Spotlight on a New Heme Oxygenase Pathway: Testosterone-Induced Shifts in Cardiac Oxidant/Antioxidant Status
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Protocol
2.2. Measurement of Serum Testosterone, GOT, GPT, Cholesterol and Triglyceride Levels
2.3. Measurement of HO Activity
2.4. Measurement of Cardiac GSH + GSSG Content
2.5. Determination of Cardiac HO-1, TNF-Alpha and cGMP Concentrations
2.6. Measurement of MPO Activity
2.7. Protein Determination
2.8. Statistical Analysis
3. Results
3.1. Changes in Serum Testosterone
3.2. Measurement of Cardiac HO Activity and HO-1 Concentration
3.3. Determination of Cardiac GSH + GSSG Content
3.4. Evaluation of Cardiac cGMP Level
3.5. Cardiac MPO Activity
3.6. Cardiac TNF-α Concentration
3.7. Serum GOT, GPT, Cholesterol, and Triglyceride Concentrations
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Muraleedharan, V.; Jones, T.H. Testosterone and the metabolic syndrome. Ther. Adv. Endocrinol. Metab. 2010, 1, 207–223. [Google Scholar] [CrossRef] [PubMed]
- Herring, M.J.; Oskui, P.M.; Hale, S.L.; Kloner, R.A. Testosterone and the cardiovascular system: A comprehensive review of the basic science literature. J. Am. Heart Assoc. 2013, 2, e000271. [Google Scholar] [CrossRef] [PubMed]
- Lopes, R.A.; Neves, K.B.; Carneiro, F.S.; Tostes, R.C. Testosterone and vascular function in aging. Front Physiol 2012. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Vanhoutte, P.M.; Leung, S.W. Vascular nitric oxide: Beyond eNOS. J. Pharmacol. Sci. 2015, 129, 83–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chignalia, A.Z.; Schuldt, E.Z.; Camargo, L.L.; Montezano, A.C.; Callera, G.E.; Laurindo, F.R.; Lopes, L.R.; Avellar, M.C.; Carvalho, M.H.; Fortes, Z.B.; et al. Testosterone induces vascular smooth muscle cell migration by NADPH oxidase and c-Src-dependent pathways. Hypertension 2012, 59, 1263–1271. [Google Scholar] [CrossRef] [PubMed]
- Lopes, R.A.; Neves, K.B.; Pestana, C.R.; Queiroz, A.L.; Zanotto, C.Z.; Chignalia, A.Z.; Valim, Y.M.; Silveira, L.R.; Curti, C.; Tostes, R.C. Testosterone induces apoptosis in vascular smooth muscle cells via extrinsic apoptotic pathway with mitochondria-generated reactive oxygen species involvement. Am. J. Physiol. Circ. Physiol. 2014, 306, H1485–H1494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Wu, S.; Ruan, Y.; Hong, L.; Xing, X.; Lai, W. Testosterone suppresses oxidative stress via androgen receptor-independent pathway in murine cardiomyocytes. Mol. Med. Rep. 2011, 4, 1183–1188. [Google Scholar]
- Drummond, H.A.; Mitchell, Z.L.; Abraham, N.G.; Stec, D.E. Targeting Heme Oxygenase-1 in Cardiovascular and Kidney Disease. Antioxidants 2019, 8, 181. [Google Scholar] [CrossRef]
- Haines, D.D.; Lekli, I.; Teissier, P.; Bak, I.; Tosaki, A. Role of haeme oxygenase-1 in resolution of oxidative stress-related pathologies: Focus on cardiovascular, lung, neurological and kidney disorders. Acta Physiol (Oxf.) 2012, 204, 487–501. [Google Scholar] [CrossRef]
- Stocker, R.; Perrella, M.A. Heme oxygenase-1: A novel drug target for atherosclerotic diseases? Circulation 2006, 114, 2178–2189. [Google Scholar] [CrossRef]
- Sadowska-Krepa, E.; Klapcinska, B.; Jagsz, S.; Sobczak, A.; Chrapusta, S.J.; Chalimoniuk, M.; Grieb, P.; Poprzecki, S.; Langfort, J. High-dose testosterone propionate treatment reverses the effects of endurance training on myocardial antioxidant defenses in adolescent male rats. Cardiovasc Toxicol. 2011, 11, 118–127. [Google Scholar] [CrossRef]
- dos Santos, R.L.; da Silva, F.B.; Ribeiro, R.F.; Stefanon, I., Jr. Sex hormones in the cardiovascular system. Horm. Mol. Biol. Clin. Investig. 2014, 18, 89–103. [Google Scholar] [CrossRef]
- Posa, A.; Szabo, R.; Csonka, A.; Veszelka, M.; Berko, A.M.; Barath, Z.; Menesi, R.; Pavo, I.; Gyongyosi, M.; Laszlo, F.; et al. Endogenous Estrogen-Mediated Heme Oxygenase Regulation in Experimental Menopause. Oxid. Med. Cell. Longev. 2015, 2015, 429713. [Google Scholar] [CrossRef]
- Szabo, R.; Karacsonyi, Z.; Borzsei, D.; Juhasz, B.; Al-Awar, A.; Torok, S.; Berko, A.M.; Takacs, I.; Kupai, K.; Varga, C.; et al. Role of Exercise-Induced Cardiac Remodeling in Ovariectomized Female Rats. Oxid. Med. Cell. Longev. 2018, 2018, 6709742. [Google Scholar] [CrossRef] [PubMed]
- Goodale, T.; Sadhu, A.; Petak, S.; Robbins, R. Testosterone and the Heart. Methodist Debakey Cardiovasc. J. 2017, 13, 68–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darbandi, M.; Darbandi, S.; Agarwal, A.; Sengupta, P.; Durairajanayagam, D.; Henkel, R.; Sadeghi, M.R. Reactive oxygen species and male reproductive hormones. Reprod. Biol. Endocrinol. 2018, 16, 87. [Google Scholar] [CrossRef] [PubMed]
- Posa, A.; Kupai, K.; Menesi, R.; Szalai, Z.; Szabo, R.; Pinter, Z.; Palfi, G.; Gyongyosi, M.; Berko, A.; Pavo, I.; et al. Sexual dimorphism of cardiovascular ischemia susceptibility is mediated by heme oxygenase. Oxid. Med. Cell. Longev. 2013, 2013, 521563. [Google Scholar] [CrossRef]
- Barta, T.; Tosaki, A.; Haines, D.; Balla, G.; Lekli, I.; Tosaki, A. Endothelin-1-induced hypertrophic alterations and heme oxygenase-1 expression in cardiomyoblasts are counteracted by beta estradiol: In vitro and in vivo studies. Naunyn Schmiedebergs Arch Pharmacol. 2018, 391, 371–383. [Google Scholar] [CrossRef]
- Juhasz, B.; Varga, B.; Czompa, A.; Bak, I.; Lekli, I.; Gesztelyi, R.; Zsuga, J.; Kemeny-Beke, A.; Antal, M.; Szendrei, L.; et al. Postischemic cardiac recovery in heme oxygenase-1 transgenic ischemic/reperfused mouse myocardium. J. Cell. Mol. Med. 2011, 15, 1973–1982. [Google Scholar] [CrossRef]
- Juhasz, B.; Kertesz, A.; Balla, J.; Balla, G.; Szabo, Z.; Bombicz, M.; Priksz, D.; Gesztelyi, R.; Varga, B.; Haines, D.D.; et al. Cardioprotective effects of sour cherry seed extract (SCSE) on the hypercholesterolemic rabbit heart. Curr. Pharm. Des. 2013, 19, 6896–6905. [Google Scholar] [CrossRef]
- Demirbag, R.; Yilmaz, R.; Erel, O. The association of total antioxidant capacity with sex hormones. Scand. Cardiovasc. J. 2005, 39, 172–176. [Google Scholar] [CrossRef]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef]
- Posa, A.; Szabo, R.; Kupai, K.; Berko, A.M.; Veszelka, M.; Szucs, G.; Borzsei, D.; Gyongyosi, M.; Pavo, I.; Deim, Z.; et al. Cardioprotective Effect of Selective Estrogen Receptor Modulator Raloxifene Are Mediated by Heme Oxygenase in Estrogen-Deficient Rat. Oxid. Med. Cell. Longev. 2017, 2017, 2176749. [Google Scholar] [CrossRef]
- Klapcinska, B.; Jagsz, S.; Sadowska-Krepa, E.; Gorski, J.; Kempa, K.; Langfort, J. Effects of castration and testosterone replacement on the antioxidant defense system in rat left ventricle. J. Physiol. Sci. 2008, 58, 173–177. [Google Scholar] [CrossRef]
- Militaru, C.; Donoiu, I.; Dracea, O.; Ionescu, D.D. Serum testosterone and short-term mortality in men with acute myocardial infarction. Cardiol. J. 2010, 17, 249–253. [Google Scholar]
- Malkin, C.J.; Pugh, P.J.; Morris, P.D.; Asif, S.; Jones, T.H.; Channer, K.S. Low serum testosterone and increased mortality in men with coronary heart disease. Heart 2010, 96, 1821–1825. [Google Scholar] [CrossRef] [Green Version]
- Muraleedharan, V.; Marsh, H.; Kapoor, D.; Channer, K.S.; Jones, T.H. Testosterone deficiency is associated with increased risk of mortality and testosterone replacement improves survival in men with type 2 diabetes. Eur. J. Endocrinol. 2013, 169, 725–733. [Google Scholar] [CrossRef] [Green Version]
- Mancini, A.; Leone, E.; Festa, R.; Grande, G.; Silvestrini, A.; de Marinis, L.; Pontecorvi, A.; Maira, G.; Littarru, G.P.; Meucci, E. Effects of testosterone on antioxidant systems in male secondary hypogonadism. J. Androl. 2008, 29, 622–629. [Google Scholar] [CrossRef]
- Golia, E.; Limongelli, G.; Natale, F.; Fimiani, F.; Maddaloni, V.; Pariggiano, I.; Bianchi, R.; Crisci, M.; D’Acierno, L.; Giordano, R.; et al. Inflammation and cardiovascular disease: From pathogenesis to therapeutic target. Curr. Atheroscler. Rep. 2014, 16, 435. [Google Scholar] [CrossRef]
- Bianchi, V.E. The Anti-Inflammatory Effects of Testosterone. J. Endocr. Soc. 2019, 3, 91–107. [Google Scholar] [CrossRef]
- Haring, R.; Baumeister, S.E.; Volzke, H.; Dorr, M.; Kocher, T.; Nauck, M.; Wallaschofski, H. Prospective inverse associations of sex hormone concentrations in men with biomarkers of inflammation and oxidative stress. J. Androl. 2012, 33, 944–950. [Google Scholar] [CrossRef]
- Kapturczak, M.H.; Wasserfall, C.; Brusko, T.; Campbell-Thompson, M.; Ellis, T.M.; Atkinson, M.A.; Agarwal, A. Heme oxygenase-1 modulates early inflammatory responses: Evidence from the heme oxygenase-1-deficient mouse. Am. J. Pathol. 2004, 165, 1045–1053. [Google Scholar] [CrossRef]
- Lucas-Herald, A.K.; Alves-Lopes, R.; Montezano, A.C.; Ahmed, S.F.; Touyz, R.M. Genomic and non-genomic effects of androgens in the cardiovascular system: Clinical implications. Clin. Sci. 2017, 131, 1405–1418. [Google Scholar] [CrossRef]
- Cai, J.J.; Wen, J.; Jiang, W.H.; Lin, J.; Hong, Y.; Zhu, Y.S. Androgen actions on endothelium functions and cardiovascular diseases. J. Geriatr. Cardiol. 2016, 13, 183–196. [Google Scholar]
- Paine, A.; Eiz-Vesper, B.; Blasczyk, R.; Immenschuh, S. Signaling to heme oxygenase-1 and its anti-inflammatory therapeutic potential. Biochem. Pharmacol. 2010, 80, 1895–1903. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, N.O.; Maloney, E.; Pham, M.; Luttrell, I.; Wessells, H.; Tateya, S.; Daum, G.; Handa, P.; Schwartz, M.W.; Kim, F. Reduced NO-cGMP signaling contributes to vascular inflammation and insulin resistance induced by high-fat feeding. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 758–765. [Google Scholar] [CrossRef]
- Rouver, W.N.; Delgado, N.T.; Menezes, J.B.; Santos, R.L.; Moyses, M.R. Testosterone Replacement Therapy Prevents Alterations of Coronary Vascular Reactivity Caused by Hormone Deficiency Induced by Castration. PLoS ONE 2015, 10, e0137111. [Google Scholar] [CrossRef]
Parameters | Young | Aging | ||||||
---|---|---|---|---|---|---|---|---|
Fertile | CAS | CAS + Cypr | CAS + T | SO | CAS | CAS + Cypr | CAS + T | |
HO activity | 8 | 8 | 9 | 8 | 9 | 8 | 7 | 9 |
HO-1 concentration | 5 | 6 | 4 | 5 | 5 | 5 | 5 | 5 |
GSH + GSSG content | 9 | 9 | 8 | 9 | 8 | 8 | 8 | 9 |
cGMP level | 6 | 5 | 4 | 5 | 8 | 6 | 5 | 9 |
MPO activity | 8 | 8 | 8 | 8 | 7 | 8 | 7 | 10 |
TNF-alpha concentration | 8 | 9 | 8 | 7 | 7 | 8 | 8 | 9 |
Testosterone level | 5 | 6 | 4 | 7 | 7 | 6 | 7 | 8 |
GOT level | 7 | 6 | 4 | 7 | 8 | 7 | 7 | 7 |
GPT level | 7 | 4 | 4 | 7 | 8 | 4 | 6 | 8 |
Cholesterol level | 7 | 6 | 4 | 7 | 8 | 7 | 6 | 7 |
Triglyceride level | 7 | 5 | 4 | 5 | 8 | 6 | 6 | 6 |
Young | Aging | |||||||
---|---|---|---|---|---|---|---|---|
Fertile | CAS | CSA + Cypr | CAS + T | SO | CAS | CAS + Cypr | CAS + T | |
Testosterone (ng/dl) | 237.40 ± 36.58 | 0 ± 0 * | 0 ± 0 * | 149.86 ± 21.19 # | 95.90 ± 12.26 * | 0 ± 0 * | 0 ± 0 * | 364.50 ± 50.19 *,# |
GOT (U/l) | 94.57 ± 3.02 | 106.67 ± 11.85 | 142.50 ± 23.50 | 105.14 ± 3.91 | 184.75 ± 18.72 * | 163.86 ± 6.11 * | 163.00 ± 10.64 * | 145.29 ± 13.03 |
GPT (U/l) | 56.00 ± 1.60 | 5.00 ± 1.22 | 77.00 ± 6.23 | 59.57 ± 1.85 | 94.00 ± 10.10 * | 88.25 ± 3.66 * | 90.67 ± 6.38 * | 79.13 ± 5.11 |
Cholesterol (mmol/l) | 2.20 ± 0.13 | 2.78 ± 0.13 | 3.09 ± 0.12 | 2.29 ± 0.08 | 3.86 ± 0.44 | 4.65 ± 0.63 * | 4.81 ± 0.86 * | 4.46 ± 0.51 * |
Triglyceride (mmol/l) | 0.92 ± 0.13 | 1.01 ± 0.06 | 2.84 ± 0.39 * | 1.28 ± 0.13 | 1.62 ± 0.31 | 1.69 ± 0.27 | 1.75 ± 0.30 | 1.33 ± 0.15 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szabó, R.; Börzsei, D.; Kupai, K.; Hoffmann, A.; Gesztelyi, R.; Magyariné Berkó, A.; Varga, C.; Pósa, A. Spotlight on a New Heme Oxygenase Pathway: Testosterone-Induced Shifts in Cardiac Oxidant/Antioxidant Status. Antioxidants 2019, 8, 288. https://doi.org/10.3390/antiox8080288
Szabó R, Börzsei D, Kupai K, Hoffmann A, Gesztelyi R, Magyariné Berkó A, Varga C, Pósa A. Spotlight on a New Heme Oxygenase Pathway: Testosterone-Induced Shifts in Cardiac Oxidant/Antioxidant Status. Antioxidants. 2019; 8(8):288. https://doi.org/10.3390/antiox8080288
Chicago/Turabian StyleSzabó, Renáta, Denise Börzsei, Krisztina Kupai, Alexandra Hoffmann, Rudolf Gesztelyi, Anikó Magyariné Berkó, Csaba Varga, and Anikó Pósa. 2019. "Spotlight on a New Heme Oxygenase Pathway: Testosterone-Induced Shifts in Cardiac Oxidant/Antioxidant Status" Antioxidants 8, no. 8: 288. https://doi.org/10.3390/antiox8080288
APA StyleSzabó, R., Börzsei, D., Kupai, K., Hoffmann, A., Gesztelyi, R., Magyariné Berkó, A., Varga, C., & Pósa, A. (2019). Spotlight on a New Heme Oxygenase Pathway: Testosterone-Induced Shifts in Cardiac Oxidant/Antioxidant Status. Antioxidants, 8(8), 288. https://doi.org/10.3390/antiox8080288