In Vitro and In Vivo Antioxidant Properties of Taraxacum officinale in Nω-Nitro-l-Arginine Methyl Ester (L-NAME)-Induced Hypertensive Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Plant Material
2.2. Plant Collection and Extraction of T. officinale
2.3. Experimental Animals
Induction of HTN in Rats
- Group I—Control normotensive group (0.9% NaCl).
- Group II—Control hypertensive group (L-NAME (40 mg/kg) 0.9% NaCl)
- Group II—TOL-treated group (500 mg/kg), and
- Group III—TOR-treated group (500 mg/kg).
2.4. Acute Toxicity Study
2.5. In Vitro Antioxidant Activity of TOL and TOR
2.5.1. Determination of Total Polyphenolic Content (TPC)
2.5.2. Determination of Total Flavonoid Content of T. officinale
2.5.3. Free Radical Scavenging Activity of T. officinale
2.5.4. ABTS++ Radical Scavenging Assay
2.5.5. Determination of Total Antioxidant Capacity (FRAP) of TOL and TOR
2.6. In Vivo Antioxidant Activity of TOL and TOR
2.6.1. Tissue Organ Harvesting and Homogenization
2.6.2. Determination of Total Antioxidant Capacity (FRAP) in Tissue Homogenate
2.6.3. Lipid Peroxidation Assay in Tissue Homogenate
2.7. Statistical Analysis
3. Results
3.1. In Vitro Antioxidant Studies
3.2. Acute Toxicity Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Iyer, A.; Fenning, A.; Lim, J.; Le, G.T.; Reid, R.C.; Halili, M.A.; Fairlie, D.P.; Brown, L. Antifibrotic activity of an inhibitor of histone deacetylases in DOCA-salt hypertensive rats: Research paper. Br. J. Pharmacol. 2010, 159, 1408–1417. [Google Scholar] [CrossRef] [PubMed]
- Dinh, Q.N.; Drummond, G.R.; Sobey, C.G.; Chrissobolis, S. Roles of inflammation, oxidative stress, and vascular dysfunction in hypertension. Biomed. Res. Int. 2014, 2014, 406960. [Google Scholar] [CrossRef] [PubMed]
- Nyadjeu, P.; Nguelefack-mbuyo, E.P.; Atsamo, A.D.; Nguelefack, T.B.; Dongmo, A.B.; Kamanyi, A. Acute and Chronic Antihypertensive Effects of Cinnamomum Zeylanicum Stem Bark Methanol Extract in L-NAME-Induced Hypertensive Rats. BMC Complem. Altern. M 2013, 13, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Pakdeechote, P.; Kukongviriyapan, U.; Berkban, W.; Prachaney, P. Mentha Cordifolia Extract Inhibits the Development of Hypertension in L-NAME-Induced Hypertensive Rats. J. Med. Plants Res. 2011, 5, 1175–1183. [Google Scholar]
- El-nezhawy, A.O.H.; Maghrabi, I.A.; Mohamed, K.M.; Omar, H.A. Cymbopogon proximus extract decreases L-NAME-induced hypertension in rats. Int. J. Pharm. Sci. Rev. Res. 2014, 27, 66–69. [Google Scholar]
- Ishiguro, K.; Sasamura, H.; Sakamaki, Y.; Itoh, H.; Saruta, T. Developmental activity of the renin-angiotensin system during the critical period modulates later L-NAME–induced hypertension and renal injury. Hypertens. Res. 2007, 30, 63. [Google Scholar] [CrossRef]
- Griendling, K.K.; Minieri, C.A.; Ollerenshaw, J.D.; Alexander, R.W. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ. Res. 1994, 74, 141–1148. [Google Scholar] [CrossRef]
- Nguyen Dinh Cat, A.; Montezano, A.C.; Burger, D.; Touyz, R.M. Angiotensin II, NADPH oxidase, and redox signaling in the vasculature. Antioxid. Redox Signal. 2013, 19, 1110–1120. [Google Scholar] [CrossRef]
- Tabassum, N.; Ahmad, F. Role of natural herbs in the treatment of hypertension. Pharmacogn. Rev. 2011, 5, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Lawal, I.O.; Uzokwe, N.E.; Ladipo, D.O.; Asinwa, I.O.; Igboanugo, A.B.I. Ethnophytotherapeutic information for the treatment of high blood pressure among the people of Ilugun, Ilugun area of Ogun state, South-west Nigeria. Afr. J. Pharm. Pharmacol. 2009, 3, 222–226. [Google Scholar]
- World Health Organization. A Global Brief on Hypertension: World Health Day; WHO: Geneva, Switzerland, 2013. [Google Scholar]
- Schütz, K.; Carle, R.; Schieber, A. Taraxacum-A review on its phytochemical and pharmacological profile. J. Ethnopharmacol. 2006, 107, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Vlkova, E.; Trojanova, I.; Rada, V.; Kokos, L. The bifidogenic effect of Taraxacum officinale root. Fitoterapia 2004, 75, 760–763. [Google Scholar]
- Seo, S.W.; Koo, H.N.; An, H.J.; Kwon, K.B.; Lim, B.C.; Seo, E.A.; Ryu, D.G.; Moon, G.; Kim, H.Y.; Kim, H.M.; et al. Taraxacum officinale protects against cholecystokinin-induced acute pancreatitis in rats. World J. Gastroenterol. 2005, 11, 597–599. [Google Scholar] [CrossRef] [PubMed]
- Jeon, H.; Kang, H.; Jung, H.; Kang, Y.; Lim, C.; Kim, Y.; Park, E. Anti-inflammatory activity of Taraxacum officinale. J. Ethnopharmacol. 2008, 115, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Domitro Jakovac, H.; Domitrovi, R.; Eljko Romic Arko Tadi, C. Antifibrotic activity of Taraxacum officinale root in carbon tetrachloride-induced liver damage in mice. J. Ethnopharmacol. 2010, 130, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Savithramma, N.; Rao, M. Screening of medicinal plants for secondary metabolites. Middle-East J. Sci. 2011, 8, 579–584. [Google Scholar]
- Schütz, K.; Kammerer, D.R.; Carle, R.; Schieber, A. Characterization of phenolic acids and flavonoids in dandelion (Taraxacum officinale WEB. ex WIGG.) root and herb by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2005, 19, 179–186. [Google Scholar] [CrossRef]
- Cortes, N.; Mora, C.; Munoz, K.; Diaz, J.; Serna, R.; Castro, D.; Osorio, E. Microscopical descriptions and chemical analysis by HTPLC of Taraxacum officinale in comparison to Hypochaeris radicata: A solution for mis-identification. Rev. Bras. Farmacogn. 2014, 24, 381–388. [Google Scholar] [CrossRef]
- Lorke, D. A new approach to practical acute toxicity testing. Arch. Toxicol. 1983, 54, 275–287. [Google Scholar] [CrossRef]
- Pontis, J.A.; Antonio, L.; Alves, M.; José, S.; Flach, A. Color phenolic and flavonoid content, and antioxidant activity of honey from Roraima Brazil. J. Food Sci. Technol. 2014, 34, 69–73. [Google Scholar] [CrossRef]
- Floegel, A.; Kim, D.O.; Chung, S.J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Boly, R.; Lamkami, K.; Lompo, M.; Dubois, J.; Guisson, P. DPPH free radical scavenging activity of two extracts from Agelanthus dodneifolius (Loranthaceae) leaves. IJTPR 2016, 8, 29–34. [Google Scholar]
- Arnao, M.B.; Acosta, M.; Cano, A. Antioxidant activity: An adaptataion for measurement by HPLC. In Encyclopedia of Chromatography; Marcel Deker Inc.: New York, NY, USA, 2002; pp. 1–6. [Google Scholar]
- Benzie, I.F.F.; Strain, J.J.; Pejin, B.; Bogdanovic-Pristov, J.; Schütz, K.; Carle, R.; Schieber, A. ABTS cation scavenging activity and total phenolic content of three moss species. Hem. Ind. 2012, 239, 70–76. [Google Scholar]
- Oliveira, J.S.; Silva, A.A.N.; Junior, V.A.S. Phytotherapy in reducing glycemic index and testicular oxidative stress resulting from induced diabetes: A review. Braz. J. Biol. 2017, 77, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Ifeanyi, O.E. A review on free radicals and antioxidants. Int. J. Curr. Res. Med. Sci. 2018, 4, 123–133. [Google Scholar]
- Maikai, V.A.; Maikai, B.V.; Kobo, P.I. Antimicrobial Properties of Stem Bark Extracts of Ximenia Americana. J. Agric. Sci. 2009, 1, 30–34. [Google Scholar]
- Yarnell, E.; Abascal, K. Dandelion (Taraxacum officinale and T mongolicum). IMCJ 2009, 8, 35–38. [Google Scholar]
- Konaté, K.; Yomalan, K.; Sytar, O.; Zerbo, P.; Brestic, M.; Patrick, V.D.; Gagniuc, P.; Barro, N. Free radicals scavenging capacity, antidiabetic and antihypertensive activities of flavonoid-rich fractions from leaves of trichilia emetica and opilia amentacea in an animal model of Type 2 diabetes mellitus. J. Evid. Based Complement. Altern. Med. Med 2014, 2014, 1–13. [Google Scholar] [CrossRef]
- Ahmed, S.M.U.; Luo, L.; Namani, A.; Wang, X.J.; Tang, X. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 585–597. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, W.; Feng, X.; Yang, F.; Qin, H.; Wu, S.; Hou, D.; Chen, J. Nrf2-ARE signalling acts a master pathway for the cellular antioxidant activity of fistin. Molecules 2019, 24, 708. [Google Scholar] [CrossRef]
- Konukoglu, D.; Serin, O.; Turhan, M.S. Plasma leptin and its relationship with lipid peroxidation and nitric oxide in obese female patients with or without hypertension. Arch. Med. Res. 2006, 37, 602–606. [Google Scholar] [CrossRef] [PubMed]
- Redón, J.; Oliva, M.R.; Tormos, C.; Giner, V.; Chaves, J.; Iradi, A.; Sáez, G.T. Antioxidant activities and oxidative stress by-products in human hypertension. Hypertension 2003, 41, 1096–1101. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, A.M.; Martins, C.C.; Fiorin, F.D.; Schmatz, R.; Abdalla, F.H.; Gutierres, J.; Zanini, D.; Fiorenza, A.M.; Stefanello, N.; Serres, J.D.; et al. Physical training prevents oxidative stress in L-NAME-induced hypertension rats. Cell. Biochem. Funct. 2013, 31, 136–151. [Google Scholar] [CrossRef] [PubMed]
- Sozer, V.; Uzun, H.; Gelisgen, R.; Kaya, M.; Kalayci, R.; Tabak, O.; Arican, N.; Konukoglu, D. The effects of atorvastatin on oxidative stress in L-NAME-treated rats. Scand. J. Clin. Lab. Inv. 2013, 73, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Baradaran, A.; Nasri, H.; Rafieian-Kopaei, M. Oxidative stress and hypertension: Possibility of hypertension therapy with antioxidants. J. Res. Med. Sci. 2014, 19, 358–367. [Google Scholar] [PubMed]
- Jamuna, S.; Paulsamy, S.; Karthika, K. Screening of in vitro antioxidant activity of methanolic leaf and root extracts of Hypochaeris radicata L. (Asteraceae). J. Pharm. Sci. 2012, 2, 149–154. [Google Scholar] [CrossRef]
- Baral, P.; Dubey, A.; Tewari, S.; Vasmatkar, P.; Verma, A.K. Total phenolic contents and antioxidant activity of leaf, bark, and root of Adina cordifolia Benth. & Hook. J. Pharm. Chem. Biol. Sci. 2016, 4, 394–401. [Google Scholar]
- Padmapriya, R.; Ashwini, S.; Raveendran, R. In vitro antioxidant and cytotoxic potential of different parts of Tephrosia purpurea. Res. Pharm. Sci. 2017, 12, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Tshabalala, T.; Ndhlala, A.R.; Abselgadir, H.A.; Van Staden, J. Potential substitution of the root with the leaf in the use of Moringa oleifera for antimicrobial, antidiabetic and antioxidant properties. S. Afr. J. Bot. 2019. [Google Scholar] [CrossRef]
- Bernatova, I. Endothelial Dysfunction in Experimental Models of Arterial Hypertension: Cause or Consequence? Biomed. Res. Int. 2014, 2014, 1–14. [Google Scholar] [CrossRef]
- Veerappan, R.; Senthilkumar, R. Chrysin enhances antioxidants and oxidative stress in L–NAME–Induced hypertensive rats. Int. J. Nutr. Pharmacol. 2015, 5, 20–27. [Google Scholar]
- Rodrigo, R.; González, J.; Paoletto, F. The role of oxidative stress in the pathophysiology of hypertension. Hypertens. Res. 2011, 34, 431–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montezano, A.C.; Touyz, R.M. Molecular mechanisms of hypertension-reactive oxygen species and antioxidants: A Basic science update for the clinician. Can. J. Cardiol. 2012, 28, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Vauzour, D.; Rodriguez-Mateos, A.; Corona, G.; Oruna-Concha, M.J.; Spencer, J.P.E. Polyphenols and Human Health: Prevention of Disease and Mechanisms of Action. Nutrients 2010, 2, 1106–1131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoclet, J.C.; Chataigneau, T.; Ndiaye, M.; Oak, M.H.; El Bedoui, J.; Chataigneau, M.; Schini-Kerth, V.B. Vascular protection by dietary polyphenols. Eur. J. Pharmacol. 2004, 500, 299–313. [Google Scholar] [CrossRef] [PubMed]
- Desch, S.; Schmidt, J.; Kobler, D.; Sonnabend, M.; Eitel, I.; Sareban, M.; Rahimi, K.; Schuler, G.; Thiele, H. Effect of cocoa products on blood pressure: Systematic Review and Meta-Analysis. Am. J. Hypertens 2010, 23, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Erlund, I.; Koli, R.; Alfthan, G.; Marniemi, J.; Puukka, P.; Mustonen, P.; Mattila, P.; Jula, A. Favorable effects of berry consumption on platelet function, blood pressure, and HDL cholesterol. Am. J. Clin. Nutr. 2008, 87, 323–331. [Google Scholar] [CrossRef] [Green Version]
Parameters | TOL | TOR | p-Value |
---|---|---|---|
ABTS (TEAC/mg extract) | 405 ± 0.1 | 171.5 ± 1.0 | p < 0.01 |
DPPH (EC50 expressed in mg/mL) | 0.4 | 1.3 | p < 0.01 |
TOTAL PHENOLICS (GAE/mg extract) | 4.4 ± 0.1 | 1.1 ± 0.01 | p < 0.01 |
TOTAL FLAVONOID (QE/mg extract) | 23.2 ± 0.1 | 0.02 ± 0.1 | p < 0.01 |
FRAP (AAE/mg extract) | 156.1 ± 5.3 | 40.4 ± 0.3 | p < 0.01 |
Total Phenolics vs FRAP correlation (R2) | 0.93 * | 0.38 | p < 0.05 |
Dose mg/kg | Death Patterns after 24 h |
---|---|
Phase 1 | |
10 | 0/3 |
100 | 0/3 |
1000 | 0/3 |
Phase 2 | |
1600 | 0/1 |
2900 | 0/1 |
5000 | 0/1 |
LD50 | ≥5000 mg/kg bw, p.o. |
Group/Organ | Heart | Liver | Kidney | Brain | ||||
---|---|---|---|---|---|---|---|---|
TAC (mg AAE/mL) | MDA (µM) | TAC (mg AAE/mL) | MDA (µM) | TAC (mg AAE/mL) | MDA (µM) | TAC (mg AAE/mL) | MDA (µM)) | |
Control Norm. | 84.9 ± 27.1 | 1.2 ± 0.1 | 80.1 ± 2.5 | 1.1 ± 0.1 | 77.7 ± 5.5 | 1.7 ± 0.1 | 31.1 ± 5.8 | 1.7 ± 0.1 |
Control HTN | 44.9 ± 0.1 | 3.2 ± 0.5 *** | 36.6 ± 24.1 | 3.1 ± 0.2 *** | 75.1 ± 8.8 | 3.1 ± 0.4 | 5.1 ± 1.8 *** | 2.6 ± 0.5 |
TOL | 59.3 ± 6.2 | 1.9 ± 0.1 # | 104.1 ± 20.9 | 3 ± 0.2 *** | 312.8 ± 38.1 ***### | 6.4 ± 0.8 ### | 15.7 ± 2.2 ***## | 3 ± 0.4 |
TOR | 43.8 ± 3.5 | 2.9 ± 0.3 ## | 186.8 ± 19.4 *## | 3 ± 0.2 *** | 333.3 ± 14.8 ***### | 4.4 ± 0.3 ** | 13.7 ± 1.4 ***# | 2.1 ± 0.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aremu, O.O.; Oyedeji, A.O.; Oyedeji, O.O.; Nkeh-Chungag, B.N.; Rusike, C.R.S. In Vitro and In Vivo Antioxidant Properties of Taraxacum officinale in Nω-Nitro-l-Arginine Methyl Ester (L-NAME)-Induced Hypertensive Rats. Antioxidants 2019, 8, 309. https://doi.org/10.3390/antiox8080309
Aremu OO, Oyedeji AO, Oyedeji OO, Nkeh-Chungag BN, Rusike CRS. In Vitro and In Vivo Antioxidant Properties of Taraxacum officinale in Nω-Nitro-l-Arginine Methyl Ester (L-NAME)-Induced Hypertensive Rats. Antioxidants. 2019; 8(8):309. https://doi.org/10.3390/antiox8080309
Chicago/Turabian StyleAremu, Olukayode O., Adebola O. Oyedeji, Opeoluwa O. Oyedeji, Benedicta N. Nkeh-Chungag, and Constance R. Sewani Rusike. 2019. "In Vitro and In Vivo Antioxidant Properties of Taraxacum officinale in Nω-Nitro-l-Arginine Methyl Ester (L-NAME)-Induced Hypertensive Rats" Antioxidants 8, no. 8: 309. https://doi.org/10.3390/antiox8080309
APA StyleAremu, O. O., Oyedeji, A. O., Oyedeji, O. O., Nkeh-Chungag, B. N., & Rusike, C. R. S. (2019). In Vitro and In Vivo Antioxidant Properties of Taraxacum officinale in Nω-Nitro-l-Arginine Methyl Ester (L-NAME)-Induced Hypertensive Rats. Antioxidants, 8(8), 309. https://doi.org/10.3390/antiox8080309