Next Article in Journal
Antioxidant-Rich Extracts of Terminalia ferdinandiana Interfere with Estimation of Cell Viability
Previous Article in Journal
Apple Pomace Extract as a Sustainable Food Ingredient
Article Menu
Issue 6 (June) cover image

Export Article

Open AccessArticle

Marine Alga Ecklonia cava Extract and Dieckol Attenuate Prostaglandin E2 Production in HaCaT Keratinocytes Exposed to Airborne Particulate Matter

1,2,3, 1,2,3, 4 and 1,2,3,*
1
Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
2
BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Korea
3
Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
4
Bio-Center, Gyeonggido Business & Science Accelerator (GBSA), Suwon 16229, Korea
*
Author to whom correspondence should be addressed.
Antioxidants 2019, 8(6), 190; https://doi.org/10.3390/antiox8060190
Received: 9 May 2019 / Revised: 17 June 2019 / Accepted: 19 June 2019 / Published: 21 June 2019
(This article belongs to the Special Issue Antioxidants in Cosmetics)
  |  
PDF [3480 KB, uploaded 24 June 2019]
  |  

Abstract

Atmospheric particulate matter (PM) is an important cause of skin damage, and an increasing number of studies have been conducted to discover safe, natural materials that can alleviate the oxidative stress and inflammation caused by PM. It has been previously shown that the extract of Ecklonia cava Kjellman, a perennial brown macroalga, can alleviate oxidative stress in epidermal keratinocytes exposed to PM less than 10 microns in diameter (PM10). The present study was undertaken to further examine the anti-inflammatory effects of E. cava extract and its major polyphenolic constituent, dieckol. HaCaT keratinocytes were exposed to PM10 in the presence or absence of E. cava extract or dieckol and analyzed for their viability, prostaglandin E2 (PGE2) release, and gene expression of cyclooxygenase (COX)-1, COX-2, microsomal prostaglandin E2 synthase (mPGES)-1, mPGES-2, and cytosolic prostaglandin E2 synthase (cPGES). PM10 treatment decreased cell viability and increased the production of PGE2, and these changes were partially abrogated by E. cava extract. E. cava extract also attenuated the expression of COX-1, COX-2, and mPGES-2 stimulated by PM10. Dieckol attenuated PGE2 production and the gene expression of COX-1, COX-2, and mPGES-1 stimulated by PM10. This study demonstrates that E. cava extract and dieckol alleviate airborne PM10-induced PGE2 production in keratinocytes through the inhibition of gene expression of COX-1, COX-2, mPGES-1, and/or mPGES-2. Thus, E. cava extract and dieckol are potentially useful natural cosmetic ingredients for counteracting the pro-inflammatory effects of airborne PM. View Full-Text
Keywords: Ecklonia cava Kjellman; dieckol; airborne particulate matter; keratinocytes; prostaglandin E2; cyclooxygenase; prostaglandin E2 synthase Ecklonia cava Kjellman; dieckol; airborne particulate matter; keratinocytes; prostaglandin E2; cyclooxygenase; prostaglandin E2 synthase
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Ha, J.W.; Song, H.; Hong, S.S.; Boo, Y.C. Marine Alga Ecklonia cava Extract and Dieckol Attenuate Prostaglandin E2 Production in HaCaT Keratinocytes Exposed to Airborne Particulate Matter. Antioxidants 2019, 8, 190.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Antioxidants EISSN 2076-3921 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top