Genetic Study of Total Phenolic Content and Antioxidant Activity Traits in Tetraploid Wheat via Genome-Wide Association Mapping
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Field Trial
2.2. TPC and AA in Wheat Grains
2.3. Statistical Analysis
2.4. QTL and Candidate Gene Detection
3. Results
3.1. TPC and AA in Tetraploid Wheats
3.2. Heritability and Environmental Effects on Phenolic Traits and Candidate Gene Identification
3.3. Genome-Wide Association Study and QTL Detection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Laddomada, B.; Caretto, S.; Mita, G. Wheat bran phenolic acids: Bioavailability and stability in whole wheat-based foods. Molecules 2015, 20, 15666–15685. [Google Scholar] [CrossRef]
- Ma, D.; Wang, C.; Feng, J.; Xu, B. Wheat grain phenolics: A review on composition, bioactivity, and influencing factors. J. Sci. Food Agric. 2021, 101, 6167–6185. [Google Scholar] [CrossRef]
- Padhy, A.K.; Sharma, A.; Sharma, H.; Srivastava, P.; Singh, S.; Kaur, P.; Kaur, J.; Kaur, S.; Chhuneja, P.; Bains, N.S. Combining high carotenoid, grain protein content and rust resistance in wheat for food and nutritional security. Front. Genet. 2023, 14, 1075767. [Google Scholar] [CrossRef]
- Zhu, Y.; Sang, S. Phytochemicals in whole grain wheat and their health-promoting effects. Mol. Nutr. Food Res. 2017, 61, 1600852. [Google Scholar] [CrossRef] [PubMed]
- Tekin, İ.Ç.; Tekin, A.; Dumlupınar, Z. Evaluation of the yield of advanced lines of durum wheat Levante × Karakılçık related and qualitative traits using the principal component of biplot analysis. Czech J. Genet. Plant Breed. 2024, 60, 149–157. [Google Scholar] [CrossRef]
- Sahu, R.; Mandal, S.; Das, P.; Ashraf, G.J.; Dua, T.K.; Paul, P.; Nandi, G.; Khanra, R. The bioavailability, health advantages, extraction method, and distribution of free and bound phenolics of rice, wheat, and maize: A review. Food Chem. Adv. 2023, 3, 100484. [Google Scholar] [CrossRef]
- Călinoiu, L.F.; Vodnar, D.C. Whole grains and phenolic acids: A review on bioactivity, functionality, health benefits and bioavailability. Nutrients 2018, 10, 1615. [Google Scholar] [CrossRef]
- Sharma, M.; Bhaskar, P. Phenolic compounds in whole-grains of wheat: A review. Appl. Biol. Chem. J. 2021, 2, 8–17. [Google Scholar] [CrossRef]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Neveu, V.; Perez-Jimenez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L. Phenol-explorer: An online comprehensive database on polyphenol contents in foods. Database 2010, 2010, bap024. [Google Scholar] [CrossRef]
- Nayak, B.; Liu, R.H.; Tang, J.M. Effect of processing on phenolic antioxidants of fruits, vegetables, and grains—A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 887–918. [Google Scholar] [CrossRef]
- Kosik, T.; Lacko-Bartosova, M.; Kobida, L. Free phenol content and antioxidant activity of winter wheat in sustainable farming systems. J. Microbiol. Biotechnol. Food Sci. 2014, 3, 247–249. [Google Scholar]
- Gélinas, P.; McKinnon, C.M. Effect of wheat variety, farming site, and bread-baking on total phenolics. Int. J. Food Sci. Technol. 2006, 41, 329–332. [Google Scholar] [CrossRef]
- Ragaee, S.; Seetharaman, K.; Abdel-Aal, E.S.M. The impact of milling and thermal processing on phenolic compounds in cereal grains. Crit. Rev. Food Sci. Nutr. 2014, 54, 837–849. [Google Scholar] [CrossRef]
- Adom, K.K.; Liu, R.H. Antioxidant activity of grains. J. Agric. Food Chem. 2002, 50, 6182–6187. [Google Scholar] [CrossRef]
- Liu, R.H.; Molyneux, R.J.; Xu, X. Genotypic and environmental variation in antioxidant activity and phenolic compounds in hard spring wheat. J. Agric. Food Chem. 2017, 65, 9765–9775. [Google Scholar]
- Collard, B.C.Y.; Jahufer, M.Z.Z.; Brouwer, J.B.; Pang, E.C.K. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica 2005, 142, 169–196. [Google Scholar] [CrossRef]
- Nigro, D.; Laddomada, B.; Mita, G.; Blanco, E.; Colasuonno, P.; Simeone, R.; Gadaleta, A.; Pasqualone, A.; Blanco, A. Genome-wide association mapping of phenolic acids in tetraploid wheats. J. Cereal Sci. 2017, 75, 25–34. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, P.; Goel, M.; Pandey, D.; Balyan, H.S.; Gupta, P.K. Identification of QTLs for antioxidant activity in bread wheat using a RIL population. Front. Genet. 2022, 13, 841021. [Google Scholar] [CrossRef]
- Shawai, S.; Liu, X.; Zhang, Y.; Zhou, Y.; Wang, Y.; Hu, Y.; Li, M. QTL Mapping of Ferulic Acid Concentration in Wheat Grain Using a Recombinant Inbred Line Population and Development of Diagnostic Markers. Cereal Chem. 2024, 101, 214–223. [Google Scholar] [CrossRef]
- Zhi, Y.; Li, Y.; Ma, H.; Zhao, Q.; Wang, C.; Liu, L. Identification of QTL for Alkylresorcinol Content in Wheat and Development of KASP Markers for Marker-Assisted Selection. J. Agric. Food Chem. 2024, 72, 4567–4576. [Google Scholar] [CrossRef]
- Marcotuli, I.; Cabas-Lühmann, P.; Caranfa, D.; Mores, A.; Giove, S.L.; Colasuonno, P.; Muciaccia, S.; Simone, M.; Schwember, A.R.; Gadaleta, A. Genome-wide association study for protein and color content in a tetraploid wheat collection. Curr. Plant Biol. 2025, 42, 100483. [Google Scholar] [CrossRef]
- Pasqualone, A.; Vurro, F.; Wolgamuth, E.; Yusuf, S.; Squeo, G.; De Angelis, D.; Summo, C. Physical-Chemical and Nutritional Characterization of Somali Laxoox Flatbread and Comparison with Yemeni Lahoh Flatbread. Foods 2023, 12, 3050. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z. GAPIT Version 3: Boosting power and accuracy for genomic association and prediction. Genom. Proteom. Bioinform. 2021, 19, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Pressoir, G.; Briggs, W.H.; Vroh, B.I.; Yamasaki, M.; Doebley, J.F. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 2006, 38, 203–208. [Google Scholar] [CrossRef]
- Huang, M.; Liu, X.; Zhou, Y.; Summers, R.M.; Zhang, Z. BLINK: A package for the next level of genome-wide association studies with both individuals and markers in the millions. GigaScience 2018, 7, giy154. [Google Scholar] [CrossRef]
- Kosma, I.S.; Michalaki, A.; Geraris Kartelias, I.; Karantonis, H.C. Comparative evaluation of antioxidant activities of flours from durum wheat varieties. Biol. Life Sci. Forum 2023, 26, 7. [Google Scholar] [CrossRef]
- Bellato, S.; Ciccoritti, R.; Del Frate, V.; Sgrulletta, D.; Carbone, K. Influence of genotype and environment on the content of 5-n alkylresorcinols, total phenols and on the antiradical activity of whole durum wheat grains. J. Cereal Sci. 2013, 57, 162–169. [Google Scholar] [CrossRef]
- Martini, D.; Taddei, F.; Ciccoritti, R.; Pasquini, M.; Nicoletti, I.; Corradini, D.; D’Egidio, M.G. Variation of total antioxidant activity and of phenolic acid, total phenolics and yellow-coloured pigments in durum wheat as a function of genotype, crop year and growing area. J. Cereal Sci. 2017, 65, 175–185. [Google Scholar] [CrossRef]
- Di Loreto, A.; Bosi, S.; Montero, L.; Bregola, V.; Marotti, I.; Sferrazza, R.E.; Cifuentes, A. Determination of phenolic compounds in ancient and modern durum wheat genotypes. Electrophoresis 2018, 39, 2001–2010. [Google Scholar] [CrossRef]
- Pasqualone, A.; Delvecchio, L.N.; Mangini, G.; Taranto, F.; Blanco, A. Variability of total soluble phenolic compounds and antioxidant activity in a collection of tetraploid wheat. Agric. Food Sci. 2014, 23, 307–316. [Google Scholar] [CrossRef]
- Zrcková, M.; Capouchová, I.; Paznocht, L.; Eliášová, M.; Dvořák, P.; Konvalina, P.; Janovská, D.; Orsák, M.; Bečková, L. Variation of the total content of polyphenols and phenolic acids in einkorn, emmer, spelt and common wheat grain as a function of genotype, species and crop year. Plant Soil Environ. 2019, 65, 260–266. [Google Scholar] [CrossRef]
- Sardella, C.; Buresova, B.; Kotíková, Z.; Martinek, P.; Meloni, R.; Paznocht, L.; Vanara, F.; Blandino, M. Influence of agronomic practices on the antioxidant compounds of pigmented wheat and Tritordeum genotypes. J. Agric. Food Chem. 2023, 71, 13220–13233. [Google Scholar] [CrossRef]
- Pasqualone, A.; Delvecchio, L.N.; Gambacorta, G.; Laddomada, B.; Urso, V.; Mazzaglia, A.; Ruisi, P.; Di Miceli, G. Effect of supplementation with wheat bran aqueous extracts on sensory properties and antioxidant activity of dry pasta. Nat. Prod. Commun. 2015, 10, 1739–1742. [Google Scholar]
- Taranto, F.; Delvecchio, L.N.; Mangini, G.; Del Faro, L.; Blanco, A.; Pasqualone, A. Molecular and physico-chemical evaluation of enzymatic browning of whole meal and dough in tetraploid wheat. J. Cereal Sci. 2012, 55, 405–414. [Google Scholar] [CrossRef]
- Simeone, R.; Pasqualone, A.; Clodoveo, M.L.; Blanco, A. Genetic mapping of polyphenol oxidase in tetraploid wheat. Cell. Mol. Biol. Lett. 2002, 7, 763–770. [Google Scholar] [PubMed]
- Shewry, P.R.; Hey, S.J. The contribution of wheat to human diet and health. Food Energy Secur. 2015, 4, 178–202. [Google Scholar] [CrossRef]
- Borrelli, G.M.; Menga, V.; Giovanniello, V.; Ficco, D.B.M. Antioxidants and Phenolic Acid Composition of Wholemeal and Refined-Flour, and Related Biscuits in Old and Modern Cultivars Belonging to Three Cereal Species. Foods 2023, 12, 2551. [Google Scholar] [CrossRef]
- Ficco, D.B.M.; De Simone, V.; Colecchia, S.A.; Pecorella, I.; Platani, C.; Nigro, F.; Finocchiaro, F.; Papa, R.; De Vita, P. Genetic Variability in Anthocyanin Composition and Nutritional Properties of Blue, Purple, and Red Bread (Triticum aestivum L.) and Durum (Triticum turgidum L. ssp. turgidum convar. durum) Wheats. J. Agric. Food Chem. 2014, 62, 8686–8695. [Google Scholar] [CrossRef]
- Czyczyło-Mysza, I.M.; Cyganek, K.; Dziurka, K.; Quarrie, S.; Skrzypek, E.; Marcińska, I.; Myśków, B.; Dziurka, M.; Warchoł, M.; Kapłoniak, K.; et al. Genetic Parameters and QTLs for Total Phenolic Content and Yield of Wheat Mapping Population of CSDH Lines under Drought Stress. Inter. J. Mol. Sci. 2019, 20, 6064. [Google Scholar] [CrossRef]
- Dinelli, G.; Segura-Carretero, A.; Di Silvestro, R.; Marotti, I.; Arráez-Román, D.; Benedettelli, S.; Ghiselli, L.; Fernández-Gutiérrez, A. Profiles of phenolic compounds in modern and old common wheat varieties determined by LC-TOF-MS. J. Chromatogr. A 2011, 1218, 7670–7681. [Google Scholar] [CrossRef] [PubMed]
- Di Silvestro, R.; Di Loreto, A.; Bosi, S.; Bregola, V.; Marotti, I.; Benedettelli, S.; Segura-Carretero, A.; Dinelli, G. Environment and genotype effects on antioxidant properties of organically grown wheat varieties: A 3-year study. J. Sci. Food Agric. 2017, 97, 641–649. [Google Scholar] [CrossRef]
- Ferrara, G.; Farrag, K.; Brunetti, G. The effects of rock fragmentation and/or deep tillage on soil skeletal material and chemical properties in a Mediterranean climate. Soil Use Manag. 2012, 28, 394–400. [Google Scholar] [CrossRef]
- Tian, W.; Li, Y.; Li, Y. Phenolic acid composition and antioxidant activity of hard red winter wheat varieties. J. Food Biochem. 2018, 42, e12682. [Google Scholar] [CrossRef]
- Taranto, F.; Mangini, G.; Miazzi, M.M.; Stevanato, P.; De Vita, P. Polyphenol oxidase genes as integral part of the evolutionary history of domesticated tetraploid wheat. Genomics 2021, 113, 2989–3001. [Google Scholar] [CrossRef]
- Gachon, C.M.; Langlois-Meurinne, M.; Saindrenan, P. Plant secondary metabolism glycosyltransferases: The emerging functional analysis. Trends Plant Sci. 2005, 10, 542–549. [Google Scholar] [CrossRef]
- Li, X.; Sui, Y. Role of peptidyl-prolyl isomerase in plant stress responses. Plant Signal. Behav. 2011, 6, 306–310. [Google Scholar]
- Taranto, F.; Pasqualone, A.; Mangini, G.; Tripodi, P.; Miazzi, M.M.; Pavan, S.; Montemurro, C. Polyphenol Oxidases in Crops: Biochemical, Physiological and Genetic Aspects. Int. J. Mol. Sci. 2017, 18, 377. [Google Scholar] [CrossRef] [PubMed]
Samples | Species | Total Phenolic Compounds | Antioxidant Activity | ||
---|---|---|---|---|---|
mg GAE/g (d.m.) | µmol TE/g (d.m.) | ||||
Chile | Italy | Chile | Italy | ||
PI387744 | Triticum turgidum subsp. dicoccon | 0.45 ± 0.02 | 0.44 ± 0.00 | 0.61 ± 0.02 | 0.63 ± 0.00 |
PI384263 | Triticum turgidum subsp. dicoccon | 0.59 ± 0.01 | 0.57 ± 0.00 | 0.74 ± 0.01 | 0.85 ± 0.01 |
PI362500 | Triticum turgidum subsp. dicoccon | 0.69 ± 0.02 | 0.72 ± 0.05 | 0.84 ± 0.00 | 0.88 ± 0.02 |
PI355471 | Triticum turgidum subsp. dicoccon | 0.80 ± 0.03 | 0.77 ± 0.03 | 0.61 ± 0.00 | 0.60 ± 0.03 |
PI277678 | Triticum turgidum subsp. dicoccon | 0.66 ± 0.03 | 0.56 ± 0.01 | 0.97 ± 0.02 | 0.40 ± 0.02 |
PI668244 | Triticum turgidum subsp. dicoccon | 0.65 ± 0.02 | 0.69 ± 0.04 | 0.72 ± 0.02 | 0.75 ± 0.02 |
PI668240 | Triticum turgidum subsp. dicoccon | 0.57 ± 0.04 | 0.62 ± 0.04 | 0.60 ± 0.01 | 0.65 ± 0.01 |
PI470780 | Triticum turgidum subsp. dicoccon | 0.59 ± 0.02 | 0.59 ± 0.02 | 0.84 ± 0.01 | 0.85 ± 0.00 |
PI532306 | Triticum turgidum subsp. dicoccon | 0.60 ± 0.00 | 0.62 ± 0.04 | 0.79 ± 0.01 | 0.8 ± 0.02 |
PI384332 | Triticum turgidum subsp. dicoccon | 0.65 ± 0.00 | 0.46 ± 0.00 | 0.79 ± 0.02 | 0.34 ± 0.02 |
PI308879 | Triticum turgidum subsp. dicoccon | 0.56 ± 0.01 | 0.51 ± 0.08 | 0.77 ± 0.02 | 0.7 ± 0.01 |
PI94613 | Triticum turgidum subsp. dicoccon | 0.61 ± 0.01 | 0.35 ± 0.00 | 0.67 ± 0.01 | 0.26 ± 0.03 |
PI272600 | Triticum turgidum subsp. dicoccon | 0.73 ± 0.02 | 0.45 ± 0.02 | 0.77 ± 0.00 | 0.42 ± 0.01 |
PI532304 | Triticum turgidum subsp. dicoccon | 0.69 ± 0.01 | 0.34 ± 0.03 | 0.82 ± 0.01 | 0.39 ± 0.03 |
PI470801 | Triticum turgidum subsp. dicoccon | 0.61 ± 0.01 | 0.49 ± 0.04 | 0.57 ± 0.01 | 0.17 ± 0.01 |
PI377672 | Triticum turgidum subsp. dicoccon | 0.58 ± 0.05 | 0.44 ± 0.02 | 0.77 ± 0.01 | 0.40 ± 0.03 |
PI254191 | Triticum turgidum subsp. dicoccon | 0.54 ± 0.01 | 0.43 ± 0.03 | 0.72 ± 0.02 | 0.44 ± 0.01 |
PI480462 | Triticum turgidum subsp. dicoccon | 0.62 ± 0.02 | 0.60 ± 0.03 | 0.48 ± 0.01 | 0.52 ± 0.02 |
PI480457 | Triticum turgidum subsp. dicoccon | 0.57 ± 0.06 | 0.45 ± 0.01 | 0.63 ± 0.01 | 0.57 ± 0.01 |
PI480312 | Triticum turgidum subsp. dicoccon | 0.59 ± 0.00 | 0.60 ± 0.01 | 0.45 ± 0.02 | 0.48 ± 0.01 |
PI79899 | Triticum turgidum subsp. dicoccon | 0.60 ± 0.03 | 0.26 ± 0.00 | 0.83 ± 0.02 | 0.29 ± 0.03 |
PI572858 | Triticum turgidum subsp. dicoccon | 0.67 ± 0.05 | 0.58 ± 0.05 | 0.78 ± 0.02 | 0.48 ± 0.00 |
PI374685 | Triticum turgidum subsp. dicoccon | 0.60 ± 0.04 | 0.45 ± 0.01 | 0.81 ± 0.02 | 0.38 ± 0.00 |
PI362696 | Triticum turgidum subsp. dicoccon | 0.57 ± 0.03 | 0.57 ± 0.01 | 0.80 ± 0.01 | 0.68 ± 0.01 |
PI362501 | Triticum turgidum subsp. dicoccon | 0.43 ± 0.03 | 0.45 ± 0.00 | 0.59 ± 0.01 | 0.64 ± 0.00 |
PI290517 | Triticum turgidum subsp. dicoccon | 0.48 ± 0.01 | 0.55 ± 0.05 | 0.68 ± 0.10 | 0.58 ± 0.05 |
PI182743 | Triticum turgidum subsp. dicoccon | 0.52 ± 0.04 | 0.47 ± 0.03 | 0.55 ± 0.02 | 0.54 ± 0.03 |
PI94640 | Triticum turgidum subsp. dicoccon | 0.53 ± 0.05 | 0.48 ± 0.00 | 0.40 ± 0.01 | 0.42 ± 0.02 |
PI190927 | Triticum turgidum subsp. dicoccon | 0.71 ± 0.08 | 0.48 ± 0.05 | 0.96 ± 0.04 | 0.29 ± 0.01 |
PI499973 | Triticum turgidum subsp. dicoccon | 0.58 ± 0.03 | 0.49 ± 0.04 | 0.75 ± 0.01 | 0.55 ± 0.02 |
PI480461 | Triticum turgidum subsp. dicoccon | 0.49 ± 0.02 | 0.48 ± 0.05 | 0.66 ± 0.02 | 0.70 ± 0.02 |
PI480068 | Triticum turgidum subsp. dicoccon | 0.45 ± 0.02 | 0.37 ± 0.02 | 0.65 ± 0.01 | 0.68 ± 0.01 |
PI479964 | Triticum turgidum subsp. dicoccon | 0.40 ± 0.00 | 0.42 ± 0.01 | 0.30 ± 0.01 | 0.54 ± 0.00 |
PI384484 | Triticum turgidum subsp. dicoccon | 0.39 ± 0.04 | 0.51 ± 0.03 | 0.16 ± 0.02 | 0.72 ± 0.00 |
PI341801 | Triticum turgidum subsp. dicoccon | 0.47 ± 0.05 | 0.39 ± 0.01 | 0.55 ± 0.02 | 0.40 ± 0.02 |
PI434999 | Triticum turgidum subsp. dicoccon | 0.43 ± 0.03 | 0.48 ± 0.02 | 0.51 ± 0.00 | 0.49 ± 0.01 |
PI434998 | Triticum turgidum subsp. dicoccon | 0.44 ± 0.02 | 0.43 ± 0.03 | 0.56 ± 0.01 | 0.45 ± 0.01 |
PI434992 | Triticum turgidum subsp. dicoccon | 0.44 ± 0.02 | 0.38 ± 0.01 | 0.55 ± 0.00 | 0.55 ± 0.00 |
PI377650 | Triticum turgidum subsp. dicoccon | 0.61 ± 0.06 | 0.62 ± 0.02 | 0.60 ± 0.01 | 0.54 ± 0.01 |
PI352337 | Triticum turgidum subsp. dicoccon | 0.31 ± 0.01 | 0.32 ± 0.03 | 0.40 ± 0.01 | 0.45 ± 0.01 |
PI352358 | Triticum turgidum subsp. dicoccon | 0.40 ± 0.01 | 0.44 ± 0.05 | 0.36 ± 0.01 | 0.42 ± 0.02 |
PI534275 | Triticum turgidum subsp. dicoccon | 0.53 ± 0.01 | 0.61 ± 0.02 | 0.53 ± 0.02 | 0.55 ± 0.02 |
PI191387 | Triticum turgidum subsp. dicoccon | 0.42 ± 0.04 | 0.48 ± 0.04 | 0.35 ± 0.01 | 0.48 ± 0.00 |
PI387685 | Triticum turgidum subsp. dicoccon | 0.40 ± 0.04 | 0.40 ± 0.05 | 0.37 ± 0.01 | 0.38 ± 0.01 |
PI387777 | Triticum turgidum subsp. dicoccon | 0.45 ± 0.01 | 0.52 ± 0.03 | 0.48 ± 0.02 | 0.49 ± 0.01 |
PI387773 | Triticum turgidum subsp. dicoccon | 0.42 ± 0.05 | 0.42 ± 0.04 | 0.45 ± 0.04 | 0.44 ± 0.01 |
PI387767 | Triticum turgidum subsp. dicoccon | 0.38 ± 0.06 | 0.38 ± 0.04 | 0.49 ± 0.01 | 0.51 ± 0.01 |
PI387750 | Triticum turgidum subsp. dicoccon | 0.43 ± 0.00 | 0.55 ± 0.01 | 0.38 ± 0.01 | 0.38 ± 0.01 |
PI387748 | Triticum turgidum subsp. dicoccon | 0.46 ± 0.04 | 0.40 ± 0.00 | 0.39 ± 0.01 | 0.3 ± 0.01 |
PI387746 | Triticum turgidum subsp. dicoccon | 0.45 ± 0.02 | 0.45 ± 0.02 | 0.45 ± 0.01 | 0.41 ± 0.01 |
PI387793 | Triticum turgidum subsp. dicoccon | 0.27 ± 0.00 | 0.41 ± 0.02 | 0.26 ± 0.01 | 0.26 ± 0.03 |
PI387792 | Triticum turgidum subsp. dicoccon | 0.46 ± 0.04 | 0.34 ± 0.00 | 0.30 ± 0.02 | 0.08 ± 0.00 |
PI94624 | Triticum turgidum subsp. dicoccon | 0.47 ± 0.05 | 0.53 ± 0.00 | 0.58 ± 0.01 | 0.61 ± 0.01 |
CItr14085 | Triticum turgidum subsp. dicoccon | 0.55 ± 0.02 | 0.58 ± 0.00 | 0.80 ± 0.01 | 0.41 ± 0.02 |
PI94625 | Triticum turgidum subsp. dicoccon | 0.61 ± 0.03 | 0.60 ± 0.03 | 0.68 ± 0.01 | 0.73 ± 0.01 |
PI190923 | Triticum turgidum subsp. dicoccon | 0.30 ± 0.02 | 0.44 ± 0.02 | 0.12 ± 0.01 | 0.24 ± 0.01 |
PI326312 | Triticum turgidum subsp. dicoccon | 0.50 ± 0.07 | 0.36 ± 0.00 | 0.71 ± 0.01 | 0.04 ± 0.00 |
PI330544 | Triticum turgidum subsp. dicoccon | 0.44 ± 0.01 | 0.42 ± 0.05 | 0.37 ± 0.01 | 0.34 ± 0.01 |
PI352369 | Triticum turgidum subsp. dicoccon | 0.38 ± 0.01 | 0.38 ± 0.00 | 0.34 ± 0.01 | 0.46 ± 0.01 |
PI384305 | Triticum turgidum subsp. dicoccon | 0.39 ± 0.01 | 0.40 ± 0.01 | 0.33 ± 0.01 | 0.32 ± 0.01 |
CItr14838 | Triticum turgidum subsp. dicoccon | 0.30 ± 0.03 | 0.43 ± 0.01 | 0.56 ± 0.02 | 0.11 ± 0.00 |
CItr14637 | Triticum turgidum subsp. dicoccon | 0.46 ± 0.03 | 0.44 ± 0.04 | 0.84 ± 0.01 | 0.38 ± 0.01 |
PI94631 | Triticum turgidum subsp. dicoccon | 0.36 ± 0.02 | 0.34 ± 0.00 | 0.26 ± 0.01 | 0.29 ± 0.01 |
PI94630 | Triticum turgidum subsp. dicoccon | 0.52 ± 0.02 | 0.35 ± 0.02 | 0.80 ± 0.01 | 0.07 ± 0.00 |
CItr14972 | Triticum turgidum subsp. dicoccon | 0.51 ± 0.04 | 0.43 ± 0.02 | 0.57 ± 0.00 | 0.41 ± 0.01 |
CItr14971 | Triticum turgidum subsp. dicoccon | 0.50 ± 0.02 | 0.39 ± 0.01 | 0.51 ± 0.00 | 0.26 ± 0.01 |
CItr14917 | Triticum turgidum subsp. dicoccon | 0.36 ± 0.01 | 0.44 ± 0.00 | 0.12 ± 0.01 | 0.50 ± 0.01 |
CItr14868 | Triticum turgidum subsp. dicoccon | 0.38 ± 0.01 | 0.33 ± 0.03 | 0.30 ± 0.01 | 0.30 ± 0.01 |
CItr14867 | Triticum turgidum subsp. dicoccon | 0.58 ± 0.03 | 0.40 ± 0.01 | 0.52 ± 0.02 | 0.23 ± 0.01 |
CItr14866 | Triticum turgidum subsp. dicoccon | 0.53 ± 0.02 | 0.54 ± 0.02 | 0.37 ± 0.01 | 0.39 ± 0.01 |
PI94662 | Triticum turgidum subsp. dicoccon | 0.50 ± 0.03 | 0.46 ± 0.05 | 0.55 ± 0.01 | 0.36 ± 0.01 |
PI94661 | Triticum turgidum subsp. dicoccon | 0.50 ± 0.05 | 0.34 ± 0.02 | 0.63 ± 0.01 | 0.12 ± 0.01 |
PI94648 | Triticum turgidum subsp. dicoccon | 0.40 ± 0.03 | 0.53 ± 0.03 | 0.76 ± 0.02 | 0.27 ± 0.01 |
PI94636 | Triticum turgidum subsp. dicoccon | 0.62 ± 0.04 | 0.26 ± 0.01 | 0.74 ± 0.00 | 0.17 ± 0.01 |
PI164578 | Triticum turgidum subsp. dicoccon | 0.56 ± 0.07 | 0.46 ± 0.01 | 0.73 ± 0.01 | 0.06 ± 0.00 |
PI94682 | Triticum turgidum subsp. dicoccon | 0.55 ± 0.07 | 0.34 ± 0.01 | 0.84 ± 0.02 | 0.05 ± 0.01 |
PI94681 | Triticum turgidum subsp. dicoccon | 0.48 ± 0.04 | 0.36 ± 0.02 | 0.56 ± 0.02 | 0.06 ± 0.00 |
PI94675 | Triticum turgidum subsp. dicoccon | 0.47 ± 0.01 | 0.35 ± 0.02 | 0.75 ± 0.01 | 0.40 ± 0.00 |
PI193878 | Triticum turgidum subsp. dicoccon | 0.54 ± 0.03 | 0.37 ± 0.03 | 0.64 ± 0.02 | 0.31 ± 0.00 |
PI193644 | Triticum turgidum subsp. dicoccon | 0.45 ± 0.04 | 0.51 ± 0.00 | 0.47 ± 0.01 | 0.49 ± 0.01 |
PI193643 | Triticum turgidum subsp. dicoccon | 0.38 ± 0.00 | 0.38 ± 0.03 | 0.38 ± 0.01 | 0.38 ± 0.01 |
PI193642 | Triticum turgidum subsp. dicoccon | 0.63 ± 0.03 | 0.33 ± 0.00 | 0.82 ± 0.01 | 0.06 ± 0.00 |
PI195722 | Triticum turgidum subsp. dicoccon | 0.59 ± 0.04 | 0.31 ± 0.02 | 0.86 ± 0.01 | 0.24 ± 0.02 |
PI194375 | Triticum turgidum subsp. dicoccon | 0.45 ± 0.04 | 0.43 ± 0.02 | 0.72 ± 0.01 | 0.70 ± 0.01 |
PI254150 | Triticum turgidum subsp. dicoccon | 0.37 ± 0.00 | 0.4 ± 0.00 | 0.57 ± 0.02 | 0.49 ± 0.01 |
PI234868 | Triticum turgidum subsp. dicoccon | 0.46 ± 0.00 | 0.29 ± 0.03 | 0.60 ± 0.02 | 0.44 ± 0.01 |
PI221401 | Triticum turgidum subsp. dicoccon | 0.50 ± 0.07 | 0.50 ± 0.04 | 0.88 ± 0.01 | 0.78 ± 0.01 |
PI221400 | Triticum turgidum subsp. dicoccon | 0.37 ± 0.03 | 0.42 ± 0.01 | 0.71 ± 0.01 | 0.79 ± 0.01 |
PI197495 | Triticum turgidum subsp. dicoccon | 0.71 ± 0.06 | 0.34 ± 0.02 | 0.79 ± 0.02 | 0.33 ± 0.01 |
PI254173 | Triticum turgidum subsp. dicoccon | 0.63 ± 0.00 | 0.33 ± 0.03 | 0.82 ± 0.01 | 0.19 ± 0.01 |
PI254169 | Triticum turgidum subsp. dicoccon | 0.61 ± 0.06 | 0.42 ± 0.00 | 0.56 ± 0.02 | 0.35 ± 0.02 |
PI254168 | Triticum turgidum subsp. dicoccon | 0.49 ± 0.00 | 0.41 ± 0.01 | 0.63 ± 0.01 | 0.62 ± 0.01 |
PI254160 | Triticum turgidum subsp. dicoccon | 0.36 ± 0.01 | 0.42 ± 0.01 | 0.38 ± 0.01 | 0.38 ± 0.02 |
PI254152 | Triticum turgidum subsp. dicoccon | 0.42 ± 0.05 | 0.37 ± 0.01 | 0.36 ± 0.01 | 0.35 ± 0.01 |
PI254186 | Triticum turgidum subsp. dicoccon | 0.41 ± 0.02 | 0.41 ± 0.05 | 0.26 ± 0.01 | 0.16 ± 0.01 |
PI254182 | Triticum turgidum subsp. dicoccon | 0.31 ± 0.03 | 0.32 ± 0.01 | 0.27 ± 0.00 | 0.51 ± 0.01 |
PI254179 | Triticum turgidum subsp. dicoccon | 0.52 ± 0.02 | 0.50 ± 0.03 | 0.49 ± 0.03 | 0.18 ± 0.00 |
PI254178 | Triticum turgidum subsp. dicoccon | 0.47 ± 0.04 | 0.47 ± 0.01 | 0.73 ± 0.01 | 0.51 ± 0.02 |
PI254177 | Triticum turgidum subsp. dicoccon | 0.45 ± 0.05 | 0.35 ± 0.00 | 0.65 ± 0.01 | 0.37 ± 0.00 |
PI275996 | Triticum turgidum subsp. dicoccon | 0.39 ± 0.04 | 0.44 ± 0.03 | 0.42 ± 0.00 | 0.44 ± 0.00 |
PI273982 | Triticum turgidum subsp. dicoccon | 0.35 ± 0.02 | 0.53 ± 0.00 | 0.09 ± 0.02 | 0.39 ± 0.00 |
PI276020 | Triticum turgidum subsp. dicoccon | 0.33 ± 0.01 | 0.45 ± 0.05 | 0.44 ± 0.02 | 0.42 ± 0.01 |
PI276017 | Triticum turgidum subsp. dicoccon | 0.42 ± 0.01 | 0.41 ± 0.02 | 0.44 ± 0.07 | 0.42 ± 0.02 |
PI276008 | Triticum turgidum subsp. dicoccon | 0.44 ± 0.04 | 0.44 ± 0.01 | 0.42 ± 0.01 | 0.34 ± 0.02 |
PI276003 | Triticum turgidum subsp. dicoccon | 0.47 ± 0.04 | 0.41 ± 0.04 | 0.92 ± 0.03 | 0.37 ± 0.00 |
PI298573 | Triticum turgidum subsp. dicoccon | 0.32 ± 0.01 | 0.52 ± 0.05 | 0.23 ± 0.00 | 0.22 ± 0.00 |
PI322232 | Triticum turgidum subsp. dicoccon | 0.35 ± 0.01 | 0.41 ± 0.05 | 0.34 ± 0.00 | 0.49 ± 0.01 |
PI319868 | Triticum turgidum subsp. dicoccon | 0.58 ± 0.01 | 0.42 ± 0.04 | 0.48 ± 0.02 | 0.43 ± 0.00 |
PI310471 | Triticum turgidum subsp. dicoccon | 0.48 ± 0.01 | 0.31 ± 0.00 | 0.52 ± 0.06 | 0.40 ± 0.02 |
PI306538 | Triticum turgidum subsp. dicoccon | 0.39 ± 0.02 | 0.52 ± 0.01 | 0.56 ± 0.00 | 0.74 ± 0.02 |
PI306537 | Triticum turgidum subsp. dicoccon | 0.67 ± 0.04 | 0.55 ± 0.05 | 0.82 ± 0.04 | 0.48 ± 0.01 |
PI352350 | Triticum turgidum subsp. dicoccon | 0.32 ± 0.02 | 0.44 ± 0.02 | 0.45 ± 0.01 | 0.53 ± 0.02 |
PI355476 | Triticum turgidum subsp. dicoccon | 0.55 ± 0.01 | 0.52 ± 0.04 | 0.38 ± 0.00 | 0.63 ± 0.01 |
PI355469 | Triticum turgidum subsp. dicoccon | 0.33 ± 0.02 | 0.54 ± 0.04 | 0.61 ± 0.01 | 0.16 ± 0.01 |
PI355467 | Triticum turgidum subsp. dicoccon | 0.51 ± 0.02 | 0.45 ± 0.01 | 0.61 ± 0.01 | 0.28 ± 0.01 |
PI355464 | Triticum turgidum subsp. dicoccon | 0.69 ± 0.04 | 0.33 ± 0.01 | 0.91 ± 0.01 | 0.37 ± 0.01 |
PI355460 | Triticum turgidum subsp. dicoccon | 0.45 ± 0.04 | 0.44 ± 0.04 | 0.68 ± 0.00 | 0.83 ± 0.01 |
PI384301 | Triticum turgidum subsp. dicoccon | 0.50 ± 0.01 | 0.40 ± 0.00 | 0.85 ± 0.01 | 0.59 ± 0.00 |
PI377660 | Triticum turgidum subsp. dicoccon | 0.50 ± 0.00 | 0.55 ± 0.01 | 0.88 ± 0.01 | 0.63 ± 0.05 |
PI377658 | Triticum turgidum subsp. dicoccon | 0.46 ± 0.01 | 0.46 ± 0.00 | 0.57 ± 0.00 | 0.56 ± 0.00 |
PI377657 | Triticum turgidum subsp. dicoccon | 0.51 ± 0.01 | 0.53 ± 0.05 | 0.59 ± 0.04 | 0.55 ± 0.01 |
PI377655 | Triticum turgidum subsp. dicoccon | 0.54 ± 0.06 | 0.52 ± 0.02 | 0.76 ± 0.01 | 0.82 ± 0.02 |
PI384320 | Triticum turgidum subsp. dicoccon | 0.41 ± 0.05 | 0.44 ± 0.04 | 0.47 ± 0.02 | 0.48 ± 0.02 |
PI387699 | Triticum turgidum subsp. dicoccon | 0.45 ± 0.00 | 0.50 ± 0.01 | 0.74 ± 0.01 | 0.76 ± 0.01 |
PI387683 | Triticum turgidum subsp. dicoccon | 0.69 ± 0.05 | 0.54 ± 0.06 | 0.75 ± 0.01 | 0.65 ± 0.00 |
PI418586 | Triticum turgidum subsp. paleocolchicum | 0.77 ± 0.04 | 0.48 ± 0.00 | 0.75 ± 0.01 | 0.57 ± 0.01 |
PI349050 | Triticum turgidum subsp. paleocolchicum | 0.52 ± 0.00 | 0.41 ± 0.00 | 0.60 ± 0.01 | 0.44 ± 0.02 |
PI192666 | Triticum turgidum subsp. polonicum | 0.49 ± 0.00 | 0.31 ± 0.02 | 0.77 ± 0.01 | 0.52 ± 0.00 |
CItr14803 | Triticum turgidum subsp. polonicum | 0.52 ± 0.05 | 0.44 ± 0.00 | 0.75 ± 0.02 | 0.07 ± 0.01 |
PI387457 | Triticum turgidum subsp. polonicum | 0.63 ± 0.03 | 0.59 ± 0.06 | 0.80 ± 0.03 | 0.35 ± 0.01 |
PI290512 | Triticum turgidum subsp. polonicum | 0.73 ± 0.04 | 0.37 ± 0.01 | 0.69 ± 0.01 | 0.37 ± 0.01 |
PI272566 | Triticum turgidum subsp. polonicum | 0.42 ± 0.00 | 0.53 ± 0.02 | 0.73 ± 0.01 | 0.76 ± 0.03 |
PI225334 | Triticum turgidum subsp. polonicum | 0.51 ± 0.01 | 0.49 ± 0.03 | 0.56 ± 0.02 | 0.21 ± 0.01 |
PI384343 | Triticum turgidum subsp. polonicum | 0.34 ± 0.01 | 0.51 ± 0.01 | 0.41 ± 0.01 | 0.69 ± 0.02 |
PI566593 | Triticum turgidum subsp. polonicum | 0.47 ± 0.04 | 0.40 ± 0.01 | 0.42 ± 0.01 | 0.41 ± 0.00 |
CItr14095 | Triticum turgidum subsp. turanicum | 0.35 ± 0.00 | 0.52 ± 0.03 | 0.28 ± 0.00 | 0.42 ± 0.01 |
PI190973 | Triticum turgidum subsp. turanicum | 0.48 ± 0.04 | 0.45 ± 0.01 | 0.85 ± 0.00 | 0.38 ± 0.01 |
PI306665 | Triticum turgidum subsp. turanicum | 0.48 ± 0.04 | 0.45 ± 0.01 | 0.34 ± 0.02 | 0.32 ± 0.01 |
PI166554 | Triticum turgidum subsp. turanicum | 0.49 ± 0.02 | 0.43 ± 0.06 | 0.70 ± 0.02 | 0.70 ± 0.02 |
PI254205 | Triticum turgidum subsp. turanicum | 0.64 ± 0.02 | - | 0.55 ± 0.00 | - |
PI211691 | Triticum turgidum subsp. turanicum | 0.48 ± 0.04 | 0.35 ± 0.01 | 0.45 ± 0.01 | 0.06 ± 0.00 |
PI166450 | Triticum turgidum subsp. turanicum | 0.36 ± 0.03 | 0.39 ± 0.03 | 0.27 ± 0.02 | 0.28 ± 0.00 |
PI256034 | Triticum turgidum subsp. turanicum | 0.60 ± 0.05 | 0.44 ± 0.02 | 0.6 ± 0.00 | 0.17 ± 0.00 |
PI272602 | Triticum turgidum subsp. turanicum | 0.44 ± 0.02 | 0.41 ± 0.01 | 0.46 ± 0.00 | 0.27 ± 0.01 |
Trait | Statistics | Chile | Italy |
---|---|---|---|
TPC | Mean | 0.50 | 0.45 |
SD (±) | 0.02 | 0.02 | |
Median | 0.49 | 0.44 | |
Min | 0.27 | 0.26 | |
Max | 0.82 | 0.79 | |
H2 | 0.72 | ||
AA | Mean | 0.58 | 0.44 |
SD (±) | 0.01 | 0.01 | |
Median | 0.59 | 0.42 | |
Min | 0.08 | 0.04 | |
Max | 0.99 | 0.89 | |
H2 | 0.65 |
Parameter | Environment | Source | df | MS | F Value | |
---|---|---|---|---|---|---|
TPC | Chile | Replication | 1 | 0.0017014 | 1.550 | ns |
Genotype | 143 | 0.0240493 | 21.905 | *** | ||
Italy | Replication | 1 | 0.0039185 | 5.094 | * | |
Genotype | 142 | 0.0164323 | 21.364 | *** | ||
Genotype x environment | 142 | 0.0150100 | 15.840 | *** | ||
AA | Chile | Replication | 1 | 0.003042 | 9.614 | ** |
Genotype | 143 | 0.076817 | 242.794 | *** | ||
Italy | Replication | 1 | 0.000253 | 1.314 | ns | |
Genotype | 142 | 0.076967 | 399.484 | *** | ||
Genotype x environment | 142 | 0.065100 | 245.200 | *** |
Traits | QTL | Closest Marker | Marker ID | SNP Alleles | Chr | cM | Position (bp) | Environments | Mean | Candidate Gene | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Chile | Italy | ||||||||||||||||
LOD | R2 | Marker Effect | LOD | R2 | Marker Effect | LOD | R2 | Marker Effect | |||||||||
TPC | QGae.bc.2B | AX_158547367 | 2B | 30,497,225 | - | - | - | - | - | - | 3.30 | 0.10 | 0.02 | ||||
QGae.bc.3A | AX_158523192 | 3A | 617,303,886 | - | - | - | 3.10 | 0.09 | −0.05 | - | - | - | flavonol 3-sulfotransferase | ||||
QGae.bc.4B | AX_158556017 | 4B | 37,431,007 | - | - | - | - | - | - | 5.30 | 0.16 | −0.03 | |||||
QGae.bc.5A | BS00065481_51 | IWB9564 | T/C | 5A | 141.3 | 581,479,161 | 4.83 | 0.14 | 0.46 | - | - | - | - | - | - | ||
AA | QTe.bc.2A-1 | AX_158573306 | 2A | 62,235,644 | - | - | - | - | - | - | 3.05 | 0.09 | 0.06 | ||||
QTe.bc.2A-2 | AX_110949499 | 2A | 694,583,696 | - | - | - | - | - | - | 3.65 | 0.11 | −0.05 | |||||
QTe.bc.2A-3 | AX_158540693 | 2A | 715,414,711 | 5.73 | 0.17 | −0.01 | - | - | - | - | - | - | |||||
QTe.bc.2B-1 | Excalibur_c31042_178 | IWB25055 | T/C | 2B | 12.3 | 17,390,640 | 3.37 | 0.10 | 0.11 | - | - | - | - | - | - | ||
QTe.bc.2B-2 | AX_158575044 | 2B | 45,139,675 | 3.41 | 0.10 | −0.11 | - | - | - | - | - | - | |||||
QTe.bc.4B | AX_158556017 | 4B | 37,431,007 | - | - | - | - | - | - | 3.18 | 0.10 | −0.04 | |||||
QTe.bc.5A-1 | wsnp_Ku_c14275_22535576 | IWA6522 | T/C | 5A | 90.3 | 478,821,006 | 5.73 | 0.17 | −0.06 | - | - | - | - | - | - | ||
QTe.bc.5A-2 | BS00065481_51 | IWB9564 | T/C | 5A | 141.3 | 581,479,161 | 5.73 | 0.17 | 0.58 | - | - | - | - | - | - | ||
QTe.bc.5B-1 | AX_94534815 | 5B | 24,114,456 | 3.11 | 0.09 | 0.08 | - | - | - | - | - | - | |||||
QTe.bc.5B-2 | BS00068805_51 | IWB10362 | A/C | 5B | 113.9 | 551,499,561 | - | - | - | 3.16 | 0.10 | 0.07 | 3.40 | 0.10 | 0.06 | ||
QTe.bc.6A | AX_94494977 | 6A | 597,938,935 | 5.73 | 0.17 | −0.08 | - | - | - | - | - | - | Peptidylprolyl isomerase | ||||
QTe.bc.6B-1 | AX_109495285 | 6B | 55,647,740 | 3.73 | 0.11 | 0.14 | - | - | - | - | - | - | |||||
QTe.bc.6B-2 | AX_109345149 | 6B | 123,748,576 | 5.73 | 0.17 | −0.05 | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcotuli, I.; Vurro, F.; Mores, A.; Pasqualone, A.; Colasuonno, P.; Cabas-Lühmann, P.; Schwember, A.R.; Gadaleta, A. Genetic Study of Total Phenolic Content and Antioxidant Activity Traits in Tetraploid Wheat via Genome-Wide Association Mapping. Antioxidants 2025, 14, 1048. https://doi.org/10.3390/antiox14091048
Marcotuli I, Vurro F, Mores A, Pasqualone A, Colasuonno P, Cabas-Lühmann P, Schwember AR, Gadaleta A. Genetic Study of Total Phenolic Content and Antioxidant Activity Traits in Tetraploid Wheat via Genome-Wide Association Mapping. Antioxidants. 2025; 14(9):1048. https://doi.org/10.3390/antiox14091048
Chicago/Turabian StyleMarcotuli, Ilaria, Francesca Vurro, Antonia Mores, Antonella Pasqualone, Pasqualina Colasuonno, Patricia Cabas-Lühmann, Andrés R. Schwember, and Agata Gadaleta. 2025. "Genetic Study of Total Phenolic Content and Antioxidant Activity Traits in Tetraploid Wheat via Genome-Wide Association Mapping" Antioxidants 14, no. 9: 1048. https://doi.org/10.3390/antiox14091048
APA StyleMarcotuli, I., Vurro, F., Mores, A., Pasqualone, A., Colasuonno, P., Cabas-Lühmann, P., Schwember, A. R., & Gadaleta, A. (2025). Genetic Study of Total Phenolic Content and Antioxidant Activity Traits in Tetraploid Wheat via Genome-Wide Association Mapping. Antioxidants, 14(9), 1048. https://doi.org/10.3390/antiox14091048