the average
temperature between October of 2017 and January of 2018 was 12.7 ◦C, with an average relative
humidity of 64.4%. Ten trees were selected per cultivation system. The olives were harvested on 4
different days with 2 weeks of difference between every picking.

The RI of each harvest was determined according to the methodology proposed by Uceda and
Frías [66], which is based on the color of the skin and the pulp. 100 olives were randomly selected and
the following formula was applied: RI = (A × 0 + B × 1 + C × 2 + D × 3 + E × 4 + F × 5 + G × 6 + H
× 7) /100. Where A, B, C, D, E, F, G, H are the number of olives with the 8 different ripening stages.
Those are: stage 0: intense green skin; stage 1: yellowish green skin; stage 2: green skin with red spots,
in less than half of the fruit; stage 3: reddish or purple skin in more than half of the fruit; stage 4: black
skin and white pulp; stage 5: black skin and pulp purple; stage 6: black skin and more than half of
the pulp purple; stage 7: black skin and totally purple pulp. The fruit RI in organic and conventional
system was 1 to 3.945 and 1.06 to 3.68., respectively.

4.3. Oil Samples

Three representative olive samples, each weighing a minimum of one kilogram, were processed
and the corresponding EVOOs were obtained using an Abencor milling system (Abengoa S.A., Seville,
Spain). This system reproduced the industrial process on a laboratory scale. The apparatus consisted
of three elements: a hammer mill, a thermobeater and a pulp centrifuge. The olive fruits (6 kg) were
milled using a stainless-steel hammer mill equipped with a 5-mm sieve that was operated at 3000 rpm.
The resulting olive paste was immediately kneaded in a mixer at 50 rpm for 30 min at 30 ◦C, with hot
water added at 20 min. Centrifugation of the kneaded olive paste was performed in a basket centrifuge
at 3500 rpm for 1 min. After centrifugation, the oil was decanted and stored in amber glass bottles at
4 ◦C in darkness and without headspace until analysis.
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4.4. Polyphenol Analysis by Liquid Chromatography

The liquid–liquid extraction of phenolic compounds was performed with the method proposed
by Capriotti et al. [67]. 1 g of EVOO was dissolved in hexane (oil/hexane 1:1, w/v) in a 10 mL centrifuge
tube and shaken for 30 s. The polyphenols were extracted with 2 mL of MeOH and stirred for 30 s;
the emulsion was then centrifuged at 3000 rpm and 4 ◦C for 3 min. The supernatant (methanolic
extract) was subjected to a second cleaning with hexane, and the hexane extract was subjected to a
second extraction of polyphenols with MeOH. All extracts were shaken for 30 s and centrifuged at
3000 rpm and 4 ◦C for 3 min. The methanolic extracts were recovered and cleaned up by dispersing
50 mg of C18. The samples were evaporated and reconstituted with 800 µL of MeOH:H2O (80:20 v/v),
filtered with (Polytetrafluoroethylene) PTFE syringe filters (0.2 µm), transferred to an amber glass vial
and stored at −80 ◦C until analysis. The internal standard was added to the EVOO to obtain a final
concentration of 5 ppm after the reconstitution. The experiment was done in triplicate.

The identification and quantification of phenolic compounds was performed using an AcquityTM

UPLC (Waters; Milford, MA, EUA) coupled to an API 3000 triple-quadruple mass spectrometer (PE
Sciex) with a turbo ion spray source. Separation of compounds was achieved using an Acquity UPLC®

BEH C18 Column (2.1 × 50 mm, i.d., 1.7 µm particle size) and Acquity UPLC® BEH C18 Pre-Column
(2.1 × 5 mm, i.d., 1.7 µm particle size) (Waters Corporation®, Ireland) (See supporting information).
The mobile phases were H2O with 0.2% acetic acid (A) and ACN (B). An increasing linear gradient (v/v)
of B was used (t (min), %B), as follows: (0, 5); (2.5, 5); (12.5, 40); (12.6, 100); (13.5, 100); (13.6,5); (15,5),
at a constant flow rate of 0.4 mL/min. The injection volume was 10 µL and the column temperature
40 ◦C.

The quantification of OLC was performed using a methodology proposed by Sánchez de Medina
et al. with some modifications. Separation was achieved using an Acquity UPLC® BEH C18 Column
(2.1 × 50 mm, i.d., 1.7 µm particle size) and Acquity UPLC® BEH C18 Pre-Column (2.1 × 5 mm, i.d.,
1.7 µm particle size) (Waters Corporation®, Ireland). The mobile phases were MeOH (A) and H2O (B),
both with 0.1% of formic acid. An increasing linear gradient (v/v) of B was used (t (min), %B), as follows:
(0, 100); (2, 100); (4.75, 46.4); (4.9, 0); (5.9, 0); (6.100); (6.5, 100), at a constant flow rate of 0.6 mL·min−1.
The injection volume was 5 µL and the column temperature 50 ◦C. The MS potentials were optimized
for the compound (Supporting Table S2). Method suitability was evaluated by submitting random
samples to a comparative NMR study.

Ionization was achieved using an electrospray interface operating in the negative mode [M–H] and
all the compounds were monitored in the multiple monitoring mode (MRM) with the following settings:
capillary voltage, −3500 V; nebuliser gas (N2), 10 (arbitrary units); curtain gas (N2), 12 (arbitrary units);
and drying gas (N2) heated to 450 ◦C. The declustering potential, focusing potential, collision energy
and entrance potential were optimized to detect phenolic compounds with the highest signals, following
the method described by Suárez et al. [39]. The system was controlled by Analyst version 1.4.2 software
supplied by Applied Biosystems.

The calibration curves were prepared in refined oil and were linear over the concentration ranges
0–20 mg·mL−1 using oleuropein, hydroxytyrosol, p-coumaric acid, m-coumaric acid, vanillic acid,
ferulic acid, apigenin, luteolin, pinoresinol, lariciresinol, isolariciresinol, secoisolariciresinol,
verbascoside and OLC.

4.5. Analysis of Oleocanthal by NMR

The OLC extraction and sample preparation for NMR analysis were carried out using the
methodology proposed by Karkoula et al. [30]. Olive oil (8.0 g) was mixed with cyclohexane (32 mL) and
ACN (40 mL). The mixture was homogenized using a vortex mixer for 30 s and centrifuged at 4000 rpm
for 5 min. The ACN phase (40 mL) was collected, mixed with 1.6 mL of 4-hydroxybenzaldehyde
solution (0.5 mg·mL−1) in ACN, and evaporated under reduced pressure using a rotary evaporator
(Buchi, Model R-200 with dry ice and acetone cold-trap condenser, Switzerland).
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The residue of the above procedure was dissolved in CDCl3 (750 µL), and an accurately measured
volume of the solution (550 µL) was transferred to a 5 mm NMR tube. 1H NMR spectra were recorded
at 400 MHz using an NMR spectrometer (Varian VNMRS 400 MHz). Typically, 128 scans were collected
into 32K data points over a spectral width of 16 ppm (6410 Hz), with a relaxation delay of 1 s and an
acquisition time of 2.5 s. The spectra were phase corrected and integrated automatically using MNova.
Accurate integration was performed manually for the peaks of interest.

4.6. Statistical Analysis

Significant differences between organic and conventional samples were assessed by the
Mann–Whitney test (Table 1). The relationship between categorical exposure variables (organic
vs conventional cultivation) and concentration of polyphenols was assessed by Generalized Linear
Models adjusting for RI (Table 2). Regression models were also fitted to assess associations between
polyphenol concentration as a dependent variable and RI as an independent variable. Statistical
analyses were conducted using STATA software (version 14.0; StataCorp, College Station, TX, USA).
p values < 0.05 were considered statistically significant.

5. Conclusions

The TP in EVOO made from Hojiblanca olives were analyzed, comparing organic and conventional
growing systems under the same environmental conditions, and levels were significantly higher in
organic samples (p < 0.05). The concentration of SEC, which are synthesized through the secologanin
pathway without the need for nitrogen or phosphorus, was higher in oils from olives cultivated under
organic conditions. These included oleocanthal, which was satisfactorily analyzed by LC-MS/MS,
as demonstrated by results obtained by qNMR.

In contrast, the concentrations of lignans and phenolic acids were higher under the conventional
system, as their synthesis is through the phenylpropanoid pathway via shikimic acid, which requires
nitrogen and phosphorus. In the case of phenolic alcohols and flavones, there were no significant
differences associated with the cultivation method.

When the effect of the ripening stage of the olive fruit was assessed, both the TP and SEC
concentrations were found to decrease with maturation in both production systems, whereas the
flavone content increased. Olive maturation was also associated with a decline in certain compounds:
lignans in organic EVOO and phenolic acids and phenolic alcohols in conventional samples.

It should be emphasized that long-term experiments are required to eliminate the effect of
seasonality. There is also a need for more randomized, controlled dietary intervention trials to
corroborate the potentially greater beneficial effects of organic food on human health compared to
those produced conventionally. However, organic food may be recommended, not only for its health
benefits, but also because its production has less of an environmental impact.

Supplementary Materials: The following are available online, Table S1: GLM model adjusted for ripeness
(conventional vs. organic); Table S2: Multiple reaction Monitoring conditions for the polyphenols.

Author Contributions: Methodology, A.L.-Y., J.L.-C., P.Q.-R.; formal analysis A.L.-Y., J.L.-C., A.O.-C. and A.T.-R.;
investigation, A.L.-Y., J.L.-C., M.P. and A.V.-Q.; writing—original draft preparation, A.L.-Y., J.L.-C., M.P., A.T.-R.
and A.V.-Q.; writing—review and editing, A.L.-Y., J.L.-C., M.P., A.T.-R. and A.V.-Q.; visualization, M.P. and A.V.-Q.;
supervision, M.P. and A.V.-Q.

Funding: This research received no external funding.

Acknowledgments: A.L.-Y. thanks the National Council for Science and Technology (CONACYT) of Mexico for
the doctoral scholarship. J.L.-C. thanks the Ministry of Science Innovation and Universities for the FPI contract.
P.Q.-R. is grateful for the Sara Borrell postdoctoral program from the Instituto de Salud Carlos III (ISCIII). A.T.-R.
thanks the Ministry of Science Innovation and Universities for the Juan de la Cierva-formación contract A.V.-Q.
thanks the Ministry of Science Innovation and Universities for the Ramon y Cajal contract. The authors wish to
thank the CCiT-UB for the mass spectrometry equipment.

Conflicts of Interest: The authors declare no conflict of interest.



Molecules 2019, 24, 1986 11 of 14

References

1. Servili, M.; Sordini, B.; Esposto, S.; Urbani, S.; Veneziani, G.; Di Maio, I.; Selvaggini, R.; Taticchi, A. Biological
Activities of Phenolic Compounds of Extra Virgin Olive Oil. Antioxidants 2013, 3, 1–23. [CrossRef]

2. Servili, M.; Esposto, S.; Fabiani, R.; Urbani, S.; Taticchi, A.; Mariucci, F.; Selvaggini, R.; Montedoro, G.F.
Phenolic compounds in olive oil: Antioxidant, health and organoleptic activities according to their chemical
structure. Inflammopharmacology 2009, 17, 76–84. [CrossRef] [PubMed]

3. Koseoglu, O.; Unal, M.K. The effect of phenolic compounds on the quality and stability of virgin olive oil.
In Proceedings of the VI International Symposium on Olive Growing, Evora, Portugal, 9–13 September 2008;
Volume 791, pp. 655–663.

4. Di Giovacchino, L.; Costantini, N.; Serraiocco, A.; Surricchio, G.; Basti, C. Natural antioxidants and volatile
compounds of virgin olive oils obtained by two or three-phases centrifugal decanters. Eur. J. Lipid Sci.
Technol. 2001, 103, 279–285. [CrossRef]

5. El Riachy, M.; Priego-Capote, F.; León, L.; Rallo, L.; Luque de Castro, M.D. Hydrophilic antioxidants of virgin
olive oil. Part 2: Biosynthesis and biotransformation of phenolic compounds in virgin olive oil as affected by
agronomic and processing factors. Eur. J. Lipid Sci. Technol. 2011, 113, 692–707. [CrossRef]

6. Clodoveo, M.L. Malaxation: Influence on virgin olive oil quality. Past, present and future—An overview.
Trends Food Sci. Technol. 2012, 25, 13–23. [CrossRef]

7. Lozano-Sánchez, J.; Cerretani, L.; Bendini, A.; Gallina-Toschi, T.; Segura-Carretero, A.; Fernández-Gutiérrez, A.
New filtration systems for extra-virgin olive oil: Effect on antioxidant compounds, oxidative stability, and
physicochemical and sensory properties. J. Agric. Food Chem. 2012, 60, 3754–3762. [CrossRef]

8. Ninfali, P.; Bacchiocca, M.; Biagiotti, E.; Esposto, S.; Servili, M.; Rosati, A.; Montedoro, G. A 3-year study on
quality, nutritional and organoleptic evaluation of organic and conventional extra-virgin olive oils. JAOCS J.
Am. Oil Chem. Soc. 2008, 85, 151–158. [CrossRef]

9. Vallverdú-Queralt, A.; Lamuela-Raventós, R.M. Foodomics: A new tool to differentiate between organic and
conventional foods. Electrophoresis 2016, 37, 1784–1794. [CrossRef] [PubMed]

10. Hurtado-Barroso, S.; Tresserra-Rimbau, A.; Vallverdú-Queralt, A.; Lamuela-Raventós, R.M. Organic food
and impact on human health. Int. J. PharmTech Res. 2016, 9, 316–324. [CrossRef]

11. González, N.; Marquès, M.; Nadal, M.; Domingo, J.L. Occurrence of environmental pollutants in foodstu ff s:
A review of organic vs. conventional food. Food Chem. Toxicol. 2019, 125, 370–375. [CrossRef] [PubMed]

12. Williams, C.M. Nutritional quality of organic food: Shades of grey or shades of green? Proc. Nutr. Soc. 2008,
61, 19–24. [CrossRef]

13. Worthington, V. Effect of Agricultural Methods on Nutritional Quality: A Comparison of Organic with
Conventional Crops. Altern. Ther. Health Med. 1998, 4, 58–69.

14. Häkkinen, S.H.; Törrönen, A.R. Content of flavonols and selected phenolic acids in strawberries and
Vaccinium species: Influence of cultivar, cultivation site and technique. Food Res. Int. 2000, 33, 517–524.
[CrossRef]

15. Romero-Pérez, A.I.; Lamuela-Raventós, R.M.; Andrés-Lacueva, C.; De La Carmen Torre-Boronat, M. Method
for the quantitative extraction of resveratrol and piceid isomers in grape berry skins. Effect of powdery
mildew on the stilbene content. J. Agric. Food Chem. 2001, 49, 210–215. [CrossRef]

16. Vallverdú-Queralt, A.; Medina-Remón, A.; Casals-Ribes, I.; Amat, M.; Lamuela-Raventós, R.M. A
metabolomic approach differentiates between conventional and organic ketchups. J. Agric. Food Chem. 2011,
59, 11703–11710. [CrossRef]

17. Martí, R.; Leiva-Brondo, M.; Lahoz, I.; Campillo, C.; Cebolla-Cornejo, J.; Roselló, S. Polyphenol and
L-ascorbic acid content in tomato as influenced by high lycopene genotypes and organic farming at different
environments. Food Chem. 2018, 239, 148–156. [CrossRef]

18. Cuevas, F.J.; Pradas, I.; Ruiz-Moreno, M.J.; Arroyo, F.T.; Perez-Romero, L.F.; Montenegro, J.C.;
Moreno-Rojas, J.M. Effect of organic and conventional management on bio-functional quality of thirteen
plum cultivars (Prunus salicina Lindl.). PLoS ONE 2015, 10, e0136596. [CrossRef]

19. Cicerale, S.; Lucas, L.J.; Keast, R.S.J. Antimicrobial, antioxidant and anti-inflammatory phenolic activities in
extra virgin olive oil. Curr. Opin. Biotechnol. 2012, 23, 129–135. [CrossRef]

http://dx.doi.org/10.3390/antiox3010001
http://dx.doi.org/10.1007/s10787-008-8014-y
http://www.ncbi.nlm.nih.gov/pubmed/19234678
http://dx.doi.org/10.1002/1438-9312(200105)103:5&lt;279::AID-EJLT279&gt;3.0.CO;2-I
http://dx.doi.org/10.1002/ejlt.201100096
http://dx.doi.org/10.1016/j.tifs.2011.11.004
http://dx.doi.org/10.1021/jf205353b
http://dx.doi.org/10.1007/s11746-007-1171-0
http://dx.doi.org/10.1002/elps.201500348
http://www.ncbi.nlm.nih.gov/pubmed/26553784
http://dx.doi.org/10.1080/10408398.2017.1394815
http://dx.doi.org/10.1016/j.fct.2019.01.021
http://www.ncbi.nlm.nih.gov/pubmed/30682385
http://dx.doi.org/10.1079/PNS2001126
http://dx.doi.org/10.1016/S0963-9969(00)00086-7
http://dx.doi.org/10.1021/jf000745o
http://dx.doi.org/10.1021/jf202822s
http://dx.doi.org/10.1016/j.foodchem.2017.06.102
http://dx.doi.org/10.1371/journal.pone.0136596
http://dx.doi.org/10.1016/j.copbio.2011.09.006


Molecules 2019, 24, 1986 12 of 14

20. Barbieri, S.; Bendini, A.; Valli, E.; Gallina Toschi, T. Do consumers recognize the positive sensorial attributes
of extra virgin olive oils related with their composition? A case study on conventional and organic products.
J. Food Compos. Anal. 2015, 44, 186–195. [CrossRef]

21. Rosati, A.; Cafiero, C.; Paoletti, A.; Alfei, B.; Caporali, S.; Casciani, L.; Valentini, M. Effect of agronomical
practices on carpology, fruit and oil composition, and oil sensory properties, in olive (Olea europaea L.).
Food Chem. 2014, 159, 236–243. [CrossRef]

22. Trombetta, D.; Smeriglio, A.; Marcoccia, D.; Giofrè, S.; Toscano, G.; Mazzotti, F.; Giovanazzi, A.; Lorenzetti, S.
Analytical evaluation and antioxidant properties of some secondary metabolites in northern Italian mono-and
multi-varietal extra virgin olive oils (EVOOs) from early and late harvested olives. Int. J. Mol. Sci. 2017,
18, 797. [CrossRef]

23. Alowaiesh, B.; Singh, Z.; Fang, Z.; Kailis, S.G. Harvest time impacts the fatty acid compositions, phenolic
compounds and sensory attributes of Frantoio and Manzanilla olive oil. Sci. Hortic. (Amsterdam) 2018, 234,
74–80. [CrossRef]

24. Vallverdú-Queralt, A.; Medina-Remón, A.; Casals-Ribes, I.; Lamuela-Raventos, R.M. Is there any difference
between the phenolic content of organic and conventional tomato juices? Food Chem. 2012, 130, 222–227.
[CrossRef]

25. Hallmann, E.; Rembial kowska, E. Characterisation of antioxidant compounds in sweet bell pepper (Capsicum
annuum L.) under organic and conventional growing systems. J. Sci. Food Agric. 2012, 92, 2409–2415.
[CrossRef]

26. Mditshwa, A.; Magwaza, L.S.; Tesfay, S.Z.; Mbili, N. Postharvest quality and composition of organically and
conventionally produced fruits: A review. Sci. Hortic. (Amsterdam) 2017, 216, 148–159. [CrossRef]

27. Assumpção, C.F.; Nunes, I.L.; Mendonça, T.A.; Bortolin, R.C.; Jablonski, A.; Flôres, S.H.; De Oliveira Rios, A.
Bioactive Compounds and Stability of Organic and Conventional Vitis labrusca Grape Seed Oils. JAOCS J.
Am. Oil Chem. Soc. 2016, 93, 115–124. [CrossRef]

28. Hunter, D.; Foster, M.; Mcarthur, J.O.; Ojha, R.; Petocz, P.; Samman, S. Evaluation of the micronutrient
composition of plant foods produced by organic and conventional agricultural methods. Crit. Rev. Food Sci.
Nutr. 2011, 51, 571–582. [CrossRef]

29. Miho, H.; Díez, C.M.; Mena-Bravo, A.; Sánchez de Medina, V.; Moral, J.; Melliou, E.; Magiatis, P.; Rallo, L.;
Barranco, D.; Priego-Capote, F. Cultivar influence on variability in olive oil phenolic profiles determined
through an extensive germplasm survey. Food Chem. 2018, 266, 192–199. [CrossRef]

30. Karkoula, E.; Skantzari, A.; Melliou, E.; Magiatis, P. Quantitative measurement of major secoiridoid
derivatives in olive oil using qNMR. Proof of the artificial formation of aldehydic oleuropein and ligstroside
aglycon isomers. J. Agric. Food Chem. 2014, 62, 600–607. [CrossRef]

31. García-Rodríguez, R.; Belaj, A.; Romero-Segura, C.; Sanz, C.; Pérez, A.G. Exploration of genetic resources to
improve the functional quality of virgin olive oil. J. Funct. Foods 2017, 38, 1–8. [CrossRef]

32. Campestre, C.; Angelini, G.; Gasbarri, C.; Angerosa, F. The compounds responsible for the sensory profile in
monovarietal virgin olive oils. Molecules 2017, 22, 1833. [CrossRef] [PubMed]

33. Jensen, S.R.; Franzyk, H.; Wallander, E. Chemotaxonomy of the oleaceae: Iridoids as taxonomic markers.
Phytochemistry 2002, 60, 213–231. [CrossRef]

34. Dabbaghi, O.; Tekaya, M.; Flamini, G.; Zouari, I.; El-Gharbi, S.; M’barki, N.; Laabidi, F.; Cheheb, H.; Attia, F.;
Aïachi Mezghani, M.; et al. Modification of Phenolic Compounds and Volatile Profiles of Chemlali Variety
Olive Oil in Response to Foliar Biofertilization. J. Am. Oil Chem. Soc. 2019, 96, 585–593. [CrossRef]

35. Figueiredo-González, M.; Reboredo-Rodríguez, P.; González-Barreiro, C.; Carrasco-Pancorbo, A.;
Cancho-Grande, B.; Simal-Gándara, J. The involvement of phenolic-rich extracts from Galician autochthonous
extra-virgin olive oils against the α-glucosidase and α-amylase inhibition. Food Res. Int. 2019, 116, 447–454.
[CrossRef] [PubMed]

36. Kelebek, H.; Kesen, S.; Selli, S. Comparative study of bioactive constituents in Turkish olive oils by
LC-ESI/MS/MS. Int. J. Food Prop. 2015, 18, 2231–2245. [CrossRef]

37. Arslan, D.; Karabekir, Y.; Schreiner, M. Variations of phenolic compounds, fatty acids and some qualitative
characteristics of Sariulak olive oil as induced by growing area. Food Res. Int. 2013, 54, 1897–1906. [CrossRef]

38. de Torres, A.; Espínola, F.; Moya, M.; Alcalá, S.; Vidal, A.M.; Castro, E. Assessment of phenolic compounds in
virgin olive oil by response surface methodology with particular focus on flavonoids and lignans. LWT Food
Sci. Technol. 2018, 90, 22–30. [CrossRef]

http://dx.doi.org/10.1016/j.jfca.2015.09.001
http://dx.doi.org/10.1016/j.foodchem.2014.03.014
http://dx.doi.org/10.3390/ijms18040797
http://dx.doi.org/10.1016/j.scienta.2018.02.017
http://dx.doi.org/10.1016/j.foodchem.2011.07.017
http://dx.doi.org/10.1002/jsfa.5624
http://dx.doi.org/10.1016/j.scienta.2016.12.033
http://dx.doi.org/10.1007/s11746-015-2742-0
http://dx.doi.org/10.1080/10408391003721701
http://dx.doi.org/10.1016/j.foodchem.2018.06.002
http://dx.doi.org/10.1021/jf404421p
http://dx.doi.org/10.1016/j.jff.2017.08.043
http://dx.doi.org/10.3390/molecules22111833
http://www.ncbi.nlm.nih.gov/pubmed/29077048
http://dx.doi.org/10.1016/S0031-9422(02)00102-4
http://dx.doi.org/10.1002/aocs.12201
http://dx.doi.org/10.1016/j.foodres.2018.08.060
http://www.ncbi.nlm.nih.gov/pubmed/30716967
http://dx.doi.org/10.1080/10942912.2014.968788
http://dx.doi.org/10.1016/j.foodres.2013.06.016
http://dx.doi.org/10.1016/j.lwt.2017.12.003


Molecules 2019, 24, 1986 13 of 14

39. Suárez, M.; Macià, A.; Romero, M.P.; Motilva, M.J. Improved liquid chromatography tandem mass
spectrometry method for the determination of phenolic compounds in virgin olive oil. J. Chromatogr. A 2008,
1214, 90–99. [CrossRef] [PubMed]

40. Murkovic, M.; Lechner, S.; Pietzka, A.; Bratacos, M.; Katzogiannos, E. Analysis of minor components in olive
oil. J. Biochem. Biophys. Methods 2004, 61, 155–160. [CrossRef]

41. Ye, J.H.; Wijesundera, C.; Shi, M. Effects of Agronomic and Oil Processing Conditions on Natural Antioxidative
Phenolics in Olive (Oleaeuropaea L.). Austin J. Nutr. Food Sci. 2014, 2, 1050.

42. Collado-González, J.; Grosso, C.; Valentão, P.; Andrade, P.B.; Ferreres, F.; Durand, T.; Guy, A.; Galano, J.M.;
Torrecillas, A.; Gil-Izquierdo, Á. Inhibition of α-glucosidase and α-amylase by Spanish extra virgin olive oils:
The involvement of bioactive compounds other than oleuropein and hydroxytyrosol. Food Chem. 2017, 235,
298–307. [CrossRef]

43. Jimenez, B.; Sánchez-Ortiz, A.; Lorenzo, M.L.; Rivas, A. Effect of organic cultivation of Picual and Hojiblanca
olive varieties on the quality of virgin olive oil at four ripening stages. Eur. J. Lipid Sci. Technol. 2014, 116,
1634–1646. [CrossRef]

44. Kalogiouri, N.P.; Aalizadeh, R.; Thomaidis, N.S. Investigating the organic and conventional production type
of olive oil with target and suspect screening by LC-QTOF-MS, a novel semi-quantification method using
chemical similarity and advanced chemometrics. Anal. Bioanal. Chem. 2017, 409, 5413–5426. [CrossRef]

45. Dean, J.F.D.; LaFayette, P.R.; Rugh, C.; Tristram, A.H.; Hoopes, J.T.; Eriksson, K.-E.L.; Merkle, S.A. Laccases
Associated with Lignifying Vascular Tissues. In ACS Symposium Series; American Chemical Society:
Washington, DC, USA, 2009; Volume 78, pp. 96–108. ISBN 9780841235663.

46. Ali Ghasemzadeh Flavonoids and phenolic acids: Role and biochemical activity in plants and human. J. Med.
Plants Res. 2011, 5, 6697–6703. [CrossRef]

47. Fraser, C.M.; Chapple, C. The Phenylpropanoid Pathway in Arabidopsis. Am. Soc. Plant Biol. 2011, 9, e0152.
[CrossRef]

48. Ben Brahim, S.; Kelebek, H.; Ammar, S.; Abichou, M.; Bouaziz, M. LC–MS phenolic profiling combined with
multivariate analysis as an approach for the characterization of extra virgin olive oils of four rare Tunisian
cultivars during ripening. Food Chem. 2017, 229, 9–19. [CrossRef] [PubMed]

49. Clodoveo, M.L.; Hbaieb, R.H.; Kotti, F.; Mugnozza, G.S.; Gargouri, M. Mechanical strategies to increase
nutritional and sensory quality of virgin olive oil by modulating the endogenous enzyme activities. Compr. Rev.
Food Sci. Food Saf. 2014, 13, 135–154. [CrossRef]

50. Amanpour, A.; Kelebek, H.; Selli, S. Characterization of aroma, aroma-active compounds and fatty acids
profiles of cv. Nizip Yaglik oils as affected by three maturity periods of olives. J. Sci. Food Agric. 2019, 99,
726–740. [CrossRef] [PubMed]

51. Peres, F.; Martins, L.L.; Ferreira-Dias, S. Influence of enzymes and technology on virgin olive oil composition.
Crit. Rev. Food Sci. Nutr. 2017, 57, 3104–3126. [CrossRef]
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