Redox State of Glutathione and Cysteine in Plasma Following Acute Stroke
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Immunohistochemistry
2.3. Mass Spectrometry Analysis of Reduced/Oxidized Thiols
2.4. Calculated Redox Potentials (Eh) for the CySS/CySH and GSSG/GSH
2.5. Statistical Analysis
3. Results
3.1. Assessment of Cerebral Blood Flow and Infarct Formation Following Transient Middle Cerebral Artery Occlusion
3.2. Fluoro-Jade B Staining Reveals Neuronal Degeneration 48 h After Transient Middle Cerebral Artery Occlusion

3.3. Plasma Thiol and Disulfide Concentrations
| Plasma Thiol Concentrations | |||||
|---|---|---|---|---|---|
| Parameter | Time | Sham (Mean ± SD) | MCAO (Mean ± SD) | p-Value | Direction of Change |
| CySS (µM) | 24 h | 25.50 ± 3.76 | 27.47 ± 2.44 | 0.405 | — |
| CySH (µM) | 24 h | 15.24 ± 2.25 | 14.40 ± 4.42 | 0.782 | — |
| CySS (µM) | 48 h | 26.55 ± 4.09 | 25.45 ± 3.08 | 0.602 | — |
| CySH (µM) | 48 h | 15.31 ± 1.86 | 12.22 ± 2.38 | 0.016 * | Decreased in MCAO |
| GSH (µM) | 24 h | 3.39 ± 0.71 | 2.83 ± 1.16 | 0.498 | — |
| GSSG (µM) | 24 h | 0.22 ± 0.06 | 0.16 ± 0.01 | 0.08 | — |
| GSH (µM) | 48 h | 2.67 ± 0.57 | 2.67 ± 0.73 | 0.995 | — |
| GSSG (µM) | 48 h | 0.11 ± 0.05 | 0.22 ± 0.09 | 0.006 ** | Increased in MCAO |
3.4. Plasma Redox Ratios
| Plasma Thiol Redox Ratios | |||||
|---|---|---|---|---|---|
| Parameter | Time | Sham (Mean ± SD) | MCAO (Mean ± SD) | p -Value | Change |
| CySS/CySH Ratio | 24 h | 1.68 ± 0.18 | 1.92 ± 0.33 | 0.425 | — |
| GSSG/GSH Ratio | 24 h | 0.064 ± 0.017 | 0.062 ± 0.022 | 0.862 | — |
| CySS/CySH Ratio | 48 h | 1.75 ± 0.23 | 2.13 ± 0.45 | 0.031 * | Oxidized |
| GSSG/GSH Ratio | 48 h | 0.041 ± 0.016 | 0.082 ± 0.029 | 0.002 * | Oxidized |
3.5. Plasma Redox Potentials
| Calculation of REDOX Potential | ||||||||
|---|---|---|---|---|---|---|---|---|
| Concentration, μM | 30 × (log (CySS/CySH2) | Eh CySS, mV (Eo = −250) | Concentration, μM | 30 × (log (GSSG/GSH 2) | Eh GSSG, mV (Eo = −264) | |||
| CySS | CySH | GSH | GSSG | |||||
| Sham 24 | 19.22 | 11.83 | 154.1 | −95.9 | 2.99 | 0.240 | 132.9 | −131.1 |
| Sham 24 | 27.49 | 14.33 | 153.8 | −96.2 | 3.08 | 0.224 | 131.2 | −132.8 |
| Sham 24 | 28.70 | 16.45 | 150.8 | −99.2 | 3.58 | 0.273 | 129.9 | −134.1 |
| Sham 24 | 24.98 | 17.64 | 147.1 | −102.9 | 4.21 | 0.223 | 123 | −141 |
| Sham 24 | 27.10 | 15.95 | 150.8 | −99.2 | 3.10 | 0.123 | 123.2 | −140.8 |
| MCAO 24 | 26.53 | 18.37 | 146.9 | −103.1 | 4.07 | 0.160 | 119.5 | −144.5 |
| MCAO 24 | 30.24 | 15.19 | 153.5 | −96.5 | 2.66 | 0.169 | 131.3 | −132.7 |
| MCAO 24 | 25.63 | 9.64 | 163.2 | −86.8 | 1.77 | 0.146 | 140.1 | −123.9 |
| Sham 48 | 29.74 | 16.55 | 151.1 | −98.9 | 3.15 | 0.180 | 127.8 | −136.2 |
| Sham 48 | 31.38 | 14.71 | 154.8 | −95.2 | 2.12 | 0.121 | 132.9 | −131.1 |
| Sham 48 | 25.51 | 17.78 | 147.2 | −102.8 | 3.41 | 0.129 | 121.4 | −142.6 |
| Sham 48 | 21.07 | 13.04 | 152.8 | −97.2 | 2.31 | 0.081 | 125.4 | −138.6 |
| Sham 48 | 25.05 | 14.47 | 152.3 | −97.7 | 2.37 | 0.044 | 116.8 | −147.2 |
| Sham 48 | 25.26 | 12.90 | 155.4 | −94.6 | 2.58 | 0.180 | 133 | −131 |
| MCAO 48 | 25.16 | 10.74 | 160.2 | −89.8 | 2.97 | 0.368 | 138.6 | −125.4 |
| MCAO 48 | 30.92 | 13.83 | 156.3 | −93.7 | 3.11 | 0.252 | 132.5 | −131.5 |
| MCAO 48 | 26.27 | 15.10 | 151.8 | −98.2 | 3.46 | 0.359 | 134.3 | −129.7 |
| MCAO 48 | 26.74 | 9.66 | 163.7 | −86.3 | 2.75 | 0.207 | 133.1 | −130.9 |
| MCAO 48 | 29.93 | 16.57 | 151.1 | −98.9 | 4.01 | 0.291 | 127.7 | −136.3 |
| MCAO 48 | 26.30 | 11.99 | 157.9 | −92.1 | 3.35 | 0.222 | 128.9 | −135.1 |
| MCAO 48 | 23.73 | 12.60 | 155.2 | −94.8 | 2.93 | 0.251 | 134 | −130 |
| MCAO 48 | 28.37 | 9.81 | 164.1 | −85.9 | 2.13 | 0.337 | 146.1 | −117.9 |
| MCAO 48 | 24.86 | 13.81 | 153.5 | −96.5 | 2.99 | 0.168 | 128.2 | −135.8 |
| MCAO 48 | 26.40 | 8.22 | 167.8 | −82.2 | 1.46 | 0.154 | 145.8 | −118.2 |
| MCAO 48 | 22.92 | 12.53 | 154.9 | −95.1 | 1.79 | 0.133 | 138.5 | −125.5 |
| MCAO 48 | 19.05 | 9.49 | 159.8 | −90.2 | 1.45 | 0.072 | 136 | −128 |
| MCAO 48 | 24.71 | 14.92 | 151.4 | −98.6 | 2.69 | 0.156 | 130 | −134 |
| MCAO 48 | 21.10 | 11.20 | 156.8 | −93.2 | 2.44 | 0.137 | 130.9 | −133.1 |
| Plasm Thiol Redox Potentials (Eh) | ||||||
|---|---|---|---|---|---|---|
| Parameter | Time | Sham (mV ± SD) | MCAO (mV ± SD) | p-Value | Change | Interpretation |
| Eh (CySS/CySH) | 24 h | −99.9 ± 2.9 | −95.5 ± 7.8 | 0.574 | — | No significant oxidation |
| Eh (CySS/CySH) | 48 h | −97.7 ± 4.0 | −92.6 ± 6.3 | 0.008 ** | ↑ Oxidized | Significant extracellular oxidation |
| Eh (GSSG/GSH) | 24 h | −136.0 ± 5.6 | −133.7 ± 8.4 | 0.744 | — | No significant change |
| Eh (GSSG/GSH) | 48 h | −137.8 ± 7.0 | −129.4 ± 7.4 | 0.019 * | ↑ Oxidized | Significant intracellular oxidation |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ROS | Reactive Oxygen Species |
| GSH | Glutathione |
| GSSG | Glutathione Disulfide |
| CySH | Cysteine |
| CySS | Cystine |
| tMCAO | Transient Middle Cerebral Artery Occlusion |
| CCA | Common Carotid Artery |
| ECA | External Carotid Artery |
| ICA | Internal Carotid Artery |
| MCA | Middle Cerebral Artery |
| Eh | Redox Potential |
| Ox | Oxidized |
| Red | Reduced |
| CBF | Cerebral Blood Flow |
| TTC | 2,3,5-triphenyltetrazolium chloride |
| FJB | Flouro-Jade B |
References
- Dirnagl, U.; Iadecola, C.; Moskowitz, M.A. Pathobiology of ischemic stroke: An integrated view. Trends Neurosci. 1999, 22, 391–397. [Google Scholar] [CrossRef]
- Lin, L.; Wang, X.; Xu, Z. Ischemia-reperfusion Injury in the Brain: Mechanisms and Potential Therapeutic Strategies. Biochem. Pharmacol. 2016, 5, 213. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- del Zoppo, G.; Ginis, I.; Hallenbeck, J.M.; Iadecola, C.; Wang, X.; Feuerstein, G.Z. Inflammation and stroke: Putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia. Brain Pathol. 2000, 10, 95–112. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moskowitz, M.A.; Lo, E.H.; Iadecola, C. The science of stroke: Mechanisms in search of treatments. Neuron 2010, 67, 181–198. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.C. Glutathione synthesis. Biochim. Biophys. Acta 2013, 1830, 3143–3153. [Google Scholar] [CrossRef]
- Watson, W.H.; Ritzenthaler, J.D.; Peyrani, P.; Wiemken, T.L.; Furmanek, S.; Reyes Vega, A.M.; Burke, T.J.; Zheng, Y.; Ramirez, J.A.; Roman, J. Plasma cysteine/cystine and glutathione/glutathione disulfide redox potentials in HIV and COPD patients. Free Radic. Biol. Med. 2019, 143, 55–61. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Franco, R.; Schoneveld, O.J.L.M.; Pappa, A.; Panayiotidis, M.I. The central role of glutathione in the pathophysiology of human diseases. Arch. Physiol. Biochem. 2007, 113, 234–258. [Google Scholar] [CrossRef]
- Lo, E.H.; Dalkara, T.; Moskowitz, M.A. Mechanisms, challenges, and opportunities in stroke. Nat. Rev. Neurosci. 2003, 4, 399–415. [Google Scholar] [CrossRef]
- Go, Y.M.; Jones, D.P. The redox proteome. J. Biol. Chem. 2013, 288, 26512–26520. [Google Scholar] [CrossRef]
- Dickinson, D.A.; Forman, H.J. Cellular glutathione and thiols metabolism. Biochem. Pharmacol. 2002, 64, 1019–1026. [Google Scholar] [CrossRef]
- Conrad, M.; Pratt, D.A. The chemical basis of ferroptosis. Nat. Chem. Biol. 2019, 15, 1137–1147, Erratum in Nat. Chem. Biol. 2020, 16, 223–224. [Google Scholar] [CrossRef] [PubMed]
- Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Stockwell, B.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2020, 149, 1060–1072. [Google Scholar] [CrossRef] [PubMed]
- Maiorino, M.; Conrad, M.; Ursini, F. GPx4, lipid peroxidation, and cell death: Discoveries, rediscoveries, and open issues. Antioxid. Redox Signal 2018, 29, 61–74. [Google Scholar] [CrossRef]
- Xu, Z.; Jiang, J.; Ford, G.; Ford, B.D. Neuregulin-1 is neuroprotective and attenuates inflammatory responses induced by ischemic stroke. Biochem. Biophys. Res. Commun. 2004, 322, 440–446, Erratum in Biochem. Biophys. Res. Commun. 2008, 372, 947.. [Google Scholar] [CrossRef] [PubMed]
- Surles-Zeigler, M.C.; Li, Y.; Distel, T.J.; Omotayo, H.; Ge, S.; Ford, B.D. Transcriptomic analysis of neuregulin-1 regulated genes following ischemic stroke by computational identification of promoter binding sites: A role for the ETS-1 transcription factor. PLoS ONE 2018, 13, e0197092. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Y.; Lein, P.J.; Liu, C.; Bruun, D.A.; Tewolde, T.; Ford, G.; Ford, B.D. Spatiotemporal pattern of neuronal injury induced by DFP in rats: A model for delayed neuronal cell death following acute OP intoxication. Toxicol. Appl. Pharmacol. 2011, 253, 261–269. [Google Scholar] [CrossRef]
- Anyanwu, S.I.; Doherty, A.; Powell, M.D.; Obialo, C.; Huang, M.B.; Quarshie, A.; Mitchell, C.; Bashir, K.; Newman, G.W. Detection of HIV-1 and Human Proteins in Urinary Extracellular Vesicles from HIV+ Patients. Adv. Virol. 2018, 2018, 7863412. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reed, M.L.; Go, Y.-M.; Jones, D.P. Cysteine/cystine redox signaling in cardiovascular disease. Free Radic. Biol. Med. 2010, 48, 471–482. [Google Scholar]
- Poole, L.B. The basics of thiols and cysteines in redox biology and chemistry. Free Radic. Biol. Med. 2015, 80, 148–157. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Go, Y.-M.; Jones, D.P. Implications of plasma thiol redox in disease. Clin. Sci. 2018, 132, 1257–1278. [Google Scholar] [CrossRef] [PubMed]
- Solhjoo, S.; Liu, T.; Sidor, A.; Lee, D.I.; O’Rourke, B.; Steenbergen, C. Oxidative stress in the mitochondrial matrix underlies ischemia/reperfusion-induced mitochondrial instability. J. Biol. Chem. 2023, 299, 102780. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arrivi, A.; Barillà, F.; Carnevale, R.; Sordi, M.; Pucci, G.; Tanzilli, G.; Mangieri, E. Protective biomolecular mechanisms of glutathione sodium salt in ischemia-reperfusion injury in patients with acute coronary syndrome. Cells 2022, 11, 3964. [Google Scholar] [CrossRef] [PubMed]
- Meister, A.; Anderson, M.E. Glutathione. Annu. Rev. Biochem. 1983, 52, 711–760. [Google Scholar] [CrossRef]
- Forman, H.J.; Zhang, H.; Rinna, A. Glutathione: Overview of its protective roles, measurement, and biosynthesis. Mol. Asp. Med. 2009, 30, 1–12. [Google Scholar] [CrossRef]
- Bannai, S.; Tateishi, N. Role of membrane transport in metabolism and function of glutathione in mammals. J. Membr. Biol. 1986, 89, 1–8. [Google Scholar] [CrossRef]
- Kobayashi, S.; Hamashima, S.; Homma, T.; Sato, M.; Kusumi, R.; Bannai, S.; Fujii, J.; Sato, H. Cystine/glutamate transporter, system xc-, is involved in nitric oxide production in mouse peritoneal macrophages. Nitric Oxide 2018, 78, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Sies, H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biol. 2017, 11, 613–619. [Google Scholar] [CrossRef]
- Jones, D.P. Redefining oxidative stress. Antioxid. Redox Signal. 2006, 8, 1865–1879. [Google Scholar] [CrossRef]
- Winterbourn, C.C.; Hampton, M.B. Thiol chemistry and specificity in redox signaling. Free Radic. Biol. Med. 2008, 45, 549–561. [Google Scholar] [CrossRef]
- Rhee, S.G.; Woo, H.A.; Kil, I.S.; Bae, S.H. Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides. J. Biol. Chem. 2012, 287, 4403–4410. [Google Scholar] [CrossRef]
- Griffith, O.W. Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic. Biol. Med. 1999, 27, 922–935. [Google Scholar] [CrossRef]
- Stipanuk, M.H.; Ueki, I.; Dominy, J.E.; Simmons, C.R.; Hirschberger, L.L. Cysteine dioxygenase: A robust system for regulation of cellular cysteine levels. Amino Acids 2009, 37, 55–63. [Google Scholar] [CrossRef]
- Brigelius-Flohé, R.; Flohé, L. Regulatory phenomena in the glutathione peroxidase superfamily. Antioxidants 2020, 9, 1228. [Google Scholar] [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
McGinley, C.; Adeyemi, O.; Oyolola, O.; Ford, B.D.; Ford, G.D. Redox State of Glutathione and Cysteine in Plasma Following Acute Stroke. Antioxidants 2026, 15, 117. https://doi.org/10.3390/antiox15010117
McGinley C, Adeyemi O, Oyolola O, Ford BD, Ford GD. Redox State of Glutathione and Cysteine in Plasma Following Acute Stroke. Antioxidants. 2026; 15(1):117. https://doi.org/10.3390/antiox15010117
Chicago/Turabian StyleMcGinley, Christopher, Oyinkansol Adeyemi, Oluwafayokemi Oyolola, Byron D. Ford, and Gregory D. Ford. 2026. "Redox State of Glutathione and Cysteine in Plasma Following Acute Stroke" Antioxidants 15, no. 1: 117. https://doi.org/10.3390/antiox15010117
APA StyleMcGinley, C., Adeyemi, O., Oyolola, O., Ford, B. D., & Ford, G. D. (2026). Redox State of Glutathione and Cysteine in Plasma Following Acute Stroke. Antioxidants, 15(1), 117. https://doi.org/10.3390/antiox15010117

