Anti-Hyperglycemic and Anticholinergic Effects of Natural Antioxidant Contents in Edible Flowers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Determination of Polyphenolic Compounds, Including Polymeric Procyanidins
2.3. Determination of Carotenoids and Chlorophylls by UPLC Method
2.4. Determination of Triterpenoids by UPLC Method
2.5. Determination of Anti-Hyperglycemic and Anticholinergic Activities
2.6. Statistical Analysis
3. Results and Discussion
3.1. Content of Polyphenolic Compounds in Selected Edible Flowers
3.2. Quantification of Isoprenoids in Selected Edible Flowers
3.3. Anti-Hyperglycemic and Anti-Aging Properties of Edible Flowers
3.4. Principal Component Analysis (PCA)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- He, J.; Yin, T.; Chen, Y.; Cai, L.; Tai, Z.; Li, Z.; Liu, C.; Wang, Y.; Ding, Z. Phenolic compounds and antioxidant activities of edible flowers of Pyrus pashia. J. Funct. Foods 2015, 17, 371–379. [Google Scholar] [CrossRef]
- Oueslati, S.; Ksouri, R.; Falleh, H.; Pichette, A.; Abdelly, C.; Legault, J. Phenolic content, antioxidant, anti-inflammatory and anticancer activities of the edible halophyte Suaeda fruticosa Forssk. Food Chem. 2012, 132, 943–947. [Google Scholar] [CrossRef]
- Pires, T.C.S.P.; Dias, M.I.; Barros, L.; Ferreira, I.C.F.R. Nutritional and chemical characterization of edible petals and corresponding infusions: Valorization as new food ingredients. Food Chem. 2017, 220, 337–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pires, T.C.; Dias, M.I.; Barros, L.; Calhelha, R.C.; Alves, M.J.; Oliveira, M.B.; Santos-Buelga, C.; Ferreira, I.C. Edible flowers as sources of phenolic compounds with bioactive potential. Food Res. Int. 2018, 105, 580–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, L.; Casal, S.; Pereira, J.A.; Saraiva, J.A.; Ramalhosa, E. Edibles flowers: A review of the nutritional, antioxidant, antimicrobial properties and effects on human health. J. Food Compos. Anal. 2017, 60, 38–50. [Google Scholar] [CrossRef]
- Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure–activity relationships. J. Nutr. Biochem. 2002, 13, 572–584. [Google Scholar] [CrossRef]
- Kaya, Y.; Çebi, A.; Söylemez, N.; Demir, H.; Alp, H.H.; Bakan, E. Correlations between oxidative DNA damage, oxidative stress and coenzyme Q10 in patients with coronary artery disease. Int. J. Med. Sci. 2012, 9, 621–626. [Google Scholar] [CrossRef]
- Mokrani, A.; Krisa, S.; Cluzet, S.; Da Costa, G.; Temsamani, H.; Renouf, E.; Mérillon, J.M.; Madani, K.; Mesnil, M.; Monvoisin, A.; et al. Phenolic contents and bioactive potential of peach fruit extracts. Food Chem. 2016, 202, 212–220. [Google Scholar] [CrossRef]
- Morris, M.C.; Evans, D.A.; Bienias, J.L.; Tangney, C.C.; Bennett, D.A.; Aggarwal, N.; Wilson, R.S.; Scherr, P.A. Dietary intake of antioxidant nutrients and the risk of incydent Alzheimer disease in a biracial community study. JAMA 2002, 287, 3230–3237. [Google Scholar] [CrossRef]
- Santos-Buelga, C.; Scalbert, A. Proanthocyanidins and tannin like compoundsnature, occurrence, dietary intake and effects on nutrition and health. J. Sci. Food Agric. 2000, 80, 1094–1117. [Google Scholar] [CrossRef]
- Tadera, K.; Minami, Y.; Takamatsu, K.; Matsuoka, T. Inhibition of alpha-glucosidase and alpha-amylase by flavonoids. J. Nutr. Sci. Vitaminol. 2006, 52, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Cooper, D.A. Carotenoids in health and disease: Recent scientific evaluations, research recommendations and the consumer. J. Nutr. 2004, 134, 221S–224S. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.K.; Nile, S.H.; Park, S.W. Carotenoids from fruits and vegetables: Chemistry, analysis, occurrence, bioavailability and biological activities. Food Res. Int. 2015, 76, 735–750. [Google Scholar] [CrossRef] [PubMed]
- Ferruzzi, M.G.; Blakeslee, J. Digestion, absorption, and cancer preventative activity of dietary chlorophyll derivatives. Nutr. Res. 2007, 27, 1–12. [Google Scholar] [CrossRef]
- Scarmo, S.; Cartmel, B.; Lin, H.; Leffell, D.J.; Welch, E.; Bhosale, P.; Bernstein, P.S.; Mayne, S.T. Significant correlations of dermal total carotenoids and dermal lycopene with their respective plasma levels in healthy adults. Arch. Biochem. Biophys. 2010, 504, 34–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, C.Y.F.; Yuan, H.Q.; He, M.L.; Zhang, J.Y. Carotenoids and prostate cancer risk. Mini-Rev. Med. Chem. 2008, 8, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, M.E.; Maria, A.O.; Saad, J.R. Diuretic activity of Fabiana patagonica in rats. Phytother. Res. 2002, 16, 71–73. [Google Scholar] [CrossRef]
- Marquina, S.; Maldonado, N.; Garduño-Ramírez, M.L.; Aranda, E.; Villarreal, M.L.; Navarro, V.; Bye, R.; Delgado, G.; Alvarez, L. Bioactive oleanolic acid saponins and other constituents from the roots of Viguiera decurrens. Phytochemistry 2001, 56, 93–97. [Google Scholar] [CrossRef]
- Miguel, M.; Barros, L.; Pereira, C.; Calhelha, R.C.; Garcia, P.A.; Castro, M.Á.; Santos-Buelga, C.; Ferreira, I.C. Chemical characterization and bioactive properties of two aromatic plants: Calendula officinalis L. (flowers) and Mentha cervina L. (leaves). Food Funct. 2016, 7, 2223–2232. [Google Scholar] [CrossRef]
- Wojdyło, A.; Nowicka, P.; Bąbelewski, P. Phenolic and carotenoid profile of new goji cultivars and their anti-hyperglycemic, anti-aging and antioxidant properties. J. Funct. Food 2018, 48, 632–642. [Google Scholar] [CrossRef]
- Kennedy, J.A.; Jones, G.P. Analysis of proanthocyanidin cleavage products following acid-catalysis in the presence of excess phloroglucinol. J. Agric. Food Chem. 2001, 49, 1740–1746. [Google Scholar] [CrossRef] [PubMed]
- Kolniak-Ostek, J. Content of bioactive compounds and antioxidant capacity in skin tissues of pear. J. Funct. Food 2016, 23, 40–51. [Google Scholar] [CrossRef]
- Nowicka, P.; Wojdyło, A.; Samoticha, J. Evaluation of phytochemicals, antioxidant capacity, and antidiabetic activity of novel smoothies from selected Prunus fruits. J. Funct. Foods 2016, 25, 397–407. [Google Scholar] [CrossRef]
- Jin, H.; Nguyen, T.; Go, M.L. Acetylcholinesterase and butyrylcholinesterase inhibitory properties of functionalized tetrahydroacridines and related analogs. Med. Chem. 2014, 4, 688–696. [Google Scholar] [CrossRef]
- Zeng, Y.; Deng, M.; Lv, Z.; Peng, Y. Evaluation of antioxidant activities of extracts from 19 Chinese edible flowers. Springerplus 2014, 3, 315. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.O.; Lee, C.Y. Comprehensive study on vitamin C equivalent antioxidant capacity (VCEAC) of various polyphenolics in scavenging a free radical and its structural relationship. Crit. Rev. Food Sci. Nutr. 2004, 44, 253–273. [Google Scholar] [CrossRef] [PubMed]
- Li, A.N.; Li, S.; Li, H.B.; Xu, D.P.; Xu, X.R.; Chen, F. Total phenolic contents and antioxidant capacities of 51 edible and wild flowers. J. Funct. Foods 2014, 6, 319–330. [Google Scholar] [CrossRef]
- Garzón, G.A.; Manns, D.C.; Riedl, K.; Schwartz, S.J. Padilla-Zakour Identification of phenolic compounds in petals of Nasturtium Flowers (Tropaelum majus) by high-performance liquid chromatography coupled to mass spectrometry and determination of oxygen radical absorbance capacity (ORAC). J. Agric. Food Chem. 2015, 63, 1803–1811. [Google Scholar] [CrossRef]
- González-Barrio, R.; Periago, M.J.; Luna-Recio, C.; Javier, G.A.F.; Navarro-González, I. Chemical composition of the edible flowers, pansy (Viola wittrockiana) and snapdragon (Antirrhinum majus) as new sources of bioactive compounds. Food Chem. 2018, 252, 373–380. [Google Scholar] [CrossRef]
- Wojdyło, A.; Oszmiański, J.; Czemerys, R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 2007, 105, 940–949. [Google Scholar] [CrossRef]
- Akihisa, T.; Franzblau, S.G.; Ukiya, M.; Okuda, H.; Zhang, F.; Yasukawa, K.; Suzuki, T.; Kimura, Y. Antitubercular activity of triterpenoids from Asteraceae flowers. Biol. Pharm. Bull. 2005, 28, 158–160. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, S.; Maoka, T.; Sumitomo, K.; Ohmiya, A. Analysis of Carotenoid Composition in Petals of Calendula (Calendula officinalis L.). Biosci. Biotechnol. Biochem. 2005, 69, 2122–2128. [Google Scholar] [CrossRef] [PubMed]
- Vanegas-Espinoza, P.E.; Ramos-Viveros, V.; Jiménez-Aparicio, A.R.; López-Villegas, O.; Heredia-Mira, F.J.; Meléndez-Martínez, A.J.; Quintero-Gutiérrez, A.G.; Paredes-López, O.; Del Villar-Martínez, A.A. Plastid analysis of pigmented undifferentiated cells of marigold Tagetes erecta L. by transmission electron microscopy. In Vitro Cell Dev. Plant 2011, 47, 596–603. [Google Scholar] [CrossRef]
- Matějková, J.; Petříková, K. Variation in content of carotenoids and Vitamin C in carrots. Not. Sci. Biol. 2010, 2, 88–91. [Google Scholar] [CrossRef]
- Nowicka, P.; Wojdyło, A.; Laskowski, P. Inhibitory potential against digestive enzymes linked to obesity and type 2 diabetes and content of bioactive compounds in 20 cultivars of the peach fruit grown in Poland. Plant Food Hum. Nutr. 2018, 73, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Hornero-Méndez, D.; Mínguez-Mosquera, M.I. Chlorophyll disappearance and chlorophyllase activity during ripening of Capsicum annuum L. fruits. J. Sci. Food Agric. 2002, 82, 1564–1570. [Google Scholar] [CrossRef]
- Materová, Z.; Sobotka, R.; Zdvihalová, B.; Oravec, M.; Nezval, J.; Karlický, V.; Vrábl, D.; Štroch, M.; Špunda, V. Monochromatic green light induces an aberrant accumulation of geranylgeranyled chlorophylls in plants. Plant Physiol. Biochem. 2017, 116, 48–56. [Google Scholar] [CrossRef]
- Rajic, A.; Akihisa, T.; Ukiya, M.; Yasukawa, K.; Sandeman, R.M.; Chandler, D.S.; Polya, G.M. Inhibition of trypsin and chymotrypsin by anti-inflammatory triterpenoids from Compositae flowers. Planta Med. 2001, 67, 599–604. [Google Scholar] [CrossRef]
- Hamburger, M.; Adler, S.; Baumann, D.; Forg, A.; Weinreich, B. Preparative purification of the major anti-inflammatory triterpenoid esters from Marigold (Calendula officinalis). Fitoterapia 2003, 74, 328–338. [Google Scholar] [CrossRef]
- Podsędek, A.; Majewska, I.; Redzynia, M.; Sosnowska, D.; Koziołkiewicz, M. In vitro inhibitory effect on digestive enzymes and antioxidant potential of commonly consumed fruits. J. Agric. Food Chem. 2014, 62, 4610–4617. [Google Scholar] [CrossRef]
- Boath, S.A.; Stewart, D.; McDougall, J.G. Berry components inhibit α-glucosidase in vitro: Synergies between acarbose and polyphenols from black currant and rowanberry. Food Chem. 2012, 135, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Devalaraja, S.; Jain, S.; Yadav, H. Exotic fruits as therapeutic complements for diabetes, obesity and metabolic syndrome. Food Res. Int. 2011, 44, 1856–1865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ercetin, T.; Senol, F.S.; Orhan, I.E.; Toker, G. Comparative assessment of antioxidant and cholinesterase inhibitory properties of the marigold extracts from Calendula arvensis L. and Calendula officinalis L. Ind. Crop Prod. 2012, 36, 203–208. [Google Scholar] [CrossRef]
- Vladimir-Knežević, S.; Blažeković, B.; Kindl, M.; Vladić, J.; Lower-Nedza, A.; Brantner, A. Acetylcholinesterase inhibitory, antioxidant and phytochemical properties of selected medicinal plants of the Lamiaceae family. Molecules 2012, 19, 767–782. [Google Scholar] [CrossRef] [PubMed]
Kind of Edible Flowers Scientific Name (Common Name) | Family | Anthocyanins | Phenolic Acids | Flavonols | Flavan-3-ols (Monomers & Dimers) | Polymeric Procyanidins | Total Polyphenols |
---|---|---|---|---|---|---|---|
Elderberry (Sambucus nigra L.) | Adoxaceae | nd | 78.00 ± 3.12 e | 43.37 ± 0.05 h | 188.04 ± 3.49 l | 63.05 ± 1.55 h | 372.47 ± 8.21 k |
Arnica (Arnica L.) | Asteraceae | nd | 214.86 ± 7.73 c | 65.29 ± 3.14 f | 1397.16 ± 31.07 b | 22.35 ± 0.35 i | 1699.65 ± 42.29 e |
Chamomile (Matricaria L.) | Asteraceae | nd | 189.82 ± 10.68 c | 112.69 ± 9.17 d | 405.50 ± 16.69 h | 21.16 ± 2.33 i | 729.17 ± 38.87 j |
Cornflower (Centaurea cyanus L.) | Asteraceae | 1.68 ǂ ± 0.00 e | 47.85 ± 1.06 f | 22.03 ± 0.32 i | 131.56 ± 3.09 m | 81.16 ± 3.88 g | 284.27 ± 8.35 l |
Daisy (Bellis perennis L.) | Asteraceae | nd | 350.40 ± 9.47 a | 74.81 ± 3.50 e | 773.66 ± 5.85 e | 200.32 ± 8.45 f | 1399.19 ± 27.27 f |
Marigold (Calendula officinalis L.) | Asteraceae | nd | 14.90 ± 0.32 h | 336.66 ± 14.33 b | 1794.54 ± 15.05 a | nd | 2146.10 ± 29.70 d |
Acacia (Acacia Mill.) | Fabaceae | nd | 35.12 ± 2.04 g | 330.18 ± 17.49 b | 427.97 ± 5.11 h | 446.91 ± 34.00 e | 1240.19 ± 58.64 g |
Kidney vetch (Anthyllis vulneraria L.) | Fabaceae | nd | 1.47 ± 0.02 k | 51.87 ± 3.00 g | 202.21 ± 5.55 k | 2690.15 ± 15.77 c | 2945.70 ± 24.34 c |
Lavender (Lavandula L.) | Lamiaceae | 8.37 ± 0.19 d | 201.11 ± 8.29 c | 18.68 ± 1.08 i | 989.37 ± 11.54 c | nd | 1217.53 ± 21.10 g |
White dead-nettle (Lamium album L.) | Lamiaceae | 247.56 ± 5.13 b | 151.54 ± 5.55 d | 47.20 ± 1.60 g | 542.59 ± 14.67 g | nd | 988.88 ± 26.95 h |
Black hollyhock (Malvae arboreae L.) | Malvaceae | 286.14 ± 7.02 a | 45.91 ± 2.06 f | 131.78 ± 16.66 d | 544.40 ± 6.04 g | nd | 1008.23 ± 31.78 h |
Linden blossom (Tilia cordata Mill.) | Malvaceae | nd | 3.66 ± 0.08 j | 10.76 ± 0.48 j | 275.83 ± 1.01 j | 4211.73 ± 81.88 b | 4501.98 ± 83.45 b |
Mallow (Malva L.) | Malvaceae | 13.38 ± 0.21 c | 161.53 ± 8.60 d | 72.00 ± 2.44 e | 654.73 ± 12.00 f | nd | 901.65 ± 23.25 i |
Primrose (Primula L.) | Primulaceae | nd | 9.00 ± 0.06 i | 849.96 ± 12.06 a | 927.16 ± 18.21 d | 2537.69 ± 78.19 d | 4323.80 ± 108.52 b |
Hawthorn (Crataegus L.) | Rosaceae | nd | 245.53 ± 11.94 b | 193.71 ± 6.05 c | 1384.45 ± 20.11 b | 5284.04 ± 62.01 a | 7107.73 ± 100.11 a |
Mullein (Verbascum L.) | Scrophulariaceae | 0.74 ± 0.03 f | 31.71 ± 2.40 g | 20.16 ± 2.96 i | 293.14 ± 4.93 i | nd | 355.76 ± 10.32 k |
Kind of Edible Flowers | Carotenoids | Chlorophylls | Triterpenoids |
---|---|---|---|
Elderberry | 33.33 ǂ ± 2.11 m | 2.14 ± 0.15 i | 0.03 ± 0.00 i |
Arnica | 558.51 ± 8.04 b | 38.42 ± 1.94 b | 0.56 ± 0.03 b |
Chamomile | 51.49 ± 1.00 j | 7.25 ± 0.15 g | 0.05 ± 0.01 h |
Cornflower | 30.00 ± 1.00 m | nd | 0.03 ± 0.01 i |
Daisy | 174.22 ± 1.69 f | 14.21 ± 0.06 e | 0.17 ± 0.02 e |
Marigold | 721.49 ± 9.05 a | nd | 0.72 ± 0.00 a |
Acacia | 31.33 ± 0.94 m | 5.48 ± 0.01 h | 0.03 ± 0.01 i |
Kidney vetch | 74.43 ± 8.36 i | 9.23 ± 0.01 f | 0.07 ± 0.00 g |
Lavender | 380.61 ± 5.33 d | 59.45 ± 0.96 a | 0.38 ± 0.02 d |
White dead-nettle | 48.15 ± 0.03 k | nd | 0.05 ± 0.01 h |
Black hollyhock | 40.29 ± 1.27 l | nd | 0.04 ± 0.01 hi |
Linden blossom | 130.70 ± 2.11 g | 19.70 ± 0.06 d | 0.13 ± 0.01 f |
Mallow | 203.91 ± 2.55 e | 28.84 ± 0.02 c | 0.20 ± 0.02 e |
Primrose | 34.10 ± 2.03 m | nd | 0.03 ± 0.00 i |
Hawthorn | 472.60 ± 9.65 c | 17.07 ± 2.83 d | 0.47 ± 0.02 c |
Mullein | 115.27 ± 3.21 h | nd | 0.12 ± 0.00 f |
Kind of Edible Flowers | Enzyme Inhibition IC50 (mg of Dried Flowers) | |||
---|---|---|---|---|
Anti-Hyperglycemic Activities | Anti-Aging Activities | |||
α-amylase | α-glucosidase | AChE | BuChE | |
Elderberry | 7.17 ± 0.08 d | >100.00 g | 86.36 ± 1.05 g | 246.53 ± 4.07 i |
Arnica | 4.06 ǂ ± 0.04 b | 13.99 ± 0.11 b | 47.31 ± 0.55 d | 122.02 ± 1.55 e |
Chamomile | 6.37 ± 0.26 c | 54.23 ± 0.72 e | 40.52 ± 0.98 c | 96.14 ± 2.11 d |
Cornflower | 8.77 ± 0.31 g | >100.00 g | 31.64 ± 0.07 a | 51.81 ± 0.05 a |
Daisy | 8.48 ± 0.07 f | 49.62 ± 0.01 d | 107.79 ± 2.88 j | 136.33 ± 2.02 f |
Marigold | 8.96 ± 0.09 g | >100 g | 92.28 ± 1.15 h | 135.39 ± 0.57 f |
Acacia | 8.89 ± 0.21 g | 45.46 ± 0.05 c | 270.60 ± 4.33 | 332.05 ± 7.18 j |
Kidney vetch | 3.50 ± 0.09 a | >100.00 g | 33.73 ± 1.01 b | 82.93 ± 1.11 c |
Lavender | 8.71 ± 0.19 g | >100.00 g | 97.96 ± 1.69 i | 70.69 ± 0.95 b |
White dead-nettle | 8.21 ± 0.26 f | >100.00 g | 75.11 ± 0.95 f | 257.10 ± 4.14 i |
Black hollyhock | 7.15 ± 0.09 d | >100.00 g | 71.59 ± 1.22 e | 198.21 ± 3.61 h |
Linden blossom | 8.24 ± 0.14 f | 10.79 ± 0.38 a | 73.76 ± 2.08 e | 199.91 ± 5.09 h |
Mallow | 7.57 ± 0.09 e | 76.75 ± 0.82 f | 191.63 ± 2.17 k | 379.31 ± 8.55 k |
Primrose | 11.69 ± 0.11 i | 10.18 ± 0.23 a | 86.84 ± 1.11 g | 94.20 ± 1.11 d |
Hawthorn | 10.71 ± 0.11 h | 10.72 ± 0.43 a | 69.59 ± 1.12 e | 132.70 ± 2.12 f |
Mullein | 8.99 ± 0.21 g | 76.57 ± 1.12 f | 102.90 ± 3.76 i | 169.08 ± 4.12 g |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowicka, P.; Wojdyło, A. Anti-Hyperglycemic and Anticholinergic Effects of Natural Antioxidant Contents in Edible Flowers. Antioxidants 2019, 8, 308. https://doi.org/10.3390/antiox8080308
Nowicka P, Wojdyło A. Anti-Hyperglycemic and Anticholinergic Effects of Natural Antioxidant Contents in Edible Flowers. Antioxidants. 2019; 8(8):308. https://doi.org/10.3390/antiox8080308
Chicago/Turabian StyleNowicka, Paulina, and Aneta Wojdyło. 2019. "Anti-Hyperglycemic and Anticholinergic Effects of Natural Antioxidant Contents in Edible Flowers" Antioxidants 8, no. 8: 308. https://doi.org/10.3390/antiox8080308
APA StyleNowicka, P., & Wojdyło, A. (2019). Anti-Hyperglycemic and Anticholinergic Effects of Natural Antioxidant Contents in Edible Flowers. Antioxidants, 8(8), 308. https://doi.org/10.3390/antiox8080308