High-Intensity Interval Training as Redox Medicine: Targeting Oxidative Stress and Antioxidant Adaptations in Cardiometabolic Disease Cohorts
Abstract
1. Introduction
2. Oxidative Stress in Cardiometabolic Diseases
2.1. The Pathophysiological Role of Oxidative Stress
2.2. Oxidative Stress as a Mechanistic Player in Disease Development
2.3. Elevated Oxidative Stress in Clinical Populations
3. The Role of Exercise in the Prevention and Treatment of Cardiometabolic Disorders with Focus on HIIT
4. HIIT and Oxidative Stress
4.1. Acute Effects of HIIT on Oxidative Stress Status
4.2. Longer-Term Effects of HIIT on Oxidative Stress Status
4.2.1. Type 2 Diabetes Mellitus
4.2.2. Cardiovascular Disease
4.2.3. Obesity
4.2.4. Hypertension
4.2.5. Non-Alcoholic Fatty Liver Disease (NAFLD)
Ref. | Design | Condition | n | HIIT Protocol | Duration (Weeks) | Main effects on Redox Outcomes | Main Effects on Other Clinical Outcomes |
---|---|---|---|---|---|---|---|
[44] | RCT | T2DM | 14 | Treadmill; 4–6 × 1 min @ 80–85% VO2peak; 4 min recovery @ 50–60% VO2peak; total session time: 30–40 min; 3×/week | 12 | - ↓MDA, and↑GPx - ↑NO - No change in SOD | - Improved lipid profiles - Improved VO2max |
[45] | RCT | T2DM | 11 | Cycle ergometer; 10 × 1 min @ 95% Wpeak; 1 min recovery @ 20% Wpeak; total session time: 20 min; 3×/week | 11 | - No change in SOD2, and NOX - ↑ eNOS expression in skeletal muscle | - No structural vascular adaptations - No change in VEGF |
[46] | RCT | T2DM | 30 (15/15) | Group-1 (n = 15): cycle ergometer; 10 × 1 min @ 85–90% HRmax; 1 min recovery; total session time: 30 min; 3×/week Group-2 (n = 15): HIIT+ ST (7 machine-based strength exercises, 3 sets × 8 repetitions); total session time: 70 min; 3×/week | 12 | - ↑SOD and↑GPX in both groups - ↑TAC in both groups | - ↓IL-6, CRP, and TNF-αin both groups - ↓total cholesterol in both groups - ↑VO2peak in both groups |
[47] | Quasi- Experimental Study | T2DM | 30 | Treadmill; 4 × 4 min @ 80–85% HRmax; 3 min recovery @ 70% HRmax; total session time: 40 min; 3×/week | 12 | - ↑TAC, and↓8-OHdG - ↓p53 protein - ↑COX, and↑mitochondrial DNA content in muscle tissue | - ↓Fasting glucose, HbA1c, HOMA-IR, fasting insulin, and C-peptide |
[48] | RT | T2DM | 20 | Treadmill; 4 × 4 min @ 90–95% HRmax; 3 min recovery @ 70% HRmax; total session time: 40 min; 3×/week | 12, and 48 (follow-up) | - No effects on redox markers - ↓TAC - Sex-specific findings: ↓protein carbonyls (12 weeks to 1 year) only in males | - no changes in inflammation |
[50] | RCT | T2DM | 16 | Cycle ergometer; 10 × 1 min @ 90% HRmax; 1 min recovery @ 50 W; total session time: 25 min; 3×/week | 12 | - ↑H2O2, and Nrf2 - ↑CAT | - ↓12 h fasting and postprandial glucose, HbA1c, total cholesterol, triglycerides |
[54] | Exploratory Study | Pre- diabetes | 10 | Treadmill; 10 × 1 min @ 80–90% HRR; 3 min recovery @ 50–60% HRR; total session time: 30 min; 3×/week | 10 | - ↓Basal ROS - ↑Neutrophil chemotaxis, phagocytosis, stimulated ROS - ↑Neutrophil mitochondrial function | - ↓Overnight fasting glucose and insulin - ↑VO2peak |
[55] | RCT | T1DM | 19 (9/10) | Group-1 (n = 9): cycle ergometer; 10 × 1 min @ 90% HRmax; 1 min active recovery; total session time: 25 min; 3×/week Group-2 (n = 10): HIIT+ST (7 machine-based strength exercises (3 sets × 8 repetitions); total session time: 65–70 min; 3×/week | 10 | - ↑TAC, catalase, SOD in both groups - No change in oxidative stress markers in both groups | - ↓8 h fasting glucose and HbA1c in both groups - No change in inflammation in both groups - ↓Daily insulin dosage, only in HIIT plus ST - ↓Daily insulin dosage, only in HIIT plus ST |
[56] | RCT | T1DM | 9 | Cycle ergometer; 3–6 × 1 min @ 80–85% HRmax; 4 min recovery @ 50% HRmax; total session time: 25–40 min; 3×/week | 8 | - No change in oxidative stress markers | - ↑VO2peak - ↑Endothelial function - No change in glycemic control and smooth muscle function |
[57] | Crossover- experimental | Stable coronary artery disease | 11 | Treadmill; 4 × 4 min @ 60–80% HRR; 3 min recovery @ 40–50% HRR; total session time: 30 min; 3×/week | 2 | - ↑EC-SOD activity - ↑eNOS levels | - ↑endothelial function |
[58] | RCT | Post- myocardial infarction | 56 (28/28) | LV-HIIT (n = 28): mixed treadmill (4 min intervals @ VT2 to HRmax; 3 min active recovery) and cycle ergometer (30 s intervals @ VT2 to HRmax; 1 min active recovery); total session time: 20 min; 2×/week HV-HIIT (n = 28): similar protocol, but gradually increasing volume; total session time: 20–40 min; 2×/week | 16 | - ↓oxidized LDL in both groups | - ↑endothelial function in both groups - ↓vascular wall thickness in both groups |
[59] | Quasi- Experimental Study | Obesity | 10 | Cycle ergometer; 10 × 1 min @ 85% HRmax; 0.75 s recovery @ 40% HRmax; total session time: 31.5 min; 2×/week | 4 | - Acute post-session increases in TBARS and AOPP levels improved after 4 weeks - No chronic changes in resting oxidative stress markers | - ↓resting IL-6 - ↑resting IL-10, and IL-Ra |
[60] | Quasi- Experimental Study | Obesity with (OBR) or without (OB) insulin resistance | 17 (9/8) | Cycle ergometer; 8–12 × 1 min @ 80–110% Wpeak; 1 min recovery @ 30 W; total session time: 16–24 min; 3×/week | 8 | - ↑β-HAD, and COX-IV content in both groups - ↓ERK1/2 phosphorylation only in OBR - ↑IRS Tyr612 phosphorylation, and Akt Ser473 phosphorylation in both groups | - ↓HOMA-IR only in OBR - ↑VO2peak in both groups - No change in body fat in both groups |
[61] | Exploratory Study | Obesity | 12 | Cycle ergometer; 5 × 1 min @ 125% VO2peak, 90 s recovery; total session time: 15 min; 3×/week | 10 | - ↓H2O2, and MnSOD - trend for↑CAT - ↑mitochondrial capacity | - ↑VO2peak - ↓body fat |
[62] | Quasi- Experimental Study | Postmenopausal women with (HYP) and without (NORM) hyper- tension | 17 (9/8) | Intermittent small-sided floorball games; 4–5 × 3–5 min @ >85% HRmax; 3–1 min active recovery; total session time: 40–60 min; 2×/week | 10 | - No change in skeletal muscle content of SOD1, SOD2, GPX, CAT, NOX - No change in eNOS - ↑DRP1 increased only in HYP - ↑ACh- and SNP-induced LVC improved only in HY | - ↓Systolic/diastolic BP reduced in HYP ↓Systolic BP reduced in NORM |
[63] | RCT | NAFLD | 10 | Treadmill; 4 × 4 min @ 85–95% HRpeak, 3 min active recovery; total session time: 30–40 min session; 3×/week | 12 | - ↓MDA and protein carbonyls | - ↑CRF and muscular strength - ↓Liver enzymes (ALT, AST) - ↓Inflammation (CRP, IL-6) - ↓LDL, triglycerides, HOMA-IR |
5. Conclusions and Perspectives
6. Practical Recommendations and Safety Considerations
Funding
Informed Consent Statement
Conflicts of Interest
Abbreviations
HIIT | High-intensity interval training |
ROS | Reactive oxygen species |
T2DM | Type 2 diabetes mellitus |
CVD | Cardiovascular disease |
MDA | Malondialdehyde |
8-OHdG | 8-Hydroxy-2′-deoxyguanosine |
H2O2 | Hydrogen peroxide |
NO | Nitric oxide |
NF-κB | Nuclear factor-kappa B |
eNOS | Endothelial nitric oxide synthase |
LDL | Low-density lipoproteins |
TBARS | Thiobarbituric acid reactive substances |
SOD | Superoxide dismutase |
CAT | Catalase |
GPx | Glutathione peroxidase |
GSH | Reduced glutathione |
MICT | Moderate-intensity continuous aerobic training |
ST | Strength training |
VO2max | Maximal oxygen uptake |
NOX | Nicotinamide adenine dinucleotide phosphate oxidase |
Nrf2 | Nuclear factor erythroid 2–related factor 1 |
TAC | Total antioxidant capacity |
IL | Interleukin |
CRP | C-reactive protein |
TNF-α | Tumor necrosis factor |
p53 | Tumor suppressor/apoptosis-related protein |
COX | Cytochrome c oxidase |
HbA1c | Glycosylated hemoglobin |
HOMA-IR | Homeostatic model assessment for insulin resistance |
GLUT-4 | Glucose transporter type 4 |
T1DM | Type 1 diabetes mellitus |
FMD | Flow-mediated dilation |
EC-SOD | Extracellular SOD |
MCP-1 | Monocyte chemoattractant protein-1 |
LV-HIIT | Low-volume HIIT |
HV-HIIT | High-volume HIIT |
OB | Obese non-insulin-resistant |
OBR | Obese insulin-resistant |
MnSOD | Manganese superoxide dismutase |
HYP | Hypertensive |
NORM | Normotensive |
LVC | Leg vascular conductance |
SNP | Sodium nitroprusside |
NAFLD | Non-Alcoholic Fatty Liver Disease |
References
- Caturano, A.; D’Angelo, M.; Mormone, A.; Russo, V.; Mollica, M.P.; Salvatore, T.; Galiero, R.; Rinaldi, L.; Vetrano, E.; Marfella, R.; et al. Oxidative Stress in Type 2 Diabetes: Impacts from Pathogenesis to Lifestyle Modifications. Curr. Issues Mol. Biol 2023, 45, 6651–6666. [Google Scholar] [CrossRef]
- Dubois-Deruy, E.; Peugnet, V.; Turkieh, A.; Pinet, F. Oxidative Stress in Cardiovascular Diseases. Antioxidants 2020, 9, 864. [Google Scholar] [CrossRef]
- Masenga, S.K.; Kabwe, L.S.; Chakulya, M.; Kirabo, A. Mechanisms of Oxidative Stress in Metabolic Syndrome. Int. J. Mol. Sci 2023, 24, 7898. [Google Scholar] [CrossRef]
- Massaccesi, L.; Balistreri, C.R. Biomarkers of Oxidative Stress in Acute and Chronic Diseases. Antioxidants 2022, 11, 1766. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Su, C.-H. The Impact of Physical Exercise on Oxidative and Nitrosative Stress: Balancing the Benefits and Risks. Antioxidants 2024, 13, 573. [Google Scholar] [CrossRef] [PubMed]
- Gibala, M.J.; Little, J.P. Physiological basis of brief vigorous exercise to improve health. J. Physiol. 2020, 598, 61–69. [Google Scholar] [CrossRef]
- Ko, J.M.; So, W.Y.; Park, S.E. Narrative Review of High-Intensity Interval Training: Positive Impacts on Cardiovascular Health and Disease Prevention. J. Cardiovasc. Dev. Dis 2025, 12, 158. [Google Scholar] [CrossRef]
- Reljic, D.; Dieterich, W.; Herrmann, H.J.; Neurath, M.F.; Zopf, Y. “HIIT the inflammation”: Comparative effects of low volume interval training and resistance exercises on inflammatory indices in obese metabolic syndrome patients undergoing caloric restriction. Nutrients 2022, 14, 1996. [Google Scholar] [CrossRef] [PubMed]
- Yin, M.; Li, H.; Bai, M.; Liu, H.; Chen, Z.; Deng, J.; Deng, S.; Meng, C.; Vollaard, N.B.J.; Little, J.P.; et al. Is low-volume high-intensity interval training a time-efficient strategy to improve cardiometabolic health and body composition? A meta-analysis. Appl. Physiol. Nutr. Metab. 2024, 49, 273–292. [Google Scholar] [CrossRef]
- Griffiths, M.; Edwards, J.J.; McNamara, J.; Galbraith, S.; Bruce-Low, S.; O’Driscoll, J.M. The effects of high intensity interval training on quality of life: A systematic review and meta-analysis. J. Public Health 2024. [Google Scholar] [CrossRef]
- Lu, Y.; Wiltshire, H.D.; Baker, J.S.; Wang, Q. Effects of High Intensity Exercise on Oxidative Stress and Antioxidant Status in Untrained Humans: A Systematic Review. Biology 2021, 10, 1272. [Google Scholar] [CrossRef]
- Powers, S.K.; Deminice, R.; Ozdemir, M.; Yoshihara, T.; Bomkamp, M.P.; Hyatt, H. Exercise-induced oxidative stress: Friend or foe? J. Sport Health Sci. 2020, 9, 415–425. [Google Scholar] [CrossRef]
- Thirupathi, A.; Wang, M.; Lin, J.K.; Fekete, G.; István, B.; Baker, J.S.; Gu, Y. Effect of Different Exercise Modalities on Oxidative Stress: A Systematic Review. Biomed. Res. Int. 2021, 2021, 1947928. [Google Scholar] [CrossRef]
- Barteková, M.; Adameová, A.; Görbe, A.; Ferenczyová, K.; Pecháňová, O.; Lazou, A.; Dhalla, N.S.; Ferdinandy, P.; Giricz, Z. Natural and synthetic antioxidants targeting cardiac oxidative stress and redox signaling in cardiometabolic diseases. Free Radic. Biol. Med. 2021, 169, 446–477. [Google Scholar] [CrossRef]
- Amponsah-Offeh, M.; Diaba-Nuhoho, P.; Speier, S.; Morawietz, H. Oxidative Stress, Antioxidants and Hypertension. Antioxidants 2023, 12, 281. [Google Scholar] [CrossRef]
- Batty, M.; Bennett, M.R.; Yu, E. The Role of Oxidative Stress in Atherosclerosis. Cells 2022, 11, 3843. [Google Scholar] [CrossRef]
- Akhigbe, R.; Ajayi, A. The impact of reactive oxygen species in the development of cardiometabolic disorders: A review. Lipids Health Dis. 2021, 20, 23. [Google Scholar] [CrossRef]
- Martemucci, G.; Fracchiolla, G.; Muraglia, M.; Tardugno, R.; Dibenedetto, R.S.; D’Alessandro, A.G. Metabolic Syndrome: A Narrative Review from the Oxidative Stress to the Management of Related Diseases. Antioxidants 2023, 12, 2091. [Google Scholar] [CrossRef]
- Świątkiewicz, I.; Wróblewski, M.; Nuszkiewicz, J.; Sutkowy, P.; Wróblewska, J.; Woźniak, A. The Role of Oxidative Stress Enhanced by Adiposity in Cardiometabolic Diseases. Int. J. Mol. Sci. 2023, 24, 6382. [Google Scholar] [CrossRef]
- Wu, L.L.; Chiou, C.C.; Chang, P.Y.; Wu, J.T. Urinary 8-OHdG: A marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin. Chim. Acta 2004, 339, 1–9. [Google Scholar] [CrossRef]
- Abdali, D.; Samson, S.E.; Grover, A.K. How effective are antioxidant supplements in obesity and diabetes? Med. Princ. Pract. 2015, 24, 201–215. [Google Scholar] [CrossRef]
- Bjelakovic, G.; Nikolova, D.; Gluud, L.L.; Simonetti, R.G.; Gluud, C. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst. Rev. 2012, 2012, CD007176. [Google Scholar] [CrossRef]
- Schmidt, H.H.; Stocker, R.; Vollbracht, C.; Paulsen, G.; Riley, D.; Daiber, A.; Cuadrado, A. Antioxidants in Translational Medicine. Antioxid. Redox Signal. 2015, 23, 1130–1143. [Google Scholar] [CrossRef]
- Jordan, A.C.; Perry, C.G.R.; Cheng, A.J. Promoting a pro-oxidant state in skeletal muscle: Potential dietary, environmental, and exercise interventions for enhancing endurance-training adaptations. Free Radic. Biol. Med. 2021, 176, 189–202. [Google Scholar] [CrossRef]
- Belanger, M.J.; Rao, P.; Robbins, J.M. Exercise, Physical Activity, and Cardiometabolic Health: Pathophysiologic Insights. Cardiol. Rev. 2022, 30, 134–144. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Saltin, B. Exercise as medicine—Evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand. J. Med. Sci. Sports 2015, 25 (Suppl. 3), 1–72. [Google Scholar] [CrossRef]
- Pojednic, R.; D’Arpino, E.; Halliday, I.; Bantham, A. The Benefits of Physical Activity for People with Obesity, Independent of Weight Loss: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 4981. [Google Scholar] [CrossRef]
- Małkowska, P. Positive Effects of Physical Activity on Insulin Signaling. Curr. Issues Mol. Biol. 2024, 46, 5467–5487. [Google Scholar] [CrossRef]
- Boyer, W.; Toth, L.; Brenton, M.; Augé, R.; Churilla, J.; Fitzhugh, E. The role of resistance training in influencing insulin resistance among adults living with obesity/overweight without diabetes: A systematic review and meta-analysis. Obes. Res. Clin. Pract. 2023, 17, 279–287. [Google Scholar] [CrossRef]
- Feng, M.; Gu, L.; Zeng, Y.; Gao, W.; Cai, C.; Chen, Y.; Guo, X. The efficacy of resistance exercise training on metabolic health, body composition, and muscle strength in older adults with type 2 diabetes: A systematic review and Meta-Analysis. Diabetes Res. Clin. Pract. 2025, 222, 112079. [Google Scholar] [CrossRef]
- World Health Organization. Global Recommendations on Physical Activity for Health; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Weston, K.S.; Wisløff, U.; Coombes, J.S. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: A systematic review and meta-analysis. Br. J. Sports Med. 2014, 48, 1227–1234. [Google Scholar] [CrossRef] [PubMed]
- Francois, M.E.; Little, J.P. Effectiveness and safety of high-intensity interval training in patients with type 2 diabetes. Diabetes Spectr. 2015, 28, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Gallo-Villegas, J.; Restrepo, D.; Pérez, L.; Castro-Valencia, L.A.; Narvaez-Sanchez, R.; Osorio, J.; Aguirre-Acevedo, D.C.; Calderón, J.C. Safety of High-Intensity, Low-Volume Interval Training or Continuous Aerobic Training in Adults With Metabolic Syndrome. J. Patient Saf. 2022, 18, 295–301. [Google Scholar] [CrossRef]
- Wewege, M.A.; Ahn, D.; Yu, J.; Liou, K.; Keech, A. High-Intensity Interval Training for Patients With Cardiovascular Disease-Is It Safe? A Systematic Review. J. Am. Heart Assoc. 2018, 7, e009305. [Google Scholar] [CrossRef]
- Gomez-Cabrera, M.C.; Domenech, E.; Ji, L.L.; Viña, J. Exercise as an antioxidant: It up-regulates important enzymes for cell adaptations to exercise. Sci. Sports 2006, 21, 85–89. [Google Scholar] [CrossRef]
- Lu, Z.; Song, Y.; Chen, H.; Li, S.; Teo, E.C.; Gu, Y. A Mixed Comparisons of Aerobic Training With Different Volumes and Intensities of Physical Exercise in Patients With Hypertension: A Systematic Review and Network Meta-Analysis. Front. Cardiovasc. Med. 2022, 8, 770975. [Google Scholar] [CrossRef]
- Finaud, J.; Lac, G.; Filaire, E. Oxidative stress: Relationship with exercise and training. Sports Med. 2006, 36, 327–358. [Google Scholar] [CrossRef]
- Pesta, D.; Roden, M. The Janus Head of Oxidative Stress in Metabolic Diseases and During Physical Exercise. Curr. Diab. Rep. 2017, 17, 41. [Google Scholar] [CrossRef]
- Bogdanis, G.C.; Stavrinou, P.; Fatouros, I.G.; Philippou, A.; Chatzinikolaou, A.; Draganidis, D.; Ermidis, G.; Maridaki, M. Short-term high-intensity interval exercise training attenuates oxidative stress responses and improves antioxidant status in healthy humans. Food Chem. Toxicol. 2013, 61, 171–177. [Google Scholar] [CrossRef]
- Costa, K.B.; Magalhães, S.M.; Aguiar, P.F.; Ottone, V.O.; Tossige-Gomes, R.; Magalhães, F.C.; Amorim, F.T.; Rocha-Vieira, E. Modification of Blood Redox Homeostasis by High-Intensity Interval Training. React. Oxyg. Species 2018, 5, 56–67. [Google Scholar] [CrossRef]
- Done, A.J.; Traustadóttir, T. Nrf2 mediates redox adaptations to exercise. Redox. Biol. 2016, 10, 191–199. [Google Scholar] [CrossRef]
- Gibala, M.J.; Little, J.P.; van Essen, M.; Wilkin, G.P.; Burgomaster, K.A.; Safdar, A.; Raha, S.; Tarnopolsky, M.A. Short-term sprint interval versus traditional endurance training: Similar initial adaptations in human skeletal muscle and exercise performance. J. Physiol. 2006, 575, 901–911. [Google Scholar] [CrossRef] [PubMed]
- Poblete Aro, C.E.; Russell Guzmán, J.A.; Soto Muñoz, M.E.; Villegas González, B.E. Effects of high intensity interval training versus moderate intensity continuous training on the reduction of oxidative stress in type 2 diabetic adult patients: CAT. Medwave 2015, 15, e6212. [Google Scholar] [CrossRef]
- Mortensen, S.P.; Winding, K.M.; Iepsen, U.W.; Munch, G.W.; Marcussen, N.; Hellsten, Y.; Pedersen, B.K.; Baum, O. The effect of two exercise modalities on skeletal muscle capillary ultrastructure in individuals with type 2 diabetes. Scand. J. Med. Sci. Sports 2019, 29, 360–368. [Google Scholar] [CrossRef]
- Sabouri, M.; Hatami, E.; Pournemati, P.; Shabkhiz, F. Inflammatory, antioxidant and glycemic status to different mode of high-intensity training in type 2 diabetes mellitus. Mol. Biol. Rep. 2021, 48, 5291–5304. [Google Scholar] [CrossRef]
- Al-Rawaf, H.A.; Gabr, S.A.; Iqbal, A.; Alghadir, A.H. High-Intensity Interval Training Improves Glycemic Control, Cellular Apoptosis, and Oxidative Stress of Type 2 Diabetic Patients. Medicina 2023, 59, 1320. [Google Scholar] [CrossRef]
- Mallard, A.R.; Hollekim-Strand, S.M.; Coombes, J.S.; Ingul, C.B. Exercise intensity, redox homeostasis and inflammation in type 2 diabetes mellitus. J. Sci. Med. Sport. 2017, 20, 893–898. [Google Scholar] [CrossRef]
- Martinez-Canton, M.; Galvan-Alvarez, V.; Martin-Rincon, M.; Calbet, J.A.L.; Gallego-Selles, A. Unlocking peak performance: The role of Nrf2 in enhancing exercise outcomes and training adaptation in humans. Free Radic. Biol. Med. 2024, 224, 168–181. [Google Scholar] [CrossRef]
- Kazemi, N.; Afrasyabi, S.; Mohamadi Zadeh, M.A. The effects of high intensity interval training induced H2O2, Nrf2 changes on antioxidants factors in type 2 diabetes. J. Diabetes Metab. Disord. 2022, 23, 1829–1838. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, Q.; Chen, B.; Chen, J.; Wang, W.; Hu, Y.; Yu, J.; Huang, H. Effects of high-intensity intermittent exercise on glucose and lipid metabolism in type 2 diabetes patients: A systematic review and meta-analysis. Front. Endocrinol. 2024, 15, 1360998. [Google Scholar] [CrossRef]
- Stocks, B.; Zierath, J.R. Post-translational modifications: The signals at the intersection of exercise, glucose uptake, and insulin sensitivity. Endocr. Rev. 2022, 43, 654–677. [Google Scholar] [CrossRef]
- Prior, S.J.; Goldberg, A.P.; Ortmeyer, H.K.; Chin, E.R.; Chen, D.; Blumenthal, J.B.; Ryan, A.S. Increased Skeletal Muscle Capillarization Independently Enhances Insulin Sensitivity in Older Adults After Exercise Training and Detraining. Diabetes 2015, 64, 3386–3395. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, D.B.; Slentz, C.A.; Willis, L.H.; Hoselton, A.; Huebner, J.L.; Kraus, V.B.; Moss, J.; Muehlbauer, M.J.; Spielmann, G.; Muoio, D.M.; et al. Rejuvenation of Neutrophil Functions in Association With Reduced Diabetes Risk Following Ten Weeks of Low-Volume High Intensity Interval Walking in Older Adults With Prediabetes—A Pilot Study. Front Immunol. 2020, 11, 729. [Google Scholar] [CrossRef]
- Farinha, J.B.; Ramis, T.R.; Vieira, A.F.; Macedo, R.C.O.; Rodrigues-Krause, J.; Boeno, F.P.; Schroeder, H.T.; Müller, C.H.; Boff, W.; Krause, M.; et al. Glycemic, inflammatory and oxidative stress responses to different high-intensity training protocols in type 1 diabetes: A randomized clinical trial. J. Diabetes Complicat. 2018, 32, 1124–1132. [Google Scholar] [CrossRef]
- Boff, W.; da Silva, A.M.; Farinha, J.B.; Rodrigues-Krause, J.; Reischak-Oliveira, A.; Tschiedel, B.; Puñales, M.; Bertoluci, M.C. Superior Effects of High-Intensity Interval vs. Moderate-Intensity Continuous Training on Endothelial Function and Cardiorespiratory Fitness in Patients With Type 1 Diabetes: A Randomized Controlled Trial. Front. Physiol. 2019, 10, 450. [Google Scholar] [CrossRef] [PubMed]
- Sarvasti, D.; Lalenoh, I.; Oepangat, E.; Purwowiyoto, B.S.; Santoso, A.; Romdoni, R. Cardiovascular Protection Variables Based on Exercise Intensity in Stable Coronary Heart Disease Patients After Coronary Stenting: A Comparative Study. Vasc. Health Risk Manag. 2020, 16, 257–270. [Google Scholar] [CrossRef] [PubMed]
- Aispuru-Lanche, R.; Jayo-Montoya, J.A.; Maldonado-Martín, S. Vascular-endothelial adaptations following low and high volumes of high-intensity interval training in patients after myocardial infarction. Ther. Adv. Cardiovasc. Dis. 2024, 18, 17539447241286036. [Google Scholar] [CrossRef]
- Henke, E.; Oliveira, V.S.; Martins da Silva, I.; Schipper, L.; Dorneles, G.; Elsner, V.R.; Roberto de Oliveira, M.; Romão, P.R.T.; Peres, A. Acute and chronic effects of High Intensity Interval Training on inflammatory and oxidative stress markers of postmenopausal obese women. Transl. Sports Med. 2018, 1, 257–264. [Google Scholar] [CrossRef]
- de Matos, M.A.; Vieira, D.V.; Pinhal, K.C.; Lopes, J.F.; Dias-Peixoto, M.F.; Pauli, J.R.; de Castro Magalhães, F.; Little, J.P.; Rocha-Vieira, E.; Amorim, F.T. High-Intensity Interval Training Improves Markers of Oxidative Metabolism in Skeletal Muscle of Individuals with Obesity and Insulin Resistance. Front. Physiol. 2018, 9, 1451. [Google Scholar] [CrossRef]
- Flensted-Jensen, M.; Gram, M.; Dela, F.; Helge, J.W.; Larsen, S. Six weeks of high intensity cycle training reduces H2O2 emission and increases antioxidant protein levels in obese adults with risk factors for type 2 diabetes. Free Radic. Biol. Med. 2021, 173, 1–6. [Google Scholar] [CrossRef]
- Gunnarsson, T.P.; Ehlers, T.S.; Baasch-Skytte, T.; Lund, A.P.; Tamariz-Ellemann, A.; Gliemann, L.; Nyberg, M.; Bangsbo, J. Hypertension is associated with blunted NO-mediated leg vasodilator responsiveness that is reversed by high-intensity training in postmenopausal women. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2020, 319, R712–R723. [Google Scholar] [CrossRef]
- Guo, D.; Sun, J.; Feng, S. Comparative analysis of the effects of high-intensity interval training and traditional aerobic training on improving physical fitness and biochemical indicators in patients with non-alcoholic fatty liver disease. J. Sports Med. Phys. Fitness 2025, 65, 132–139. [Google Scholar] [CrossRef]
- de Mello, M.B.; Righi, N.C.; Schuch, F.B.; Signori, L.U.; da Silva, A.M.V. Effect of high-intensity interval training protocols on VO2max and HbA1c level in people with type 2 diabetes: A systematic review and meta-analysis. Ann. Phys. Rehabil. Med. 2022, 65, 101586. [Google Scholar] [CrossRef]
- Kokkinos, P.; Faselis, C.; Samuel, I.B.H.; Pittaras, A.; Doumas, M.; Murphy, R.; Heimall, M.S.; Sui, X.; Zhang, J.; Myers, J. Cardiorespiratory fitness and mortality risk across the spectra of age, race, and sex. J. Am. Coll. Cardiol. 2022, 80, 598–609. [Google Scholar] [CrossRef] [PubMed]
- MacInnis, M.J.; Gibala, M.J. Physiological adaptations to interval training and the role of exercise intensity. J. Physiol. 2017, 595, 2915–2930. [Google Scholar] [CrossRef] [PubMed]
- Jayedi, A.; Soltani, S.; Emadi, A.; Zargar, M.S.; Najafi, A. Aerobic exercise and weight loss in adults: A systematic review and dose-response meta-Analysis. JAMA Netw. Open 2024, 7, e2452185. [Google Scholar] [CrossRef]
- Coswig, V.S.; Barbalho, M.; Raiol, R.; Del Vecchio, F.B.; Ramirez-Campillo, R.; Gentil, P. Effects of high vs moderate-intensity intermittent training on functionality, resting heart rate and blood pressure of elderly women. J. Transl. Med. 2020, 18, 88. [Google Scholar] [CrossRef] [PubMed]
- Gripp, F.; Nava, R.C.; Cassilhas, R.C.; Esteves, E.A.; Magalhães, C.O.D.; Dias-Peixoto, M.F.; de Castro Magalhães, F.; Amorim, F.T. HIIT is superior than MICT on cardiometabolic health during training and detraining. Eur. J. Appl. Physiol. 2021, 121, 159–172. [Google Scholar] [CrossRef] [PubMed]
- Mastrototaro, L.; Apostolopoulou, M.; Hartwig, S.; Strassburger, K.; Lipaeva, P.; Trinks, N.; Karusheva, Y.; Gancheva, S.; Trenkamp, S.; Lehr, S.; et al. The role of exosomes for sustained specific cardiorespiratory and metabolic improvements in males with type 2 diabetes after detraining. EBioMedicine 2024, 110, 105471. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reljic, D. High-Intensity Interval Training as Redox Medicine: Targeting Oxidative Stress and Antioxidant Adaptations in Cardiometabolic Disease Cohorts. Antioxidants 2025, 14, 937. https://doi.org/10.3390/antiox14080937
Reljic D. High-Intensity Interval Training as Redox Medicine: Targeting Oxidative Stress and Antioxidant Adaptations in Cardiometabolic Disease Cohorts. Antioxidants. 2025; 14(8):937. https://doi.org/10.3390/antiox14080937
Chicago/Turabian StyleReljic, Dejan. 2025. "High-Intensity Interval Training as Redox Medicine: Targeting Oxidative Stress and Antioxidant Adaptations in Cardiometabolic Disease Cohorts" Antioxidants 14, no. 8: 937. https://doi.org/10.3390/antiox14080937
APA StyleReljic, D. (2025). High-Intensity Interval Training as Redox Medicine: Targeting Oxidative Stress and Antioxidant Adaptations in Cardiometabolic Disease Cohorts. Antioxidants, 14(8), 937. https://doi.org/10.3390/antiox14080937