Correction of Experimental Retinal Ischemia by l-Isomer of Ethylmethylhydroxypyridine Malate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Experimental Design
2.3. Electroretinography in Rats
2.4. Ophthalmoscopy
2.5. Statistical Analysis.
3. Results
3.1. Results of Evaluation of Electrophysiological Retinal Function
3.2. Results of Ophthalmoscopy
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, S.; Hafeez, A.; Noorulla, F.; Geng, X.; Shao, G.; Ren, C.; Lu, G.; Zhao, H.; Ding, Y.; Ji, X. Preconditioning in neuroprotection: From hypoxia to ischemia. Prog. Neurobiol. 2017, 157, 79–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lejay, A.; Fang, F.; John, R.; Van, J.A.; Barr, M.; Thaveau, F.; Chakfe, N.; Geny, B.; Scholey, J.W. Ischemia reperfusion injury, ischemic conditioning and diabetes mellitus. J. Mol. Cell. Cardiol. 2016, 91, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Artiushkova, E.B.; Pashkov, D.V.; Pokrovskiĭ, M.V.; Faĭtel’son, A.V.; Gudyrev, O.S.; Pokrovskaia, T.G.; Pashin, E.N.; Kochkarov, V.I. Pharmacological correction of experimental chronic limb ischemia. Eksp. Klin. Farm. 2008, 71, 23–25. [Google Scholar]
- Halder, S.K.; Matsunaga, H.; Ishii, K.J.; Akira, S.; Miyake, K.; Ueda, H. Retinal cell type-specific prevention of ischemia-induced damages by LPS-TLR4 signaling through microglia. J. Neurochem. 2013, 126, 243–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Ye, Q.; Tu, J.; Zhang, M.; Ji, B. Curcumin protects against hypertension aggravated retinal ischemia/reperfusion in a rat stroke model. Clin. Exp. Hypertens. 2017, 39, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Riordan-Eva, P. Clinical Assessment of Optic Nerve Disorders. Eye 2004, 18, 1161–1168. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, J.F., 3rd; Andreoli, C.; Rabinov, J.D. Use of Magnetic Resonance Imaging to Differentiate Optic Neuritis and Nonarteritic Ischemic Optic Neuropathy. Ophthalmology 2002, 109, 1679–1684. [Google Scholar] [CrossRef]
- Holder, G.E.; Gale, R.P.; Acheson, J.F.; Robson, A.G. Electrodiagnostic Assessment in Optic Nerve Disease. Curr. Opin. Neurol. 2009, 22, 3–10. [Google Scholar] [CrossRef]
- Berry, S.; Lin, W.V.; Sadaka, A.; Lee, A.G. Nonarteritic Anterior Ischemic Optic Neuropathy: Cause, Effect, and Management. Eye Brain 2017, 9, 23–28. [Google Scholar] [CrossRef]
- Miki, A.; Endo, T.; Morimoto, T.; Matsushita, K.; Fujikado, T.; Nishida, K. Retinal Nerve Fiber Layer and Ganglion Cell Complex Thicknesses Measured with Spectral-domain Optical Coherence Tomography in Eyes with No Light Perception Due to Nonglaucomatous Optic Neuropathy. Jpn. J. Ophthalmol. 2015, 59, 230–235. [Google Scholar] [CrossRef]
- Nuzzi, R.; Monteu, F. Use of Intravitreal Dexamethasone in a Case of Anterior Ischemic Optic Neuropathy. Case Rep. Ophthalmol. 2017, 8, 452–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ageichenko, A.V.; Kalutsky, P.V.; Medvedeva, O.A.; Korolev, V.A. Changes in colon microbiocenosis composition and antioxidant properties of colonocytes under the condition of experimental dysbiosis and emoxipin prophylaxis. Zh. Mikrobiol. Epidemiol. Immunobiol. 2015, 4, 84–88. [Google Scholar]
- Klebanov, G.I.; Liubitskiĭ, O.B.; Vasil’eva, O.V.; Klimov, I.V.; Penzulaeva, O.B.; Tepliashin, A.S.; Tolstykh, M.P.; Promorenko, V.K.; Vladimirov, I.A. Antioxidant properties of 3-oxypyridine analogues: Mexidol, emoxipin, proxipin. Vopr. Med. Khim. 2001, 47, 288–300. [Google Scholar] [PubMed]
- Kagan, V.E.; Ivanova, S.M.; Murzakhmetova, M.K.; Shvedova, A.A.; Smirnov, L.D. Antioxidants--stabilizers of the Ca2+ transport enzyme system in sarcoplasmic reticulum membranes in vivo. Biull. Eksp. Biol. Med. 1986, 102, 552–554. [Google Scholar] [CrossRef] [PubMed]
- Volchegorskiĭ, I.A.; Tur, E.V.; Soliannikova, O.V.; Rykun, V.S.; Sumina, M.S.; Dmitrienko, V.N.; Berdnikova, E.V. Effectiveness of 3-hydroxypyridine and succinic acid derivatives in complex treatment of primary open-angle glaucoma. Eksp. Klin. Farm. 2012, 75, 20–26. [Google Scholar]
- Kozlov, S.A.; Khyshiktuev, B.S.; Logunov, N.A. Effects of complex therapy with emoxipin on the course of diabetic retinopathy. Vestn. Oftalmol. 2003, 119, 28–30. [Google Scholar] [PubMed]
- Chesnokova, N.B.; Beznos, O.V.; Pavlenko, T.A.; Zabozlaev, A.A.; Pavlova, M.V. Effects of hydroxypyridine derivatives mexidol and emoxypin on the reparative processes in rabbit eye on the models of corneal epithelial defect and conjunctival ischemia. Bull. Exp. Biol. Med. 2015, 158, 346–348. [Google Scholar] [CrossRef]
- Konoplya, A.I.; Laskov, V.B.; Shul’ginova, A.A. Immune and oxygen disturbances in patients with chronic cerebral ischemia and their correction. Zh. Nevrol. Psikhiatr. Im. SS Korsakova 2015, 115, 28–32. [Google Scholar] [CrossRef]
- Stavitskaya, T.V. Experimental and Clinical Study of Pharmacokinetic and Pharmacodynamic Aspects of Neuroprotective Therapy in Ophthalmology. Ph.D. Thesis, Pirogov Russian National Research Medical University, Moscow, Russia, 2005. [Google Scholar]
- Shabelnikova, A.S.; Peresypkina, A.A.; Pokrovskii, M.V.; Shchegoleva, T.A.; Sernov, L.N.; Reznikov, K.M.; Nikolaev, S.B.; Shutov, V.I.; Lutsenko, V.D.; Philippenko, N.G. Pharmacological preconditioning by recombinant erythropoietin—A new way of treatment of retinal ischemia/reperfusion. IJPT 2016, 8, 26889–26896. [Google Scholar]
- Shabelnikova, A.S.; Lutsenko, V.D.; Pokrovskii, M.V.; Peresypkina, A.A.; Korokin, M.V.; Gudyrev, O.S.; Pokrovskaia, T.G.; Beskhmelnitsyna, E.A.; Hoshenko, Y.A. Protective effects of recombinant erythropoietin in ischemia of the retina: The role of mechanisms of preconditioning. Res. J. Med. Sci. 2015, 9, 200–203. [Google Scholar] [CrossRef]
- Peresypkina, A.A.; Gubareva, V.O.; Levkova, E.A.; Shabelnikova, A.S.; Pokrovskii, M.V. Pharmacological correction of retinal ischemia/reperfusion by minoxidil. Srp. Arh. Celok. Lek. 2018, 146, 530–533. [Google Scholar] [CrossRef]
- Kurata, K.; Hosono, K.; Hotta, Y. Long-Term Clinical Course in a Patient with Complete Congenital Stationary Night Blindness. Case Rep. Ophthalmol. 2017, 8, 237–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, H.; Zhuang, J.; Hu, P.; Ye, W.; Chen, S.; Pang, Y.; Li, N.; Deng, C.; Zhang, X. Resveratrol Delays Retinal Ganglion Cell Loss and Attenuates Gliosis-Related Inflammation from Ischemia-Reperfusion Injury. Investig. Ophthalmol. Vis. Sci. 2018, 59, 3879–3888. [Google Scholar] [CrossRef] [PubMed]
- Seong, H.; Ryu, J.; Yoo, W.S.; Kim, S.J.; Han, Y.S.; Park, J.M.; Kang, S.S.; Seo, S.W. Resveratrol Ameliorates Retinal Ischemia/Reperfusion Injury in C57BL/6J Mice via Downregulation of Caspase-3. Curr. Eye Res. 2017, 42, 1650–1658. [Google Scholar] [CrossRef] [PubMed]
- Chao, H.M.; Chuang, M.J.; Liu, J.H.; Liu, X.Q.; Ho, L.K.; Pan, W.H.; Zhang, X.M.; Liu, C.M.; Tsai, S.K.; Kong, C.W.; et al. Baicalein protects against retinal ischemia by antioxidation, antiapoptosis, downregulation of HIF-1α, VEGF, and MMP-9 and upregulation of HO-1. J. Ocul. Pharm. 2013, 29, 539–549. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Hartnett, M.E. Roles of Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase in Angiogenesis: Isoform-Specific Effects. Antioxidants 2017, 6, 40. [Google Scholar] [CrossRef] [PubMed]
- Avetisov, S.E.; Egorov, E.A.; Moshetova, L.K. Ophthalmology: National Guidance; GEOTAR-Media: Moscow, Russia, 2018; p. 610. (In Russian) [Google Scholar]
- Okovityi, S.V.; Rad’ko, S.V.; Shustov, E.B. Succinate Receptors (SUCNR1) as a Promising Target for Pharmacotherapy. Khimiko-Farmatsevticheskii Zhurnal 2015, 49, 3–7. [Google Scholar]
- Shustov, E.B.; Karkischenko, V.N.; Semenov, K.K.; Okovitiy, S.V.; Bolotova, V.T.; Yuskovets, V.N. Search of regularities, determining antihypoxic activity of the compounds with nootropic and neurotropic action. Biomedicine 2015, 1, 18–23. [Google Scholar]
- Rognstad, R.; Katz, J. Gluconeogenesis in the kidney cortex. Effects of d-malate and amino-oxyacetate. Biochem. J. 1970, 116, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Voronina, T.A. Mexidol: The spectrum of pharmacological effects. Zh. Nevrol. Psikhiatr. Im. SS Korsakova 2012, 112, 86–90. [Google Scholar]
- Naskar, R.; Vorwerk, C.K.; Dreyer, E.B. Concurrent Downregulation of a Glutamate Transporter and Receptor in Glaucoma. Investig. Ophthalmol. Vis. Sci. 2000, 41, 1940–1944. [Google Scholar]
- Kuehn, M.H.; Fingert, J.H.; Kwon, Y.H. Retinal Ganglion Cell Death in Glaucoma: Mechanisms and Neuroprotective Strategies. Opthalmol. Clin. N. Am. 2005, 18, 383–395. [Google Scholar] [CrossRef] [PubMed]
- Ebneter, A.; Chidlow, G.; Wood, J.P.M.; Casson, R.J. Protection of retinal ganglion cells and the optic nerve during short-term hyperglycemia in experimental glaucoma. Arch. Ophthalmol. 2011, 129, 1337–1344. [Google Scholar] [CrossRef] [PubMed]
- Lambuk, L.; Iezhitsa, I.; Agarwal, R.; Bakar, N.S.; Agarwal, P.; Ismail, N.M. Antiapoptotic effect of taurine against NMDA-induced retinal excitotoxicity in rats. Neurotoxicology 2018, 70, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Jafri, A.J.A.; Arfuzir, N.N.N.; Lambuk, L.; Iezhitsa, I.; Agarwal, R.; Agarwal, P.; Razali, N.; Krasilnikova, A.; Kharitonova, M.; Demidov, V.; et al. Protective effect of magnesium acetyltaurate against NMDA-induced retinal damage involves restoration of minerals and trace elements homeostasis. J. Trace Elem. Med. Biol. 2017, 39, 147–154. [Google Scholar] [CrossRef] [PubMed]
Experimental Groups | The a Wave Amplitudes (n = 10) | The b Wave Amplitudes (n = 10) |
---|---|---|
Control | 0.35 ± 0.03 | 0.88 ± 0.08 y |
Ischemia-reperfusion model | 0.37 ± 0.04 | 0.44 ± 0.05 * |
Ischemia-reperfusion + l-isomer of ethylmethylhydroxypyridine malate, 2 mg/kg | 0.35 ± 0.03 | 0.81 ± 0.07 y |
Ischemia-reperfusion + Emoxipine, 2 mg/kg | 0.37 ± 0.05 | 0.78 ± 0.07 y |
Experimental Groups | Ratio b/a (n = 10) |
---|---|
Control | 2.5 ± 0.12 y |
Ischemia-reperfusion model | 1.2 ± 0.04 * |
Ischemia-reperfusion + l-isomer of ethylmethylhydroxypyridine malate, 2 mg/kg | 2.3 ± 0.16 у,# |
Ischemia-reperfusion + Emoxipine, 2 mg/kg | 2.1 ± 0.07 y |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peresypkina, A.; Pazhinsky, A.; Pokrovskii, M.; Beskhmelnitsyna, E.; Pobeda, A.; Korokin, M. Correction of Experimental Retinal Ischemia by l-Isomer of Ethylmethylhydroxypyridine Malate. Antioxidants 2019, 8, 34. https://doi.org/10.3390/antiox8020034
Peresypkina A, Pazhinsky A, Pokrovskii M, Beskhmelnitsyna E, Pobeda A, Korokin M. Correction of Experimental Retinal Ischemia by l-Isomer of Ethylmethylhydroxypyridine Malate. Antioxidants. 2019; 8(2):34. https://doi.org/10.3390/antiox8020034
Chicago/Turabian StylePeresypkina, Anna, Anton Pazhinsky, Mikhail Pokrovskii, Evgenya Beskhmelnitsyna, Anna Pobeda, and Mikhail Korokin. 2019. "Correction of Experimental Retinal Ischemia by l-Isomer of Ethylmethylhydroxypyridine Malate" Antioxidants 8, no. 2: 34. https://doi.org/10.3390/antiox8020034
APA StylePeresypkina, A., Pazhinsky, A., Pokrovskii, M., Beskhmelnitsyna, E., Pobeda, A., & Korokin, M. (2019). Correction of Experimental Retinal Ischemia by l-Isomer of Ethylmethylhydroxypyridine Malate. Antioxidants, 8(2), 34. https://doi.org/10.3390/antiox8020034