A Nanoformulation of Ubiquinol and Selenium Promotes Proliferation of Human Induced Pluripotent Stem Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Cell Cultures
2.3. Preparation of Treatment Compounds
2.4. Proliferation Assays and Cryopreservation
2.5. Pluripotency Assessment
- (a)
- Immunofluorescence Staining for Pluripotency Markers
- (b)
- Quantitative PCR (qPCR) analysis
2.6. Assessment of Oxidative Stress and Cells Viability
2.7. Mitochondrial Biogenesis Analysis
2.8. Statistical Analysis
3. Results
3.1. QMF-Se Modulates Colony Morphology and Enhances Proliferation of hiPSCs
3.2. Protective Effect of QMF-Se on DOXO-Induced Cytotoxicity in hiPSCs
3.3. QMF-Se Enhances Mitochondrial Biogenesis and Counters DOXO-Induced Mitochondrial Suppression
3.4. QMF-Se Treatment Maintains Pluripotency Marker Expression and Modulates Epigenetic Regulator Levels in hiPSCs
3.5. QMF-Se Treatment Preserves hiPSC Viability Following Cryopreservation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AP | alkaline phosphatase |
BSA | bovine serum albumin |
CoQ10 | Coenzyme Q10 |
COX-I | Cytochrome c oxidase subunit I |
DOXO | doxorubicin |
hiPSCs | human induced pluripotent stem cells |
PLB | placebo |
QMF-Se | QuinoMit Q10® fluid + Selemiun |
ROS | reactive oxygen species |
SDH-A | succinate dehydrogenase complex flavoprotein subunit A |
References
- Mauritz, C.; Schwanke, K.; Reppel, M.; Neef, S.; Katsirntaki, K.; Maier, L.S.; Nguemo, F.; Menke, S.; Haustein, M.; Hescheler, J.; et al. Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation 2008, 118, 507–517. [Google Scholar] [CrossRef]
- Liu, H.; Wang, S.; Wang, J.; Guo, X.; Song, Y.; Fu, K.; Gao, Z.; Liu, D.; He, W.; Yang, L.L. Energy metabolism in health and diseases. Signal Transduct. Target. Ther. 2025, 10, 69. [Google Scholar] [CrossRef]
- Iworima, D.G.; Baker, R.K.; Ellis, C.; Sherwood, C.; Zhan, L.; Rezania, A.; Piret, J.M.; Kieffer, T.J. Metabolic switching, growth kinetics and cell yields in the scalable manufacture of stem cell-derived insulin-producing cells. Stem Cell Res. Ther. 2024, 15, 1. [Google Scholar] [CrossRef]
- Mathew, M.; Nguyen, N.T.; Bhutia, Y.D.; Sivaprakasam, S.; Ganapathy, V. Metabolic Signature of Warburg Effect in Cancer: An Effective and Obligatory Interplay between Nutrient Transporters and Catabolic/Anabolic Pathways to Promote Tumor Growth. Cancers 2024, 16, 504. [Google Scholar] [CrossRef]
- Ivanova, J.S.; Lyublinskaya, O.G. Redox Homeostasis and Regulation in Pluripotent Stem Cells: Uniqueness or Versatility? Int. J. Mol. Sci. 2021, 22, 10946. [Google Scholar] [CrossRef]
- Tan, J.; Virtue, S.; Norris, D.M.; Conway, O.J.; Yang, M.; Bidault, G.; Gribben, C.; Lugtu, F.; Kamzolas, I.; Krycer, J.R.; et al. Limited oxygen in standard cell culture alters metabolism and function of differentiated cells. EMBO J. 2024, 43, 2127–2165. [Google Scholar] [CrossRef]
- Heiduschka, S.; Prigione, A. iPSC models of mitochondrial diseases. Neurobiol. Dis. 2025, 207, 106822. [Google Scholar] [CrossRef]
- Ishida, T.; Nakao, S.; Ueyama, T.; Harada, Y.; Kawamura, T. Metabolic remodeling during somatic cell reprogramming to induced pluripotent stem cells: Involvement of hypoxia-inducible factor 1. Inflamm. Regen. 2020, 40, 8. [Google Scholar] [CrossRef]
- Xu, X.; Pang, Y.; Fan, X. Mitochondria in oxidative stress, inflammation and aging: From mechanisms to therapeutic advances. Signal Transduct. Target. Ther. 2025, 10, 190. [Google Scholar] [CrossRef]
- Deshwal, S.; Onishi, M.; Tatsuta, T.; Bartsch, T.; Cors, E.; Ried, K.; Lemke, K.; Nolte, H.; Giavalisco, P.; Langer, T. Mitochondria regulate intracellular coenzyme Q transport and ferroptotic resistance via STARD7. Nat. Cell Biol. 2023, 25, 246–257. [Google Scholar] [CrossRef]
- Hernandez-Camacho, J.D.; Bernier, M.; Lopez-Lluch, G.; Navas, P. Coenzyme Q(10) Supplementation in Aging and Disease. Front. Physiol. 2018, 9, 44. [Google Scholar] [CrossRef]
- Gasmi, A.; Bjorklund, G.; Mujawdiya, P.K.; Semenova, Y.; Piscopo, S.; Peana, M. Coenzyme Q(10) in aging and disease. Crit. Rev. Food Sci. Nutr. 2024, 64, 3907–3919. [Google Scholar] [CrossRef]
- Nguemo, F.; Nembo, E.N.; Kamga Kapchoup, M.V.; Enzmann, F.; Hescheler, J. QuinoMit Q10-Fluid attenuates hydrogen peroxide-induced irregular beating in mouse pluripotent stem cell-derived cardiomyocytes. Biomed. Pharmacother. 2021, 142, 112089. [Google Scholar] [CrossRef]
- Bodea, O.; Boia, E.R.; Craciun, L.M.; Valcovici, M.D.; Motofelea, A.C.; Munteanu, A.M.; Streian, C.G.; Pop, G.N.; Dragan, S.R. Effect of Coenzyme Q10 Supplementation on Cardiac Function and Quality of Life in Patients with Heart Failure: A Randomized Controlled Trial. J. Clin. Med. 2025, 14, 3675. [Google Scholar] [CrossRef]
- Zhang, F.; Li, X.; Wei, Y. Selenium and Selenoproteins in Health. Biomolecules 2023, 13, 799. [Google Scholar] [CrossRef]
- Lee, J.G.; Jang, J.Y.; Baik, S.M. Selenium as an Antioxidant: Roles and Clinical Applications in Critically Ill and Trauma Patients: A Narrative Review. Antioxidants 2025, 14, 294. [Google Scholar] [CrossRef]
- Alehagen, U.; Alexander, J.; Aaseth, J.O.; Larsson, A.; Opstad, T.B. Supplementation with selenium and coenzyme Q(10) in an elderly Swedish population low in selenium—Positive effects on thyroid hormones, cardiovascular mortality, and quality of life. BMC Med. 2024, 22, 191. [Google Scholar] [CrossRef]
- Steenberge, L.H.; Rogers, S.; Sung, A.Y.; Fan, J.; Pagliarini, D.J. Coenzyme Q(4) is a functional substitute for coenzyme Q(10) and can be targeted to the mitochondria. J. Biol. Chem. 2024, 300, 107269. [Google Scholar] [CrossRef]
- Dunning, B.J.; Bourgonje, A.R.; Bulthuis, M.L.C.; Alexander, J.; Aaseth, J.O.; Larsson, A.; van Goor, H.; Alehagen, U. Selenium and coenzyme Q(10) improve the systemic redox status while reducing cardiovascular mortality in elderly population-based individuals. Free Radic. Biol. Med. 2023, 204, 207–214. [Google Scholar] [CrossRef]
- Cherianidou, A.; Kappenberg, F.; Seidel, F.; Acharya, A.; Papazoglou, P.; Srinivasan, S.P.; Hescheler, J.; Peng, L.; Leist, M.; Hengstler, J.G.; et al. Transcriptome-based prediction of drugs, inhibiting cardiomyogenesis in human induced pluripotent stem cells. Cell Death Discov. 2023, 9, 321. [Google Scholar] [CrossRef]
- Nguemo, F.; Fleischmann, B.K.; Gupta, M.K.; Saric, T.; Malan, D.; Liang, H.; Pfannkuche, K.; Bloch, W.; Schunkert, H.; Hescheler, J.; et al. The L-type Ca2+ channels blocker nifedipine represses mesodermal fate determination in murine embryonic stem cells. PLoS ONE 2013, 8, e53407. [Google Scholar] [CrossRef]
- Gupta, M.K.; Illich, D.J.; Gaarz, A.; Matzkies, M.; Nguemo, F.; Pfannkuche, K.; Liang, H.; Classen, S.; Reppel, M.; Schultze, J.L.; et al. Global transcriptional profiles of beating clusters derived from human induced pluripotent stem cells and embryonic stem cells are highly similar. BMC Dev. Biol. 2010, 10, 98. [Google Scholar] [CrossRef]
- Tan, N.; Luo, H.; Li, W.; Ling, G.; Wei, Y.; Wang, W.; Wang, Y. The dual function of autophagy in doxorubicin-induced cardiotoxicity: Mechanism and natural products. Semin. Cancer Biol. 2025, 109, 83–90. [Google Scholar] [CrossRef]
- Linders, A.N.; Dias, I.B.; Lopez Fernandez, T.; Tocchetti, C.G.; Bomer, N.; Van der Meer, P. A review of the pathophysiological mechanisms of doxorubicin-induced cardiotoxicity and aging. npj Aging 2024, 10, 9. [Google Scholar] [CrossRef]
- Hamad, S.; Derichsweiler, D.; Papadopoulos, S.; Nguemo, F.; Saric, T.; Sachinidis, A.; Brockmeier, K.; Hescheler, J.; Boukens, B.J.; Pfannkuche, K. Generation of human induced pluripotent stem cell-derived cardiomyocytes in 2D monolayer and scalable 3D suspension bioreactor cultures with reduced batch-to-batch variations. Theranostics 2019, 9, 7222–7238. [Google Scholar] [CrossRef]
- Zimmerman, M.A.; Hall, M.; Qi, Q.; Mehta, S.L.; Chen, G.; Li, P.A. Ubisol Coenzyme Q10 promotes mitochondrial biogenesis in HT22 cells challenged by glutamate. Exp. Ther. Med. 2021, 22, 1295. [Google Scholar] [CrossRef]
- Catalan-Garcia, M.; Garrabou, G.; Moren, C.; Guitart-Mampel, M.; Hernando, A.; Diaz-Ramos, A.; Gonzalez-Casacuberta, I.; Juarez, D.L.; Bano, M.; Enrich-Bengoa, J.; et al. Mitochondrial DNA disturbances and deregulated expression of oxidative phosphorylation and mitochondrial fusion proteins in sporadic inclusion body myositis. Clin. Sci. 2016, 130, 1741–1751. [Google Scholar] [CrossRef]
- Kallas, A.; Pook, M.; Trei, A.; Maimets, T. SOX2 Is Regulated Differently from NANOG and OCT4 in Human Embryonic Stem Cells during Early Differentiation Initiated with Sodium Butyrate. Stem Cells Int. 2014, 2014, 298163. [Google Scholar] [CrossRef]
- Costa, R.; Muccioli, S.; Brillo, V.; Bachmann, M.; Szabo, I.; Leanza, L. Mitochondrial dysfunction interferes with neural crest specification through the FoxD3 transcription factor. Pharmacol. Res. 2021, 164, 105385. [Google Scholar] [CrossRef]
- Kim, D.J. The Role of the DNA Methyltransferase Family and the Therapeutic Potential of DNMT Inhibitors in Tumor Treatment. Curr. Oncol. 2025, 32, 88. [Google Scholar] [CrossRef]
- Zhang, F.; Lee, A.; Freitas, A.V.; Herb, J.T.; Wang, Z.H.; Gupta, S.; Chen, Z.; Xu, H. A transcription network underlies the dual genomic coordination of mitochondrial biogenesis. eLife 2024, 13, RP96536. [Google Scholar] [CrossRef]
- Sturm, G.; Karan, K.R.; Monzel, A.S.; Santhanam, B.; Taivassalo, T.; Bris, C.; Ware, S.A.; Cross, M.; Towheed, A.; Higgins-Chen, A.; et al. OxPhos defects cause hypermetabolism and reduce lifespan in cells and in patients with mitochondrial diseases. Commun. Biol. 2023, 6, 22. [Google Scholar] [CrossRef]
- Wen, H.; Deng, H.; Li, B.; Chen, J.; Zhu, J.; Zhang, X.; Yoshida, S.; Zhou, Y. Mitochondrial diseases: From molecular mechanisms to therapeutic advances. Signal Transduct. Target. Ther. 2025, 10, 9. [Google Scholar] [CrossRef]
- Murphy, M.P.; Hartley, R.C. Mitochondria as a therapeutic target for common pathologies. Nat. Rev. Drug Discov. 2018, 17, 865–886. [Google Scholar] [CrossRef]
- Yen, H.C.; Hsu, C.T.; Wu, S.Y.; Kan, C.C.; Chang, C.W.; Chang, H.M.; Chien, Y.A.; Wei, Y.H.; Wu, C.Y. Alterations in coenzyme Q(10) status in a cybrid line harboring the 3243A>G mutation of mitochondrial DNA is associated with abnormal mitochondrial bioenergetics and dysregulated mitochondrial biogenesis. Biochim. Biophys. Acta Bioenerg. 2024, 1865, 149492. [Google Scholar] [CrossRef]
- Chen, X.; Sunkel, B.; Wang, M.; Kang, S.; Wang, T.; Gnanaprakasam, J.N.R.; Liu, L.; Cassel, T.A.; Scott, D.A.; Munoz-Cabello, A.M.; et al. Succinate dehydrogenase/complex II is critical for metabolic and epigenetic regulation of T cell proliferation and inflammation. Sci. Immunol. 2022, 7, eabm8161. [Google Scholar] [CrossRef]
- Mantle, D.; Hargreaves, I.P.; Domingo, J.C.; Castro-Marrero, J. Mitochondrial Dysfunction and Coenzyme Q10 Supplementation in Post-Viral Fatigue Syndrome: An Overview. Int. J. Mol. Sci. 2024, 25, 574. [Google Scholar] [CrossRef]
- Cunatova, K.; Vrbacky, M.; Puertas-Frias, G.; Alan, L.; Vanisova, M.; Saucedo-Rodriguez, M.J.; Houstek, J.; Fernandez-Vizarra, E.; Neuzil, J.; Pecinova, A.; et al. Mitochondrial translation is the primary determinant of secondary mitochondrial complex I deficiencies. iScience 2024, 27, 110560. [Google Scholar] [CrossRef]
- Liu, C.J.; Wang, L.K.; Tsai, F.M. The Application and Molecular Mechanisms of Mitochondria-Targeted Antioxidants in Chemotherapy-Induced Cardiac Injury. Curr. Issues Mol. Biol. 2025, 47, 176. [Google Scholar] [CrossRef]
- Sun, Y.; Jin, L.; Qin, Y.; Ouyang, Z.; Zhong, J.; Zeng, Y. Harnessing Mitochondrial Stress for Health and Disease: Opportunities and Challenges. Biology 2024, 13, 394. [Google Scholar] [CrossRef]
- Hidalgo-Gutierrez, A.; Gonzalez-Garcia, P.; Diaz-Casado, M.E.; Barriocanal-Casado, E.; Lopez-Herrador, S.; Quinzii, C.M.; Lopez, L.C. Metabolic Targets of Coenzyme Q10 in Mitochondria. Antioxidants 2021, 10, 520. [Google Scholar] [CrossRef]
- Pallotti, F.; Bergamini, C.; Lamperti, C.; Fato, R. The Roles of Coenzyme Q in Disease: Direct and Indirect Involvement in Cellular Functions. Int. J. Mol. Sci. 2021, 23, 128. [Google Scholar] [CrossRef] [PubMed]
Gene Names | Sequence (5’ to 3’) | Amplicon Size (bp) | Annealing Temp. (°C) |
---|---|---|---|
DNMT3B | F: GTCGTGCAGGCAGTAGGAAA R: GCCATTTGTTCTCGGCTCTG | 175 | 60 |
FOXD3 | F: GCAACTACTGGACCCTGGAC R: CTGTAAGCGCCGAAGCTCT | 145 | 60 |
NANOG | F: ACTAACATGAGTGTGGATCC R: TCATCTTCACACGTCTTCAG | 130 | 60 |
SOX | F: ATGCACCGCTACGACGTGA R: CTTTTGCACCCCTCCCATTT | 437 | 60 |
OCT4 | F:AGGGCAAGCGATCAAGCA R: GGAAAGGGACCGAGGAGTA | 168 | 60 |
GAPDH | F: CAAGAGCACAAGAGGAAGAGAG R: CTACATGGCAACTGTGAGGAG | 102 | 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguemo, F.; Zhang, H.; Koester, A.; Rohani, S.; Perumal Srinivasan, S.; Hescheler, J. A Nanoformulation of Ubiquinol and Selenium Promotes Proliferation of Human Induced Pluripotent Stem Cells. Antioxidants 2025, 14, 1100. https://doi.org/10.3390/antiox14091100
Nguemo F, Zhang H, Koester A, Rohani S, Perumal Srinivasan S, Hescheler J. A Nanoformulation of Ubiquinol and Selenium Promotes Proliferation of Human Induced Pluripotent Stem Cells. Antioxidants. 2025; 14(9):1100. https://doi.org/10.3390/antiox14091100
Chicago/Turabian StyleNguemo, Filomain, Hai Zhang, Annette Koester, Susan Rohani, Sureshkumar Perumal Srinivasan, and Jürgen Hescheler. 2025. "A Nanoformulation of Ubiquinol and Selenium Promotes Proliferation of Human Induced Pluripotent Stem Cells" Antioxidants 14, no. 9: 1100. https://doi.org/10.3390/antiox14091100
APA StyleNguemo, F., Zhang, H., Koester, A., Rohani, S., Perumal Srinivasan, S., & Hescheler, J. (2025). A Nanoformulation of Ubiquinol and Selenium Promotes Proliferation of Human Induced Pluripotent Stem Cells. Antioxidants, 14(9), 1100. https://doi.org/10.3390/antiox14091100