Biochemical, Biological, and Clinical Properties of γ-Oryzanol
Abstract
1. Introduction
2. Chemical Characterization and Composition of γ-Oryzanol
3. Extraction Techniques
Technique | Description | Advantages | Limitations/Challenges |
---|---|---|---|
Solvent Extraction [23,24,25,26] | Use of solvents such as hexane, ethanol, acetone, conventional and widely used method | Simple, efficient, high yield | Large solvent volumes, environmental concerns, solvent disposal |
Supercritical Fluid Extraction (SFE) [27,28,29] | Use of supercritical CO2 under controlled temperature and pressure for extraction | High purity, high yield, minimal solvent residue | High operational cost, complexity of pressure and temperature control |
Microwave-Assisted Extraction (MAE) [30] | Microwave radiation heats solvent to enhance extraction efficiency | Increased extraction yield, reduced extraction time | Optimization of microwave parameters |
Enzyme-Assisted Extraction (EAE) and Aqueous Enzymatic Extraction (AEE) [31] | Use of enzymes (e.g., cellulase, alcalase) to degrade cell walls and release oil | Eco-friendly, selective extraction, high yield | Enzyme cost, optimization of enzymatic conditions |
Ultrasound-Assisted Extraction (UAE) [33] | Use of ultrasound waves with solvents or oils (e.g., soybean oil, D-limonene) to improve extraction | Green method, enhancement of bioactive compound yield | Equipment cost, scale-up challenges |
4. Strategies for γ-Oryzanol Delivery
5. Biological Functions of γ-Oryzanol
6. Effect on Redox Enzymes
7. Clinical Applications and Therapeutic Evidence of γ-Oryzanol
8. Conclusions and Future Prospectives
Author Contributions
Funding
Conflicts of Interest
References
- Lemus, C.; Angelis, A.; Halabalaki, M.; Skaltsounis, A.L. γ-Oryzanol: An Attractive Bioactive Component from Rice Bran. In Wheat and Rice in Disease Prevention and Health; Academic Press: Cambridge, MA, USA, 2014; pp. 409–430. [Google Scholar]
- Sapwarobol, S.; Saphyakhajorn, W.; Astina, J. Biological Functions and Activities of Rice Bran as a Functional Ingredient: A Review. Nutr. Metab. Insights 2021, 14, 11786388211058559. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.H.; Bergman, C.J. Vitamin E Homologs and γ-Oryzanol Levels in Rice (Oryza sativa L.) During Seed Development. Cereal Chem. 2016, 93, 182–188. [Google Scholar] [CrossRef]
- Kaneko, R.; Tsuchiya, T. New Compound in Rice Bran and Germ Oils. J. Soc. Chem. Ind. Jpn. 1954, 57, 526. [Google Scholar] [CrossRef]
- Li, D.; Zhang, C.; Zhang, H.-m.; Zhang, D.-j.; Zuo, F. Separation of γ-oryzanol from immature rice seeds by nanofiltration membrane. Food Sci. Technol. 2022, 42, e12922. [Google Scholar] [CrossRef]
- Ramazani, E.; Akaberi, M.; Emami, S.A.; Tayarani-Najaran, Z. Biological and Pharmacological Effects of Gamma-oryzanol: An Updated Review of the Molecular Mechanisms. Curr. Pharm. Des. 2021, 27, 2299–2316. [Google Scholar] [CrossRef]
- Shu, G.; Qiu, Y.; Hao, J.; Fu, Q.; Deng, X. gamma-Oryzanol alleviates acetaminophen-induced liver injury: Roles of modulating AMPK/GSK3beta/Nrf2 and NF-kappaB signaling pathways. Food Funct. 2019, 10, 6858–6872. [Google Scholar] [CrossRef]
- Alwadani, A.H.; Almasri, S.A.; Aloud, A.A.; Albadr, N.A.; Alshammari, G.M.; Yahya, M.A. The Synergistic Protective Effect of gamma-Oryzanol (OZ) and N-Acetylcysteine (NAC) against Experimentally Induced NAFLD in Rats Entails Hypoglycemic, Antioxidant, and PPARalpha Stimulatory Effects. Nutrients 2022, 15, 106. [Google Scholar] [CrossRef]
- Aladedunye, F.; Przybylski, R.; Rudzinska, M.; Klensporf-Pawlik, D. gamma-Oryzanols of North American Wild Rice (Zizania palustris). J. Am. Oil Chem. Soc. 2013, 90, 1101–1109. [Google Scholar] [CrossRef]
- Xu, Z.; Godber, J.S. Purification and identification of components of gamma-oryzanol in rice bran Oil. J. Agric. Food Chem. 1999, 47, 2724–2728. [Google Scholar] [CrossRef]
- Khuwijitjaru, P.; Yuenyong, T.; Pongsawatmanit, R.; Adachi, S. Effects of ferric chloride on thermal degradation of γ-oryzanol and oxidation of rice bran oil. Eur. J. Lipid Sci. Technol. 2011, 113, 652–657. [Google Scholar] [CrossRef]
- Saenjum, C.; Chaiyasut, C.; Chansakaow, S.; Suttajit, M.; Sirithunyalug, B. Antioxidant and anti-inflammatory activities of gamma-oryzanol rich extracts from Thai purple rice bran. J. Med. Plants Res. 2012, 6, 1070–1077. [Google Scholar]
- Kour, J.; Singh, S.; Chandra Saxena, D. Retention of bioactive compounds during extrusion processing and storage. Food Chem. X 2022, 13, 100191. [Google Scholar] [CrossRef]
- Sulaiman, A.S.A.; Sert, M.; Khan, M.S.A.; Khan, M.A. Functional and Therapeutic Potential of γ-Oryzanol. In Functional Foods-Phytochemicals and Health Promoting Potential; IntechOpen: London, UK, 2021. [Google Scholar]
- Vardhani, A.; Perdanastuti, H.S. Determination of Gamma Oryzanol from Ethanolic Extract of Indonesian Rice Bran (Oryza sativa). Indones. J. Pharm. Sci. Technol. 2024, 11, 87–91. [Google Scholar] [CrossRef]
- Huang, S.-H.; Ng, L.-T. Quantification of Tocopherols, Tocotrienols, and γ-Oryzanol Contents and Their Distribution in Some Commercial Rice Varieties in Taiwan. J. Agric. Food Chem. 2011, 59, 11150–11159. [Google Scholar] [CrossRef] [PubMed]
- Minatel, I.O.; Han, S.I.; Aldini, G.; Colzani, M.; Matthan, N.R.; Correa, C.R.; Fecchio, D.; Yeum, K.J. Fat-soluble bioactive components in colored rice varieties. J. Med. Food 2014, 17, 1134–1141. [Google Scholar] [CrossRef] [PubMed]
- Zubair, M.; Anwar, F.; Ashraf, M.; Uddin, M.K. Characterization of high-value bioactives in some selected varieties of Pakistani Rice (Oryza sativa L.). Int. J. Mol. Sci. 2012, 13, 4608–4622. [Google Scholar] [CrossRef]
- Sawadikiat, P.; Hongsprabhas, P. Phytosterols and γ-oryzanol in rice bran oils and distillates from physical refining process. Int. J. Food Sci. Technol. 2014, 49, 2030–2036. [Google Scholar] [CrossRef]
- Tsuzuki, W.; Komba, S.; Kotake-Nara, E. Diversity in gamma-oryzanol profiles of Japanese black-purple rice varieties. J. Food Sci. Technol. 2019, 56, 2778–2786. [Google Scholar] [CrossRef] [PubMed]
- Pereira-Caro, G.; Cros, G.; Yokota, T.; Crozier, A. Phytochemical profiles of black, red, brown, and white rice from the Camargue region of France. J. Agric. Food Chem. 2013, 61, 7976–7986. [Google Scholar] [CrossRef]
- Kim, H.W.; Kim, J.B.; Cho, S.M.; Cho, I.K.; Li, Q.X.; Jang, H.H.; Lee, S.H.; Lee, Y.M.; Hwang, K.A. Characterization and quantification of gamma-oryzanol in grains of 16 Korean rice varieties. Int. J. Food Sci. Nutr. 2015, 66, 166–174. [Google Scholar] [CrossRef]
- Hu, W.; Wells, J.H.; Shin, T.-S.; Godber, J.S. Comparison of isopropanol and hexane for extraction of vitamin E and oryzanols from stabilized rice bran. J. Am. Oil Chem. Soc. 1996, 73, 1653–1656. [Google Scholar] [CrossRef]
- Chen, M.H.; Bergman, C.J. A rapid procedure for analysing rice bran tocopherol, tocotrienol and γ-oryzanol contents. J. Food Compos. Anal. 2005, 18, 139–151. [Google Scholar] [CrossRef]
- Lilitchan, S.; Tangprawat, C.; Aryusuk, K.; Krisnangkura, S.; Chokmoh, S.; Krisnangkura, K. Partial extraction method for the rapid analysis of total lipids and γ-oryzanol contents in rice bran. Food Chem. 2008, 106, 752–759. [Google Scholar] [CrossRef]
- Balachandran, C.; Mayamol, P.N.; Thomas, S.; Sukumar, D.; Sundaresan, A.; Arumughan, C. An ecofriendly approach to process rice bran for high quality rice bran oil using supercritical carbon dioxide for nutraceutical applications. Bioresour. Technol. 2008, 99, 2905–2912. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Shishkura, A.; Fujimoto, K.; Arai, K.; Saito, S. Fractional Extraction of Rice Bran Oil with Supercritical Carbon Dioxide. Agric. Biol. Chem. 2014, 51, 1773–1777. [Google Scholar] [CrossRef]
- Imsanguan, P.; Roaysubtawee, A.; Borirak, R.; Pongamphai, S.; Douglas, S.; Douglas, P.L. Extraction of α-tocopherol and γ-oryzanol from rice bran. LWT-Food Sci. Technol. 2008, 41, 1417–1424. [Google Scholar] [CrossRef]
- Narayan, A.V.; Barhate, R.S.; Raghavarao, K.S.M.S. Extraction and purification of oryzanol from rice bran oil and rice bran oil soapstock. J. Am. Oil Chem. Soc. 2006, 83, 663–670. [Google Scholar] [CrossRef]
- Kumar, P.; Yadav, D.; Kumar, P.; Panesar, P.S.; Bunkar, D.S.; Mishra, D.; Chopra, H.K. Comparative study on conventional, ultrasonication and microwave assisted extraction of γ-oryzanol from rice bran. J. Food Sci. Technol. 2016, 53, 2047–2053. [Google Scholar] [CrossRef]
- Wang, H.; Geng, H.; Tang, H.; Wang, L.; Yu, D.; Wang, J.; Song, Y. Enzyme-assisted Aqueous Extraction of Oil from Rice Germ and its Physicochemical Properties and Antioxidant Activity. J. Oleo Sci. 2019, 68, 881–891. [Google Scholar] [CrossRef]
- Loypimai, P.; Moongngarm, A.; Sittisuanjik, A.; Khamanan, S. Optimization of tocols and γ-oryzanol extraction from rice bran using ultrasound and soybean oil as a green solvent. Food Res. 2020, 4, 2322–2332. [Google Scholar] [CrossRef]
- Peanparkdee, M.; Yamauchi, R.; Iwamoto, S. Characterization of Antioxidants Extracted from Thai Riceberry Bran Using Ultrasonic-Assisted and Conventional Solvent Extraction Methods. Food Bioprocess Technol. 2017, 11, 713–722. [Google Scholar] [CrossRef]
- Kozuka, C.; Shimizu-Okabe, C.; Takayama, C.; Nakano, K.; Morinaga, H.; Kinjo, A.; Fukuda, K.; Kamei, A.; Yasuoka, A.; Kondo, T.; et al. Marked augmentation of PLGA nanoparticle-induced metabolically beneficial impact of γ-oryzanol on fuel dyshomeostasis in genetically obese-diabetic ob/ob mice. Drug Deliv. 2017, 24, 558–568. [Google Scholar] [CrossRef]
- Jasim, A.J.; Albukhaty, S.; Sulaiman, G.M.; Al-Karagoly, H.; Jabir, M.S.; Abomughayedh, A.M.; Mohammed, H.A.; Abomughaid, M.M. Liposome Nanocarriers Based on γ Oryzanol: Preparation, Characterization, and In Vivo Assessment of Toxicity and Antioxidant Activity. ACS Omega 2024, 9, 3554–3564. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Liu, X.; Wang, Y.; Qin, X.; Li, Z. γ-Oryzanol nanoemulsions produced by a low-energy emulsification method: An evaluation of process parameters and physicochemical stability. Food Funct. 2017, 8, 2202–2211. [Google Scholar] [CrossRef] [PubMed]
- Rodsuwan, U.; Pithanthanakul, U.; Thisayakorn, K.; Uttapap, D.; Boonpisuttinant, K.; Vatanyoopaisarn, S.; Thumthanaruk, B.; Rungsardthong, V. Preparation and characterization of gamma oryzanol loaded zein nanoparticles and its improved stability. Food Sci. Nutr. 2020, 9, 616–624. [Google Scholar] [CrossRef] [PubMed]
- Badadhe, S.; Singh, G. Formulation and characterization of γ-oryzanol loaded solid self-nanoemulsifying drug delivery systems (S-SNEDDS). JASR 2021, 12, 234–241. [Google Scholar] [CrossRef]
- Yang, K.-M.; Chiang, P.-Y. Preparation and Evaluation of Release Formulation of γ-Oryzanol/Algae Oil Self-Emulsified with Alginate Beads. Mar. Drugs 2019, 17, 156. [Google Scholar] [CrossRef]
- Kobayashi, E.; Ito, J.; Kato, S.; Sawada, K.; Matsuki, M.; Hashimoto, H.; Miyazawa, T.; Nakagawa, K. Presence of orally administered rice bran oil gamma-oryzanol in its intact form in mouse plasma. Food Funct. 2016, 7, 4816–4822. [Google Scholar] [CrossRef]
- Kobayashi, E.; Ito, J.; Shimizu, N.; Kokumai, T.; Kato, S.; Sawada, K.; Hashimoto, H.; Eitsuka, T.; Miyazawa, T.; Nakagawa, K. Evaluation of gamma-oryzanol Accumulation and Lipid Metabolism in the Body of Mice Following Long-Term Administration of gamma-oryzanol. Nutrients 2019, 11, 104. [Google Scholar] [CrossRef]
- Xu, Z.; Hua, N.; Godber, J.S. Antioxidant Activity of Tocopherols, Tocotrienols, and γ-Oryzanol Components from Rice Bran against Cholesterol Oxidation Accelerated by 2,2′-Azobis(2-methylpropionamidine) Dihydrochloride. J. Agric. Food Chem. 2001, 49, 2077–2081. [Google Scholar] [CrossRef]
- Islam, M.S.; Yoshida, H.; Matsuki, N.; Ono, K.; Nagasaka, R.; Ushio, H.; Guo, Y.; Hiramatsu, T.; Hosoya, T.; Murata, T.; et al. Antioxidant, Free Radical–Scavenging, and NF-κB–Inhibitory Activities of Phytosteryl Ferulates: Structure–Activity Studies. J. Pharmacol. Sci. 2009, 111, 328–337. [Google Scholar] [CrossRef]
- Juliano, C.; Cossu, M.; Alamanni, M.C.; Piu, L. Antioxidant activity of gamma-oryzanol: Mechanism of action and its effect on oxidative stability of pharmaceutical oils. Int. J. Pharm. 2005, 299, 146–154. [Google Scholar] [CrossRef]
- Araujo, S.M.; de Paula, M.T.; Poetini, M.R.; Meichtry, L.; Bortolotto, V.C.; Zarzecki, M.S.; Jesse, C.R.; Prigol, M. Effectiveness of γ-oryzanol in reducing neuromotor deficits, dopamine depletion and oxidative stress in a Drosophila melanogaster model of Parkinson’s disease induced by rotenone. NeuroToxicology 2015, 51, 96–105. [Google Scholar] [CrossRef]
- Ahn, J.; Son, H.J.; Seo, H.D.; Ha, T.Y.; Ahn, J.; Lee, H.; Shin, S.H.; Jung, C.H.; Jang, Y.J. γ-Oryzanol Improves Exercise Endurance and Muscle Strength by Upregulating PPARδ and ERRγ Activity in Aged Mice. Mol. Nutr. Food Res. 2021, 65, 2000652. [Google Scholar] [CrossRef]
- Rao, Y.P.C.; Sugasini, D.; Lokesh, B.R. Dietary gamma oryzanol plays a significant role in the anti-inflammatory activity of rice bran oil by decreasing pro-inflammatory mediators secreted by peritoneal macrophages of rats. Biochem. Biophys. Res. Commun. 2016, 479, 747–752. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Murata, T.; Fujisawa, M.; Nagasaka, R.; Ushio, H.; Bari, A.M.; Hori, M.; Ozaki, H. Anti-inflammatory effects of phytosteryl ferulates in colitis induced by dextran sulphate sodium in mice. Br. J. Pharmacol. 2009, 154, 812–824. [Google Scholar] [CrossRef] [PubMed]
- Mattei, L.; Francisqueti-Ferron, F.V.; Garcia, J.L.; Ferron, A.J.T.; Silva, C.C.V.d.A.; Gregolin, C.S.; Nakandakare-Maia, E.T.; Silva, J.d.C.P.; Moreto, F.; Minatel, I.O.; et al. Antioxidant and anti-inflammatory properties of gamma-oryzanol attenuates insulin resistance by increasing GLUT-4 expression in skeletal muscle of obese animals. Mol. Cell. Endocrinol. 2021, 537, 111423. [Google Scholar] [CrossRef]
- Zeinali, M.; Abbaspour-Ravasjani, S.; Soltanfam, T.; Paiva-Santos, A.C.; Babaei, H.; Veiga, F.; Hamishehkar, H. Prevention of UV-induced skin cancer in mice by gamma oryzanol-loaded nanoethosomes. Life Sci. 2021, 283, 119759. [Google Scholar] [CrossRef] [PubMed]
- Badalkhani, O.; Pires, P.C.; Mohammadi, M.; Babaie, S.; Paiva-Santos, A.C.; Hamishehkar, H. Nanogel Containing Gamma-Oryzanol-Loaded Nanostructured Lipid Carriers and TiO2/MBBT: A Synergistic Nanotechnological Approach of Potent Natural Antioxidants and Nanosized UV Filters for Skin Protection. Pharmaceuticals 2023, 16, 670. [Google Scholar] [CrossRef]
- Wilson, T.A.; Nicolosi, R.J.; Woolfrey, B.; Kritchevsky, D. Rice bran oil and oryzanol reduce plasma lipid and lipoprotein cholesterol concentrations and aortic cholesterol ester accumulation to a greater extent than ferulic acid in hypercholesterolemic hamsters. J. Nutr. Biochem. 2007, 18, 105–112. [Google Scholar] [CrossRef]
- Covasa, M.; Wang, O.; Liu, J.; Cheng, Q.; Guo, X.; Wang, Y.; Zhao, L.; Zhou, F.; Ji, B. Effects of Ferulic Acid and γ-Oryzanol on High-Fat and High-Fructose Diet-Induced Metabolic Syndrome in Rats. PLoS ONE 2015, 10, e0118135. [Google Scholar] [CrossRef]
- Rong, N.; Ausman, L.M.; Nicolosi, R.J. Oryzanol decreases cholesterol absorption and aortic fatty streaks in hamsters. Lipids 1997, 32, 303–309. [Google Scholar] [CrossRef]
- Yan, S.; Chen, J.; Zhu, L.; Guo, T.; Qin, D.; Hu, Z.; Han, S.; Zhou, Y.; Akan, O.D.; Wang, J.; et al. Oryzanol Attenuates High Fat and Cholesterol Diet-Induced Hyperlipidemia by Regulating the Gut Microbiome and Amino Acid Metabolism. J. Agric. Food Chem. 2022, 70, 6429–6443. [Google Scholar] [CrossRef] [PubMed]
- Son, M.J.; Rico, C.W.; Nam, S.H.; Kang, M.Y. Influence of Oryzanol and Ferulic Acid on the Lipid Metabolism and Antioxidative Status in High Fat-Fed Mice. J. Clin. Biochem. Nutr. 2010, 46, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Alam, N.; Ding, X.; Fu, Y.; Jia, L.; Ali, S.; Liu, E. Oryzanol ameliorates MCD-induced metabolic dysfunction-associated steatohepatitis in mice via gut microbiota reprogramming and TLR4/NF-κB signaling suppression. Am. J. Physiol.-Gastrointest. Liver Physiol. 2025, 328, G578–G593. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, S.; Sakurai, S.; Sugimoto, I.; Awata, N. Absorption and metabolism of γ-oryzanol in rats. Chem. Pharm. Bull. 1983, 31, 645–652. [Google Scholar] [CrossRef]
- Chen, L.-C.; Lai, M.-C.; Hong, T.-Y.; Liu, I.M. γ-Oryzanol from Rice Bran Antagonizes Glutamate-Induced Excitotoxicity in an In Vitro Model of Differentiated HT-22 Cells. Nutrients 2024, 16, 1237. [Google Scholar] [CrossRef]
- Abate, G.; Pezzotta, A.; Pucci, M.; Bortolotto, V.; Ribaudo, G.; Bonini, S.A.; Mastinu, A.; Maccarinelli, G.; Ongaro, A.; Tirelli, E.; et al. The Bioactive Gamma-Oryzanol from Oryza sativa L. Promotes Neuronal Differentiation in Different In Vitro and In Vivo Models. Antioxidants 2024, 13, 969. [Google Scholar] [CrossRef]
- Rungratanawanich, W.; Cenini, G.; Mastinu, A.; Sylvester, M.; Wilkening, A.; Abate, G.; Bonini, S.A.; Aria, F.; Marziano, M.; Maccarinelli, G.; et al. γ-Oryzanol Improves Cognitive Function and Modulates Hippocampal Proteome in Mice. Nutrients 2019, 11, 753. [Google Scholar] [CrossRef]
- Akter, S.; Uddin, K.R.; Sasaki, H.; Lyu, Y.; Shibata, S. Gamma oryzanol impairs alcohol-induced anxiety-like behavior in mice via upregulation of central monoamines associated with Bdnf and Il-1β signaling. Sci. Rep. 2020, 10, 10677. [Google Scholar] [CrossRef]
- Akter, S.; Uddin, K.R.; Sasaki, H.; Shibata, S. Gamma Oryzanol Alleviates High-Fat Diet-Induced Anxiety-Like Behaviors Through Downregulation of Dopamine and Inflammation in the Amygdala of Mice. Front. Pharmacol. 2020, 11, 330. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, S.I.; Mahmud, R.; Abu Bakar Zakaria, Z.; Imam, M.U.; Ismail, M. Upregulation of genes related to bone formation by γ-amino butyric acid and γ-oryzanol in germinated brown rice is via the activation of GABAB-receptors and reduction of serum IL-6 in rats. Clin. Interv. Aging 2013, 8, 1259–1271. [Google Scholar] [CrossRef] [PubMed]
- Um, M.Y.; Kim, S.; Jin, Y.H.; Yoon, M.; Yang, H.; Lee, J.; Jung, J.; Urade, Y.; Huang, Z.L.; Kwon, S.; et al. A novel neurological function of rice bran: A standardized rice bran supplement promotes non-rapid eye movement sleep in mice through histamine H1 receptors. Mol. Nutr. Food Res. 2017, 61, 1700316. [Google Scholar] [CrossRef] [PubMed]
- Kuang, Y.-Y.; Xiong, M.-Q.; Cai, J.-X. Clinical efficacy of gamma-oryzanol combined with Femoston for perimenopausal syndrome. World J. Clin. Cases 2024, 12, 4992–4998. [Google Scholar] [CrossRef]
- Kim, M.; Yoon, M.; Cho, S.; Lee, C.; Um, M.Y. γ-Oryzanol Ameliorates Depressive Behavior in Ovariectomized Mice by Regulating Hippocampal Nitric Oxide Synthase: A Potential Therapy for Menopausal Depression. Mol. Nutr. Food Res. 2023, 68, e2300253. [Google Scholar] [CrossRef]
- Ohara, K.; Kiyotani, Y.; Uchida, A.; Nagasaka, R.; Maehara, H.; Kanemoto, S.; Hori, M.; Ushio, H. Oral administration of γ-aminobutyric acid and γ-oryzanol prevents stress-induced hypoadiponectinemia. Phytomedicine 2011, 18, 655–660. [Google Scholar] [CrossRef]
- Kozuka, C.; Sunagawa, S.; Ueda, R.; Higa, M.; Tanaka, H.; Shimizu-Okabe, C.; Ishiuchi, S.; Takayama, C.; Matsushita, M.; Tsutsui, M.; et al. γ-Oryzanol Protects Pancreatic β-Cells Against Endoplasmic Reticulum Stress in Male Mice. Endocrinology 2015, 156, 1242–1250. [Google Scholar] [CrossRef]
- Kozuka, C.; Yabiku, K.; Sunagawa, S.; Ueda, R.; Taira, S.-i.; Ohshiro, H.; Ikema, T.; Yamakawa, K.; Higa, M.; Tanaka, H.; et al. Brown Rice and Its Component, γ-Oryzanol, Attenuate the Preference for High-Fat Diet by Decreasing Hypothalamic Endoplasmic Reticulum Stress in Mice. Diabetes 2012, 61, 3084–3093. [Google Scholar] [CrossRef]
- Kozuka, C.; Kaname, T.; Shimizu-Okabe, C.; Takayama, C.; Tsutsui, M.; Matsushita, M.; Abe, K.; Masuzaki, H. Impact of brown rice-specific γ-oryzanol on epigenetic modulation of dopamine D2 receptors in brain striatum in high-fat-diet-induced obesity in mice. Diabetologia 2017, 60, 1502–1511. [Google Scholar] [CrossRef]
- Klongpityapong, P.; Supabphol, R.; Supabphol, A. Antioxidant Effects of Gamma-oryzanol on Human Prostate Cancer Cells. Asian Pac. J. Cancer Prev. 2013, 14, 5421–5425. [Google Scholar] [CrossRef]
- Huang, L.; Jiang, W.; Zhu, L.; Ma, C.; Ou, Z.; Luo, C.; Wu, J.; Wen, L.; Tan, Z.; Yi, J. γ-Oryzanol suppresses cell apoptosis by inhibiting reactive oxygen species-mediated mitochondrial signaling pathway in H2O2-stimulated L02 cells. Biomed. Pharmacother. 2020, 121, 109554. [Google Scholar] [CrossRef]
- Zhang, C.; Liang, W.; Wang, H.; Yang, Y.; Wang, T.; Wang, S.; Wang, X.; Wang, Y.; Feng, H. γ-Oryzanol mitigates oxidative stress and prevents mutant SOD1-Related neurotoxicity in Drosophila and cell models of amyotrophic lateral sclerosis. Neuropharmacology 2019, 160, 107777. [Google Scholar] [CrossRef]
- Rungratanawanich, W.; Memo, M.; Uberti, D. Redox Homeostasis and Natural Dietary Compounds: Focusing on Antioxidants of Rice (Oryza sativa L.). Nutrients 2018, 10, 1605. [Google Scholar] [CrossRef]
- Francisqueti-Ferron, F.V.; Ferron, A.J.T.; Altomare, A.; Garcia, J.L.; Moreto, F.; Ferreira, A.L.A.; Minatel, I.O.; Aldini, G.; Corrêa, C.R. Gamma-oryzanol reduces renal inflammation and oxidative stress by modulating AGEs/RAGE axis in animals submitted to high sugar-fat diet. Braz. J. Nephrol. 2021, 43, 460–469. [Google Scholar] [CrossRef] [PubMed]
- Mastinu, A.; Bonini, S.A.; Rungratanawanich, W.; Aria, F.; Marziano, M.; Maccarinelli, G.; Abate, G.; Premoli, M.; Memo, M.; Uberti, D. Gamma-oryzanol Prevents LPS-induced Brain Inflammation and Cognitive Impairment in Adult Mice. Nutrients 2019, 11, 728. [Google Scholar] [CrossRef]
- Watanabe, S. The Potential Health Benefits of Brown Rice. In Sustainable Rice Production-Challenges, Strategies and Opportunities; IntechOpen: London, UK, 2023. [Google Scholar]
- De Lellis, L.F.; Morone, M.V.; Buccato, D.G.; Cordara, M.; Larsen, D.S.; Ullah, H.; Piccinocchi, R.; Piccinocchi, G.; Balaji, P.; Baldi, A.; et al. Efficacy of Food Supplement Based on Monacolins, γ-Oryzanol, and γ-Aminobutyric Acid in Mild Dyslipidemia: A Randomized, Double-Blind, Parallel-Armed, Placebo-Controlled Clinical Trial. Nutrients 2024, 16, 2983. [Google Scholar] [CrossRef]
- Nakagawa, K.; Kiko, T.; Hatade, K.; Sookwong, P.; Arai, H.; Miyazawa, T. Antioxidant effect of lutein towards phospholipid hydroperoxidation in human erythrocytes. Br. J. Nutr. 2009, 102, 1280–1284. [Google Scholar] [CrossRef]
- Eslami, S.; Esa, N.M.; Marand, S.M.; Ghasemi, G.; Eslami, S. Effects of gamma oryzanol supplementation on anthropometric measurements & muscular strength in healthy males following chronic resistance training. Indian J. Med. Res. 2014, 139, 857–863. [Google Scholar]
- Nikooyeh, B.; Zargaraan, A.; Ebrahimof, S.; Kalayi, A.; Zahedirad, M.; Yazdani, H.; Rismanchi, M.; Karami, T.; Khazraei, M.; Jafarpour, A.; et al. Daily consumption of γ-oryzanol-fortified canola oil, compared with unfortified canola and sunflower oils, resulted in a better improvement of certain cardiometabolic biomarkers of adult subjects with type 2 diabetes: A randomized controlled clinical trial. Eur. J. Med. Res. 2023, 28, 416. [Google Scholar] [CrossRef]
- Fry, A.C.; Bonner, E.; Lewis, D.L.; Johnson, R.L.; Stone, M.H.; Kraemer, W.J. The Effects of Gamma-Oryzanol Supplementation During Resistance Exercise Training. Int. J. Sport Nutr. 1997, 7, 318–329. [Google Scholar] [CrossRef]
- Ishihara, M.; Ito, Y.; Nakakita, T.; Maehama, T.; Hieda, S.; Yamamoto, K.; Ueno, N. Clinical effect of gamma-oryzanol on climacteric disturbance on serum lipid peroxides. Nihon Sanka Fujinka Gakkai Zasshi 1982, 34, 243–251. [Google Scholar]
- Bucci, L.R. Selected herbals and human exercise performance. Am. J. Clin. Nutr. 2000, 72, 624S–636S. [Google Scholar] [CrossRef] [PubMed]
- Rungratanawanich, W.; Abate, G.; Uberti, D. Pharmacological profile of γ-oryzanol: Its antioxidant mechanisms and its effects in age-related diseases. In Aging; Academic Press: Cambridge, MA, USA, 2020; pp. 201–208. [Google Scholar]
- Hatayama, K.; Kono, K.; Okuma, K.; Masuyama, H. Effect of a specific food intervention with Tamogitake mushroom, Moringa leaves, or rice bran on intestinal microbiota and cognitive function in elderly Japanese. Front. Nutr. 2025, 12, 1585111. [Google Scholar] [CrossRef]
- Berger, A.; Rein, D.; Schäfer, A.; Monnard, I.; Gremaud, G.; Lambelet, P.; Bertoli, C. Similar cholesterol–lowering properties of rice bran oil, with varied γ–oryzanol, in mildly hypercholesterolemic men. Eur. J. Nutr. 2004, 44, 163–173. [Google Scholar] [CrossRef]
Delivery System | Description | Benefits | Limitations/Challenges |
---|---|---|---|
Polymer Nanoparticles (PLGA) [34] | Encapsulation of γ-oryzanol in biodegradable polymer nanoparticles for metabolic disease models | Improved glucose and lipid metabolism in obese-diabetic mice | Requires complex formulation and characterization |
Liposome Nanocarriers [35] | Incorporation of γ-oryzanol into liposomes for enhanced antioxidant and hepatoprotective effects | Enhanced stability and bioavailability | Stability and scale-up challenges |
Nanoemulsions [36] | γ-Oryzanol nanoemulsions using fish oil and medium-chain triglycerides as carrier oils | Good physical stability, suitable for food, personal care, pharmaceuticals | Formulation optimization needed |
Protein Nanoparticles (Zein) [37] | Encapsulation in zein protein nanoparticles for controlled release in gastrointestinal fluids | Controlled release profile, improved stability | Protein source variability can affect properties |
Self-Nanoemulsifying Drug Delivery Systems (S-SNEDDS) [38] | Solid formulations enhancing oral delivery efficiency and drug loading | High drug loading (~96%), improved oral bioavailability | Formulation complexity, excipient compatibility |
Self-Emulsified Alginate Beads (SEABs) [39] | Alginate beads loaded with γ-oryzanol and algae oil for controlled intestinal release | Protection in stomach fluid, effective intestinal release | Manufacturing and reproducibility |
Therapeutic Area | Evidence & Effects | Clinical Outcomes | Limitations/Future Needs |
---|---|---|---|
Cardiovascular and Lipid Metabolism [6,52,53,54,55,79] | Modest cholesterol reduction, decrease in LDL-C, total cholesterol, triglycerides, increase in HDL-C | 19.3% LDL-C reduction, 29.3% HDL-C increase in mild dyslipidemia | Larger trials, standardized γ-oryzanol preparations needed |
Metabolic Syndrome and Diabetes [80,81,82] | Amelioration of insulin sensitivity and glucose metabolism, reduction of inflammatory markers (CRP, IL-6, IFN-γ) | Improved metabolic biomarkers in type 2 diabetes | Long-term studies, mechanism elucidation required |
Menopausal Symptoms [83,84] | Alleviation of symptoms via endocrine modulation, improvement of bone density and sleep quality | Symptom improvement in > 65–85% of women in clinical studies | Larger RCTs for dosing and safety |
Neuroprotection and Cognitive Health [60,86,87] | It crosses the blood–brain barrier, antioxidant, anti-inflammatory and neurogenic effects | Cognitive improvements noted in elderly cohorts | More clinical trials in neurodegenerative diseases |
Anti-inflammatory Effects [82] | Suppression of the NF-κB pathway, reduction of pro-inflammatory cytokines and oxidative stress | Reduced inflammation in chronic disease clinical trials | Further mechanistic and long-term clinical validation |
Safety Profile [88] | Excellent safety profile, no serious adverse events at doses up to 800 mg/day | Safe for long-term use, elderly, chronic conditions | Continue monitoring in diverse populations |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juricic, H.; Cuccioloni, M.; Bonfili, L.; Angeletti, M.; Uberti, D.; Eleuteri, A.M.; Abate, G.; Cecarini, V. Biochemical, Biological, and Clinical Properties of γ-Oryzanol. Antioxidants 2025, 14, 1099. https://doi.org/10.3390/antiox14091099
Juricic H, Cuccioloni M, Bonfili L, Angeletti M, Uberti D, Eleuteri AM, Abate G, Cecarini V. Biochemical, Biological, and Clinical Properties of γ-Oryzanol. Antioxidants. 2025; 14(9):1099. https://doi.org/10.3390/antiox14091099
Chicago/Turabian StyleJuricic, Helena, Massimiliano Cuccioloni, Laura Bonfili, Mauro Angeletti, Daniela Uberti, Anna Maria Eleuteri, Giulia Abate, and Valentina Cecarini. 2025. "Biochemical, Biological, and Clinical Properties of γ-Oryzanol" Antioxidants 14, no. 9: 1099. https://doi.org/10.3390/antiox14091099
APA StyleJuricic, H., Cuccioloni, M., Bonfili, L., Angeletti, M., Uberti, D., Eleuteri, A. M., Abate, G., & Cecarini, V. (2025). Biochemical, Biological, and Clinical Properties of γ-Oryzanol. Antioxidants, 14(9), 1099. https://doi.org/10.3390/antiox14091099