Amazonian Native Palm Fruits as Sources of Antioxidant Bioactive Compounds
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals
2.2. Sample Preparation and Chemical Analysis
Local Name | English Name | Scientific Name | Origin (City) |
---|---|---|---|
Bacaba | Turu Palm | Oenocarpus bacaba Mart. | Porto Grande |
Buriti | Moriche Palm | Mauritia flexuosa L.f. | Mazagão |
Inajá | American oil Palm | Attalea maripa (Aubl.) Mart. | São Joaquim do Pacuí |
Pupunha | Peach Palm | Bactris gasipaes Kunth. | Porto Grande |
Tucumã | Awarra Palm | Astrocaryum vulgare Mart. | Macapá |
Fruits | Harvest Maturity Stages |
---|---|
Bacaba | Dark purple peel and white-brown pulp |
Buriti | Yellow-orange pulp |
Inajá | Cream-yellowish pulp |
Pupunha | Lightly orange pulp |
Tucumã | Dark orange peel and pulp |
2.3. Sample Preparation and Total Polyphenols
2.5. DPPH Method (Ability to Scavenge Free Radicals)
2.6. ORAC (Oxygen Radical Absorbance Capacity)
2.7. LC-DAD-ESI-MS Analysis
2.8. Statistical Analysis
3. Results and Discussion
Fruits | Vitamin C | Total Anthocyanins | Yellow Flavonoids | Total Carotenoids | Moisture |
---|---|---|---|---|---|
Bacaba | 30 ± 2 | 81 ± 1 | 36 ± 2 | 0.7 ± 0.1 | 42 ± 2 |
Buriti | 13 ± 1 | 3 ± 0.4 | 28 ± 2 | 4.7 ± 0.1 | 62 ± 3 |
Inajá | 24 ± 2 | 1 ± 0.2 | 14 ± 0.2 | 0.4 ± 0.0 | 59 ± 5 |
Pupunha | 14 ± 1 | 1 ± 0.1 | 17 ± 1 | 2.6 ± 0.2 | 65 ± 1 |
Tucumã | 19 ± 1 | 4 ± 0.2 | 31 ± 2 | 7.2 ± 0.4 | 56 ± 2 |
Fruits | Total Polyphenols mg GAE·100 g−1 | β-Carotene/Linoleic Acid % O.I. b | DPPH EC50 (g·g−1DPPH) c | ORAC d (μM Trolox·g−1) |
---|---|---|---|---|
Bacaba | 941 ± 23 | 92 ± 1 | 47 ± 1 | 195 ± 10 |
Buriti | 118 ± 2 | 65 ± 3 | 7938 ± 121 | 89 ± 6 |
Inajá | 45 ± 2 | 80 ± 2 | 18,936 ± 252 | 26 ± 2 |
Pupunha | 30 ± 1 | 62 ± 1 | nd | 94 ± 1 |
Tucumã | 159 ± 13 | 92 ± 0 | 3343 ± 132 | 64 ± 4 |
R | ORAC | DPPH 1 | β-Carotene | Vitamin C | Total Polyphenols | Anthocyanins | Carotenoids |
---|---|---|---|---|---|---|---|
Flavonoids | 0.68 ** | −0.69 * | 0.57 * | 0.31 | 0.73 ** | 0.65 ** | 0.33 |
Carotenoids | −0.26 | −0.16 | 0.05 | −0.56 * | −0.36 | −0.45 | |
Anthocyanins | 0.90 ** | −0.54 | 0.54 * | 0.77 ** | 0.99 ** | ||
TEPP | 0.90 ** | −0.58 * | 0.59 * | 0.75 ** | |||
Vitamin C | 0.44 | −0.20 | 0.76 ** | ||||
β-carotene | 0.25 | −0.47 | |||||
DPPH | −0.59 * |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Horst, M.A.; Lajolo, F.M. Biodisponibilidade de Compostos Bioativos de Alimentos. Available online: https://nutrisaude14.files.wordpress.com/2014/09/biodisponibilidade-1.pdf (accessed on 23 May 2015).
- Prior, R.L.; Cao, G. Antioxydant phytochemicals in fruits and vegetables: diet and health implications. Hort. Sci. 2000, 35, 588–592. [Google Scholar]
- Halliwell, B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant. Physiol. 2006, 141, 312–322. [Google Scholar] [CrossRef] [PubMed]
- Volp, A.C.P.; Renhe, I.R.T.; Stringueta, P.C. Natural pigments bioactive. Alim. Nutr. 2009, 20, 129–138. [Google Scholar]
- Santos, M.F.G.; Alves, R.E.; Roca, M. Carotenoid composition in oils obtained from palm fruits from the Brazilian Amazon. Grasas Aceites 2015, 66. [Google Scholar] [CrossRef]
- Santos, M.F.G.; Alves, R.E.; Ruíz-Méndez, M.V. Minor components in oils obtained from Amazonian palm fruits. Grasas aceites 2013, 64, 531–536. [Google Scholar] [CrossRef]
- Santos, M.F.G.; Marmesatb, S.; Brito, E.S.; Alves, R.E.; Dobarganes, M.C. Major components in oils obtained from Amazonian palm fruits. Grasas aceites 2013, 64, 328–334. [Google Scholar] [CrossRef]
- Strohecker, R.; Henning, H.M. Analisis de Vitaminas: Métodos Comprobados; Madrid: Paz Montalvo, Spanish, 1967. [Google Scholar]
- Francis, F.J. Analysis of anthocyanins. In Anthocyanins as Food Colors; Markakis, P., Ed.; Academic Press: New York, NY, USA, 1982; pp. 181–207. [Google Scholar]
- Higby, W.K. A simplifield method for determination of some the carotenoid distribution in natural and carotene-fortifield orange juice. J. Food Sci. 1962, 27, 42–49. [Google Scholar] [CrossRef]
- Larrauri, J.A.; Rupérez, P.; Saura-Calixto, F. Effect of drying temperature on the stabilitity of polyphenols and antioxidant activity of red grape pomace peels. J. Agric. Food Chem. 1997, 45, 1390–1393. [Google Scholar] [CrossRef]
- Obanda, M.; Owuor, P.O. Flavonol composition and caffeine content of green leaf as quality potential indicators of Kenyan black teas. J. Sci. Food Agric. 1997, 74, 209–215. [Google Scholar] [CrossRef]
- Marco, G.J. A rapid method for evaluation of antioxidants. J. Am. Oil Chem. Soc. 1968, 45, 594–598. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of free radical method to evaluate antioxidant activity. Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.-Z.; Harnly, J. A standardized method for the identification of glycosylated flavonoids and other phenolic compounds in all plant materials. J. Agric. Food Chem. 2007, 55, 1084–1096. [Google Scholar] [CrossRef] [PubMed]
- Rufino, M.S.M.; Alves, R.E.; Brito, E.S.; Pérez-Jiménez, J.; Saura-Calixto, F.; Mancini-Filho, J. Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chem. 2010, 121, 996–1002. [Google Scholar] [CrossRef]
- Finco, F.D.B.; Kammerer, D.R.; Carle, R.; Tseng, W.; Boser, S.; Graeve, L. Antioxidant activity and characterization of phenolic compounds from bacaba (Oenocarpus bacaba Mart.) fruit by HPLC-DAD-MS. J. Agric. Food Chem. 2012, 60, 7665–7673. [Google Scholar] [CrossRef] [PubMed]
- Schauss, A.G.; Wu, X.; Prior, R.L.; Ou, B.; Huang, D.; Owens, J.; Agarwal, A.; Jensen, G.S.; Hart, A.N.; Shanbrom, E. Antioxidant capacity and other bioactivities of the freeze-dried Amazonian palm berry, Euterpe oleracea Mart. (açai). J. Agric. Food Chem. 2006, 54, 8604–8610. [Google Scholar] [CrossRef] [PubMed]
- Arora, A.; Muraleedharan, G.N.; Strasburg, G.M. Structure-activity relationships for antioxidant activities of a series of flavonoids in a liposomal system. Free Radic. Biol. Med. 1998, 24, 1355–1363. [Google Scholar] [CrossRef]
- Loest, H.B.; Noh, S.K.; Koo, S.I. Green tea extract inhibits the lymphatic absorption of cholesterol and alpha-tocopherol in ovariectomized rats. J. Nutr. 2002, 132, 1282–1288. [Google Scholar] [PubMed]
- Souza, M.O.; Santos, R.C.; Silva, M.E.; Pedrosa, M.L. Açaí (Euterpe oleracea Martius): Chemical composition and bioactivity. J. Braz. Soc. Food Nutr. 2011, 36, 161–169. [Google Scholar]
- Mambrin, M.C.T.; Barrera-Arellano, D. Caracterización de aceites de frutos de palmeras de la región amazonica del Brasil. Grasas Aceites. 1997, 48, 154–158. [Google Scholar] [CrossRef]
- Rodriguez-Amaya, D.B. Assessment of the provitamin a contents of foods—The Brazilian Experience. J. Food compos. Anal. 1996, 9, 196–230. [Google Scholar] [CrossRef]
- Roesler, R.; Malta, L.G.; Carrasco, L.C.; Holanda, R.B.; Sousa, C.A.S.; Pastore, G.M. Antioxidant activity of cerrado fruits. Ciên. Tecnol. Aliment. 2007, 27, 53–60. [Google Scholar] [CrossRef]
- Hassimoto, N.M.A.; Genovese, M.I.; Lajolo, F.M. Antioxidant activity of dietary fuits, vegetables and commercial frozen pulps. J. Agric. Food Chem. 2005, 53, 2928–2935. [Google Scholar] [CrossRef] [PubMed]
- Duarte-Almeida, J.M.; Santos, R.J.; Genovese, M.I.; Lajolo, F.M. Evaluation of the antioxidant activity using the B-carotene/linoleic acid system and the DPPH scavenging method. Ciên. Tecnol. Aliment. 2006, 26, 446–452. [Google Scholar] [CrossRef]
- Koleva, I.I.; Beek, T.A.; Linssen, A.; Evstatieva, L.N. Screening of plant extracts for antioxidant activity: A comparative study on three testing methods. Phytochem. Anal. 2002, 13, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Frankel, E.N. In search of batter methods to evaluate natural antioxidants and oxidative stability in food lipids. Food Sci. Technol. 1993, 4, 220–225. [Google Scholar] [CrossRef]
- Melo, E.A.; Maciel, M.I.S.; Lima, V.L.A.G.; Santana, A.P.M. Antioxidant capacity of vegetables commonly consumed. Ciên. Tecnol. Aliment. 2006, 26, 639–644. [Google Scholar] [CrossRef]
- Wu, X.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Gebhardt, S.E.; Prior, R.L. Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J. Agric. Food Chem. 2004, 52, 4026–4037. [Google Scholar] [CrossRef] [PubMed]
- de Brito, E.S.; Araújo, M.C.P.; Alves, R.E.; Carkeet, C.; Clevidence, B.A.; Novotny, J.A. Anthocyanins Present in Selected Tropical Fruits: Acerola, Jambolão, Jussara, and Guajiru. J. Agric. Food Chem. 2007, 55, 9389–9394. [Google Scholar] [CrossRef] [PubMed]
- Pozo-Insfran, D.D.; Brenes, C.H.; Talcott, S.T. Phytochemical composition and pigment stability of acai (Euterpe oleracea Mart.). J. Agric. Food Chem. 2004, 52, 1539–1545. [Google Scholar] [CrossRef] [PubMed]
- Gardener, P.T.; White, T.A.C.; McPhail, D.B.; Duthie, G.G. The relative contributions of vitamin C, carotenoids and phenolics to the antioxidant potential of fruit juices. Food Chem. 2000, 4, 471–474. [Google Scholar] [CrossRef]
- Couto, M.A.L.; Canniatti-Brazaca, S.G. Quantification of vitamin C and antioxidant capacity of citrus varieties. Ciên. Tecnol. Aliment. 2010, 30, 15–19. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dos Santos, M.D.F.G.; Mamede, R.V.S.; Rufino, M.D.S.M.; De Brito, E.S.; Alves, R.E. Amazonian Native Palm Fruits as Sources of Antioxidant Bioactive Compounds. Antioxidants 2015, 4, 591-602. https://doi.org/10.3390/antiox4030591
Dos Santos MDFG, Mamede RVS, Rufino MDSM, De Brito ES, Alves RE. Amazonian Native Palm Fruits as Sources of Antioxidant Bioactive Compounds. Antioxidants. 2015; 4(3):591-602. https://doi.org/10.3390/antiox4030591
Chicago/Turabian StyleDos Santos, Mary De Fátima Guedes, Rosa Virginia Soares Mamede, Maria Do Socorro Moura Rufino, Edy Sousa De Brito, and Ricardo Elesbão Alves. 2015. "Amazonian Native Palm Fruits as Sources of Antioxidant Bioactive Compounds" Antioxidants 4, no. 3: 591-602. https://doi.org/10.3390/antiox4030591
APA StyleDos Santos, M. D. F. G., Mamede, R. V. S., Rufino, M. D. S. M., De Brito, E. S., & Alves, R. E. (2015). Amazonian Native Palm Fruits as Sources of Antioxidant Bioactive Compounds. Antioxidants, 4(3), 591-602. https://doi.org/10.3390/antiox4030591