Optimization of Conventional and Ultrasound-Assisted Extraction to Maximize Recovery of Total Phenolic Content and In Vitro Antioxidant Activity from Crataegus almaatensis Leaves
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials and Chemicals
2.2. Ultrasound (US) Equipment
2.3. Solid–Liquid Extraction (SLE)
2.4. Experimental Design
2.5. Analysis of the Extracts
2.5.1. Extraction Yield
2.5.2. Total Phenolic Content (TPC)
2.5.3. Total Flavonoid Content (TFC)
2.5.4. Ferric Reducing Antioxidant Power (FRAP)
2.5.5. Free-Radical-Scavenging Capacity (DPPH)
2.5.6. ABTS Scavenging Activity
2.5.7. HPLC-DAD Analysis
2.5.8. LC-Q/TOF-MS Analysis
2.5.9. Statistical Analysis
3. Results and Discussion
3.1. Effect of SLE and UAE Processing Conditions on the Extractability of Bioactive Compounds from Hawthorn Leaves Powder
3.1.1. Model Fitting of the Experimental Data (SLE)
3.1.2. Model Fitting of the Experimental Data (UAE)
3.1.3. Model Validation and Accuracy
3.1.4. Optimization of SLE and UAE Processing Conditions
3.1.5. Phenolic Composition of the Extracts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, M.; Mu, Y.; Shi, Z.; Wang, X.; Liu, W.; Zhou, Y.; Yi, H.; Zhang, L.; Zhang, Z. Effects of Different Lactic Acid Bacteria on the Physicochemical Properties, Functional Characteristics and Metabolic Characteristics of Fermented Hawthorn Juice. Food Chem. 2025, 470, 142672. [Google Scholar] [CrossRef]
- Soares, S.S.; Bekbolatova, E.; Cotrim, M.D.; Sakipova, Z.; Ibragimova, L.; Kukula-Koch, W.; Giorno, T.B.S.; Fernandes, P.D.; Fonseca, D.A.; Boylan, F. Chemistry and Pharmacology of the Kazakh Crataegus Almaatensis Pojark: An Asian Herbal Medicine. Antioxidants 2019, 8, 300. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Shao, T.; Peng, Y.; Wang, H.; Chen, Z.S.; Su, H. Chemical Composition, Biological Activities, and Quality Standards of Hawthorn Leaves Used in Traditional Chinese Medicine: A Comprehensive Review. Front. Pharmacol. 2023, 14, 1275244. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.; Yang, X.; Hu, J.; Yu, Q.; Zhong, Y.; Hu, X.; Liang, J.; Zhu, C.; Yan, S.; Li, L.; et al. Gastrointestinal Absorption and Its Regulation of Hawthorn Leaves Flavonoids. Sci. Rep. 2025, 15, 658. [Google Scholar] [CrossRef]
- Dai, H.; Wang, J.; Li, Y.; Lv, Z. Hawthorn-Leaf Flavonoid Alleviate Intestinal Health and Microbial Dysbiosis Problems Induced by Glyphosate. Ecotoxicol. Env. Saf. 2024, 284, 116901. [Google Scholar] [CrossRef]
- Bekbolatova, E.; Kukula-Koch, W.; Baj, T.; Stasiak, N.; Ibadullayeva, N.; Koch, W.; Głowniak, K.; Tulemissov, S.; Sakipova, Z.; Boylan, F. Phenolic composition and antioxidant potential of different organs of Kazakh Crataegus almaatensis Pojark: A comparison with the European Crataegus oxyacantha L. flowers). Open Chem. 2018, 16, 415–426. [Google Scholar] [CrossRef]
- Koohestani, H.; Nabilu, M.; Balooch, A. Biosynthesis and Investigation of Antibacterial Properties of Green Silver Nanoparticles Using Fruit Extracts of Wild Barberry, Medlar (Mespilus Germanica L.), and Hawthorn. Food Chem. Adv. 2025, 6, 100850. [Google Scholar] [CrossRef]
- Mousa, A.M.; Allemailem, K.S. Could Hawthorn Have a Cardioprotective Impact against Obesity-Induced Cardiac Injury in Rats via Antioxidant, Hypolipidemic, Anti-Inflammatory, Antiapoptotic, and Antifibrotic Properties? Tissue Cell 2025, 93, 102673. [Google Scholar] [CrossRef]
- Cvetković, K.; Đorđević, N.; Karabegović, I.; Danilović, B.; Dordevic, D.; Dordevic, S.; Kushkevych, I. Production and Testing of Carrageenan-Based Films Enriched with Chinese Hawthorn Extract in Strawberry Packaging. Processes 2025, 13, 379. [Google Scholar] [CrossRef]
- Ma, J.X.; Yang, W.; Ng, C.Y.J.; Tang, X.D.; Wong, S.; Gan, R.Y.; Zhong, L. The Hawthorn (Crataegus Pinnatifida Bge.) Fruit as a New Dietary Source of Bioactive Ingredients with Multiple Beneficial Functions. Food Front. 2024, 5, 1534–1558. [Google Scholar] [CrossRef]
- Luo, M.; Hu, J.Y.; Song, Z.Y.; Jiao, J.; Mu, F.S.; Ruan, X.; Gai, Q.Y.; Qiao, Q.; Zu, Y.G.; Fu, Y.J. Optimization of Ultrasound-Assisted Extraction (UAE) of Phenolic Compounds from Crataegus Pinnatifida Leaves and Evaluation of Antioxidant Activities of Extracts. RSC Adv. 2015, 5, 67532–67540. [Google Scholar] [CrossRef]
- Jiao, P.; Ma, S.; He, X.; Wang, S.; Wang, P.; Yang, P.; Niu, Q. Enhanced Green Extraction of Phenolic Antioxidants from Hawthorn Leaves Based on Deep Eutectic Solvent and Ultrasonic Wave. Waste Biomass Valorization 2025, 16, 1–14. [Google Scholar] [CrossRef]
- Martín-García, B.; Razola-Díaz, M.D.C.; Gómez-Caravaca, A.M.; Benítez, G.; Verardo, V. Setup of an Ultrasonic-Assisted Extraction to Obtain High Phenolic Recovery in Crataegus Monogyna Leaves. Molecules 2021, 26, 4536. [Google Scholar] [CrossRef]
- Liang, J.; Zhang, H.; Zhu, C. Optimization of Ultrasonic-Assisted Aqueous Two-Phase Extraction of Flavonoids from Hawthorn Leaves Using Response Surface Methodology. J. Phys. Conf. Ser. Inst. Phys. 2022, 2329, 012041. [Google Scholar] [CrossRef]
- Carpentieri, S.; Ferrari, G.; Pataro, G. Optimization of Pulsed Electric Fields-Assisted Extraction of Phenolic Compounds From White Grape Pomace Using Response Surface Methodology. Front. Sustain. Food Syst. 2022, 6, 854968. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Rapisarda, P.; Tomaino, A.; Lo Cascio, R.; Bonina, F.; De Pasquale, A.; Saija, A. Antioxidant Effectiveness as Influenced by Phenolic Content of Fresh Orange Juices. J. Agric. Food. Chem. 1999, 47, 4718–4723. [Google Scholar] [CrossRef]
- Olędzki, R.; Lutosławski, K.; Nowicka, P.; Wojdyło, A.; Harasym, J. Non-commercial grapevines hybrids fruits as a novel food of high antioxidant activity. Foods 2022, 11, 2216. [Google Scholar] [CrossRef] [PubMed]
- Rrucaj, E.; Carpentieri, S.; Scognamiglio, M.; Siano, F.; Ferrari, G.; Pataro, G. Sustainable Valorization of Industrial Cherry Pomace: A Novel Cascade Approach Using Pulsed Electric Fields and Ultrasound Assisted-Extraction. Foods 2024, 13, 1043. [Google Scholar] [CrossRef]
- Mungwari, C.P.; King’ondu, C.K.; Sigauke, P.; Obadele, B.A. Conventional and Modern Techniques for Bioactive Compounds Recovery from Plants: Review. Sci. Afr. 2025, 27, e02509. [Google Scholar] [CrossRef]
- Carpentieri, S.; Soltanipour, F.; Ferrari, G.; Pataro, G.; Donsì, F. Emerging Green Techniques for the Extraction of Antioxidants from Agri-Food By-Products as Promising Ingredients for the Food Industry. Antioxidants 2021, 10, 1417. [Google Scholar] [CrossRef]
- Weremfo, A.; Abassah-Oppong, S.; Adulley, F.; Dabie, K.; Seidu-Larry, S. Response Surface Methodology as a Tool to Optimize the Extraction of Bioactive Compounds from Plant Sources. J. Sci. Food Agric. 2023, 103, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Rittisak, S.; Charoen, R.; Choosuk, N.; Savedboworn, W.; Riansa-ngawong, W. Response Surface Optimization for Antioxidant Extraction and Attributes Liking from Roasted Rice Germ Flavored Herbal Tea. Processes 2022, 10, 125. [Google Scholar] [CrossRef]
- Dar, I.H.; Junaid, P.M.; Ahmad, S.; Shams, R.; Dash, K.K.; Shaikh, A.M.; Béla, K. Optimization of ultrasound-assisted extraction of Nigella sativa seed oil for enhancement of yield and antioxidant activity. Appl. Sci. 2023, 6, 104. [Google Scholar] [CrossRef]
- Frontuto, D.; Carullo, D.; Harrison, S.M.; Brunton, N.P.; Ferrari, G.; Lyng, J.G.; Pataro, G. Optimization of Pulsed Electric Fields-Assisted Extraction of Polyphenols from Potato Peels Using Response Surface Methodology. Food Bioproc. Tech. 2019, 12, 1708–1720. [Google Scholar] [CrossRef]
- Hiranpradith, V.; Therdthai, N.; Soontrunnarudrungsri, A.; Rungsuriyawiboon, O. Optimisation of Ultrasound-Assisted Extraction of Total Phenolics and Flavonoids Content from Centella Asiatica. Foods 2025, 14, 291. [Google Scholar] [CrossRef]
- Dai, J.; Mumper, R.J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Psarrou, I.; Oreopoulou, A.; Tsimogiannis, D.; Oreopoulou, V. Extraction Kinetics of Phenolic Antioxidants from the Hydro Distillation Residues of Rosemary and Effect of Pretreatment and Extraction Parameters. Molecules 2020, 25, 4520. [Google Scholar] [CrossRef]
- Peiró, S.; Gordon, M.H.; Blanco, M.; Pérez-Llamas, F.; Segovia, F.; Almajano, M.P. Modelling Extraction of White Tea Polyphenols: The Influence of Temperature and Ethanol Concentration. Antioxidants 2014, 3, 684–699. [Google Scholar] [CrossRef]
- Nguyen-Kim, M.T.; Truong, Q.C.; Nguyen, M.T.; Cao-Thi, B.H.; Tong, T.D.; Dao, T.P.; Tran, T.H.; Van Tan, L.; Le, X.T. Optimized Extraction of Polyphenols from Leaves of Rosemary (Rosmarinus officinalis L.) Grown in Lam Dong Province, Vietnam, and Evaluation of Their Antioxidant Capacity. Open Chem. 2021, 19, 1043–1051. [Google Scholar] [CrossRef]
- Hosseini, H.; Bolourian, S.; Yaghoubi Hamgini, E.; Ghanuni Mahababadi, E. Optimization of Heat- and Ultrasound-Assisted Extraction of Polyphenols from Dried Rosemary Leaves Using Response Surface Methodology. J. Food Process. Preserv. 2018, 42, e13778. [Google Scholar] [CrossRef]
- Pan, G.; Yu, G.; Zhu, C.; Qiao, J. Optimization of Ultrasound-Assisted Extraction (UAE) of Flavonoids Compounds (FC) from Hawthorn Seed (HS). Ultrason. Sonochem. 2012, 19, 486–490. [Google Scholar] [CrossRef]
- Alirezalu, A.; Salehi, P.; Ahmadi, N.; Sonboli, A.; Aceto, S.; Maleki, H.H.; Ayyari, M. Flavonoids Profile and Antioxidant Activity in Flowers and Leaves of Hawthorn Species (Crataegus Spp.) from Different Regions of Iran. Int. J. Food Prop. 2018, 21, 452–470. [Google Scholar] [CrossRef]
- Turkmen, D.; Dursun, A.; Caliskan, O.; Koksal Kavrak, M.; Guler, Z. Volatile Compounds, Phenolic Content, and Antioxidant Capacity in Sultan Hawthorn (Crataegus azarolus L.) Leaves. J. Agric. Sci. Technol. 2023, 25, 1089–1099. [Google Scholar] [CrossRef]
- Renda, G.; Özel, A.; Barut, B.; Korkmaz, B.; Yayli, N. In Vitro Protection by Crataegus Microphylla Extracts against Oxidative Damage and Enzyme Inhibition Effects. Turk. J. Pharm. Sci. 2018, 15, 77–84. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound Assisted Extraction of Food and Natural Products. Mechanisms, Techniques, Combinations, Protocols and Applications. A Review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef]
- Loubna, A.; Belhattab, R. Antioxidant activity of aqueous extracts from Crataegus oxyacantha leaves. Pharmacogn. Commn. 2015, 5, 229–232. [Google Scholar] [CrossRef]
- Cui, M.; Cheng, L.; Zhou, Z.; Zhu, Z.; Liu, Y.; Li, C.; Liao, B.; Fan, M.; Duan, B. Traditional Uses, Phytochemistry, Pharmacology, and Safety Concerns of Hawthorn (Crataegus Genus): A Comprehensive Review. J. Ethnopharmacol. 2024, 319, 117229. [Google Scholar] [CrossRef]
- Elsadig Karar, M.G.; Kuhnert, N. UPLC-ESI-Q-TOF-MS/MS Characterization of Phenolics from Crataegus Monogyna and Crataegus Laevigata (Hawthorn) Leaves, Fruits and Their Herbal Derived Drops (Crataegutt Tropfen). J. Chem. Biol. Ther. 2016, 01, 2572-0406. [Google Scholar] [CrossRef]
- Liu, P.; Kallio, H.; Yang, B. Phenolic Compounds in Hawthorn (Crataegus Grayana) Fruits and Leaves and Changes during Fruit Ripening. J. Agric. Food Chem. 2011, 59, 11141–11149. [Google Scholar] [CrossRef]
- Zhang, L.L.; Zhang, L.F.; Xu, J.G. Chemical Composition, Antibacterial Activity and Action Mechanism of Different Extracts from Hawthorn (Crataegus Pinnatifida Bge.). Sci. Rep. 2020, 10, 8876. [Google Scholar] [CrossRef] [PubMed]
Run | Variables | SLE | |||||||
---|---|---|---|---|---|---|---|---|---|
T (°C) | t (min) | EtOH (%) | S/L (g/mL) | TPC | TFC | FRAP | DPPH | ABTS | |
1 | 25 | 10 | 0 | 0.1 | 12.6 ± 0.1 ab | 11.6 ± 0.3 ab | 16.8 ± 0.0 a | 54.3 ± 2.1 de | 21.8 ± 0.5 a |
2 | 25 | 90 | 0 | 0.1 | 13.2 ± 0.4 abc | 12.3 ± 2.9 ab | 22.7 ± 1.6 b | 64.5 ± 1.3 fgh | 27.5 ± 1.1 b |
3 | 25 | 90 | 0 | 0.05 | 11.8 ± 0.2 a | 12 ± 0.2 ab | 24.2 ±1.6 bc | 64.2 ± 3.1 fgh | 30.5 ± 0.9 bc |
4 | 25 | 10 | 80 | 0.1 | 31.9 ± 0.4 ghi | 28.7 ± 0.1 ghi | 58.9 ± 3.4 ghi | 63.2 ± 3.7 fgh | 77.6 ± 2.4 op |
5 | 25 | 10 | 80 | 0.05 | 34.2 ± 0.7 hil | 30.7 ± 1 hil | 70.3 ± 1.3 lm | 49.4 ± 0.4 cd | 89.2 ± 2.7 q |
6 | 25 | 50 | 40 | 0.075 | 32.5 ± 0.5 hi | 25.6 ± 1.4 gh | 64.9 ± 1.4 lmn | 60.7 ± 2.4 efgh | 80.4 ± 1.8 p |
7 | 25 | 90 | 80 | 0.1 | 35.4 ± 0.4 mn | 35.4 ± 3 lmn | 56.9 ± 1.9 gh | 66.6 ± 3 h | 69.8 ± 1.5 mn |
8 | 25 | 90 | 80 | 0.05 | 41.8 ± 0.5 o | 38 ± 1.5 def | 71.0 ± 1 n | 53.4 ± 2.2 de | 92.3 ± 1.3 q |
9 | 25 | 10 | 0 | 0.05 | 18.9 ± 0.8 e | 20 ± 0.9 no | 28.7 ± 0.2 cd | 54.5 ± 2.9 de | 38.1 ± 0.8 de |
10 | 47.5 | 50 | 40 | 0.1 | 24.2 ± 0.9 f | 24.5 ± 1 fg | 48.5 ± 1 f | 66.5 ± 2.5 h | 53.1 ± 1.3 gh |
11 | 47.5 | 10 | 40 | 0.075 | 31.2 ± 0.3 gh | 29.8 ± 1.3 hi | 62.4 ± 1.8 il | 64.9 ± 1.6 gh | 77.1 ± 0.7 op |
12 | 47.5 | 50 | 80 | 0.075 | 34 ± 0.2 il | 30.7 ± 1 hil | 56.0 ± 0.8 gh | 67.6 ± 0.8 h | 72.8 ± 1.0 no |
13 | 47.5 | 50 | 40 | 0.05 | 31.7 ± 0.7 ghi | 28.3 1.8 ghi | 63.7 ± 2.4 il | 67.1 ± 1.1 h | 80.8 ± 2.1 p |
14 | 47.5 | 50 | 0 | 0.075 | 12.1 ± 0.5 a | 19.3 ± 0.4 cde | 25.4 ± 1.3 bcd | 58.2 ± 1.7 efg | 33.0 ± 1.7 c |
15 | 47.5 | 50 | 40 | 0.075 | 26 ± 1.3 f | 28.3 ± 1 ghi | 49.9 ± 0.5 f | 65.9 ± 2.4 h | 68.9 ± 0.9 mn |
16 | 47.5 | 50 | 40 | 0.075 | 26.1 ± 1.5 f | 26.5 ± 2 gh | 49.2 ± 1.2 f | 65.5 ± 2.9 gh | 65.6 ± 1.5 lm |
17 | 47.5 | 90 | 40 | 0.075 | 24.2 ± 0.4 f | 23.5 ± 3 efg | 46.7 ± 2.7 f | 66.2 ± 3.8 h | 55.7 ± 1.5 hi |
18 | 70 | 90 | 80 | 0.1 | 29.2 ± 0.8 g | 32.5 ± 1.2 ilm | 48.9 ± 1 f | 64.4 ± 2.1 fgh | 60.6 ± 1.3 il |
19 | 70 | 10 | 80 | 0.05 | 39.6 ± 0.2 no | 42.3 ± 1.3 o | 91.9 ± 3.4 p | 63.3 ± 2.4 fgh | 109.5 ± 2.4 s |
20 | 70 | 10 | 80 | 0.1 | 33.8 ± 0.2 hil | 37.9 ± 2.4 no | 66.7 ± 2 lmn | 63 ± 1.9 fgh | 88.1 ± 2.6 q |
21 | 70 | 50 | 40 | 0.075 | 41.7 ± 0.9 o | 37 ± 1.4 no | 85.2 ± 2.6 o | 65.6 ± 1.8 gh | 112.8 ± 2.4 s |
22 | 70 | 90 | 80 | 0.05 | 36.9 ± 0.7 mn | 38.9 ± 0.2 no | 80.2 ± 0.4 o | 64.1 ± 0.1 fgh | 98.7 ± 1.5 r |
23 | 70 | 10 | 0 | 0.05 | 15.9 ± 1 cd | 14.5 ± 2.8 bc | 30.1 ± 3.2 d | 57.1 ± 3.9 ef | 35.1 ± 1.2 cd |
24 | 70 | 10 | 0 | 0.1 | 14.9 ± 1.1 bc | 14.4 ± 0.5 bc | 35.9 ± 2.5 e | 44.2 ± 2.2 bc | 45.7 ± 1.3 f |
25 | 70 | 90 | 0 | 0.05 | 17.7 ± 0.2 de | 15.4 ± 0.5 bcd | 37.9 ± 0.3 e | 40.2 ± 1.9 ab | 50.6 ± 0.8 fg |
26 | 70 | 90 | 0 | 0.1 | 11.8 ± 2 a | 8.9 ± 2.7 a | 27.4 ± 1.7 bcd | 33.5 ± 1.9 a | 40.6 ± 1.2 e |
Run | Variables | UAE | |||||||
---|---|---|---|---|---|---|---|---|---|
T (°C) | t (min) | EtOH (%) | P (W) | TPC | TFC | FRAP | DPPH | ABTS | |
1 | 40 | 60 | 40 | 100 | 39.6 ± 1.4 bcdef | 39.7 ± 2.1 bcdef | 75.1 ± 1.1 fg | 59.8 ± 0.2 efg | 96.7 ± 2.4 gh |
2 | 40 | 30 | 70 | 400 | 35.6 ± 0.4 ab | 35.9 ± 2.5 ab | 68.2 ± 2.4 cde | 59.1 ± 1.4 ef | 80.7 ± 2.1 ab |
3 | 40 | 60 | 70 | 400 | 36.5 ± 2.4 abc | 36 ± 1 ab | 63.3 ± 0.0 a | 54.4 ± 0.4 ab | 80.3 ± 1.0 ab |
4 | 40 | 30 | 40 | 400 | 40.6 ± 0.1 cdefhi | 38.5 ± 1.7 abcde | 71.6 ± 1.7 def | 58.6 ± 0.5 cde | 89.1 ± 2.2 def |
5 | 40 | 45 | 55 | 250 | 38.6 ± 0.8 abcde | 38.3 ± 1.2 abcde | 66.4 ± 0.4 abc | 61.6 ± 0.5 fghi | 80.3 ± 0.5 ab |
6 | 40 | 60 | 70 | 100 | 34.9 ± 1.8 a | 34.4 ± 0.0 a | 64.8 ± 2 abc | 60.1 ± 1 fgh | 87.2 ± 1.6 cde |
7 | 40 | 30 | 70 | 100 | 35.7 ± 0.7 a | 37.1 ± 2.2 abcd | 68.5 ± 0.9 cde | 59 ± 0.9 def | 89.0 ± 0.9 def |
8 | 40 | 60 | 40 | 400 | 36.7 ± 1.9 abcd | 35.6 ± 2.6 abc | 63.3 ± 1 a | 53.9 ± 0.8 ab | 78.3 ± 1.3 a |
9 | 40 | 30 | 40 | 100 | 37.8 ± 0.5 abcd | 37.4 ± 1.8 abcd | 64 ± 0.6 ab | 62.9 ± 1.2 hil | 83.2 ± 1.8 bc |
10 | 55 | 45 | 55 | 250 | 40.2 ± 1.5 cdefg | 38.9 ± 2.8 abcde | 71.9 ± 1.4 ef | 56.9 ± 0.6 bcde | 90.5 ± 1.8 ef |
11 | 55 | 30 | 55 | 250 | 40.8 ± 2.3 cdefgh | 39.8 ± 1 bcdef | 72.5 ± 1.6 fg | 55.4 ± 0.9 b | 92.3 ± 1.1 fg |
12 | 55 | 45 | 55 | 100 | 44.1 ± 0.3 ghi | 43.5 ± 1.5 fgh | 76 ± 0.0 gh | 56 ± 0.6 bcd | 98.8 ± 1.0 hi |
13 | 55 | 45 | 70 | 250 | 37.8 ± 0.3 abcd | 37 ± 1.8 abcd | 72.9 ± 0.3 fg | 55.7 ± 1.2 bc | 84.8 ± 0.8 bcd |
14 | 55 | 45 | 40 | 250 | 42 ± 2.4 efghi | 42.1 ± 1.3 defgh | 79.8 ± 1.1 hi | 54.2 ± 1.3 ab | 100.7 ± 1.4 hil |
15 | 55 | 45 | 55 | 400 | 43.1 ± 1 fghi | 42.8 ± 0.9 efgh | 80.7 ± 0.7 il | 59.2 ± 1 efg | 104.9 ± 1.2 lm |
16 | 55 | 60 | 55 | 250 | 41 ± 2.9 defgh | 38.1 ± 0.6 abcd | 67.7 ± 0.5 bcd | 55.2 ± 0.8 b | 88.0 ± 0.9 def |
17 | 70 | 60 | 40 | 400 | 51 ± 2.1 m | 47 ± 2.5 h | 89.6 ± 1 n | 62.2 ± 1.6 ghil | 106.5 ± 1.3 mn |
18 | 70 | 30 | 40 | 100 | 44.2 ± 1 ghi | 45.6 ± 2 gh | 94.5 ± 0.8 o | 61.1 ± 1.7 fghi | 112.9 ± 1.0 op |
19 | 70 | 30 | 70 | 100 | 40.1 ± 0.5 cdefg | 38.4 ± 2 abcde | 80.9 ± 1.3 il | 51.5 ± 0.5 a | 115.2 ± 0.7 opq |
20 | 70 | 30 | 40 | 400 | 45.7 ± 2 il | 40.6 ± 1.5 bcdefg | 88 ± 1.2 mn | 60.1 ± 1 fgh | 104.4 ± 2.6 lm |
21 | 70 | 60 | 70 | 100 | 41 ± 0.2 fgh | 34 ± 0.5 a | 84.5 ± 1 lm | 59.8 ± 0.9 efg | 110.8 ± 0.8 no |
22 | 70 | 45 | 55 | 250 | 44.9 ± 1.4 hil | 41.5 ± 0.4 cdefg | 88.9 ± 0.9 n | 61.3 ± 0.9 fghi | 115.6 ± 1.2 pq |
23 | 70 | 60 | 70 | 400 | 40.5 ± 0.9 cdefg | 38.9 ± 0.3 abcde | 87 ± 0.7 mn | 63.6 ± 0.5 il | 103.1 ± 1.1 ilm |
24 | 70 | 60 | 40 | 100 | 48.9 ± 0.9 lm | 45.5 ± 1.7 gh | 95.3 ± 2.8 o | 65.2 ± 1 l | 117.9 ± 1.6 q |
25 | 70 | 30 | 70 | 400 | 39.3 ± 1.5 abcdef | 37.1 ± 0.2 abcd | 80.1 ± 1.5 i | 59.2 ± 0.7 efg | 104.1 ± 2.0 lm |
SLE | |||||||
---|---|---|---|---|---|---|---|
TPC (mgGAE/gDM) | |||||||
Coefficients | Sum of Squares | df | Mean Square | F-Value | p-Value | Contribution (%) | |
α0 | 38.73962 | - | - | - | - | * | - |
α1 (T) | −1.07297 | 38.03 | 1 | 38.03 | 5.41 | * | 1.74 |
α3 (EtOH) | 0.74447 | 1736.46 | 1 | 1736.46 | 247.04 | *** | 79.52 |
α4 (S/L ratio) | −85.44843 | 82.14 | 1 | 82.14 | 11.69 | ** | 3.76 |
α11 (T × T) | 0.011974 | 120.45 | 1 | 120.45 | 17.14 | *** | 5.52 |
α33 (EtOH × EtOH) | −0.006237 | 326.37 | 1 | 326.37 | 46.43 | *** | 14.95 |
Model | - | 2183.54 | 5 | 436.71 | 62.13 | *** | - |
Lack of fit | - | 140.58 | 19 | 7.40 | 1.45 | ns | - |
R2 | 0.940 | ||||||
Adjusted R2 | 0.924 | ||||||
Predicted R2 | 0.887 | ||||||
Adequate precision | 23.002 | ||||||
TFC (mgQE/gDM) | |||||||
α0 | 5.69088 | - | - | - | - | * | - |
α3 (EtOH) | 0.298550 | 2567.00 | 1 | 2567.00 | 85.88 | *** | 94.14 |
α12 (T × t) | −0.003347 | 145.19 | 1 | 145.19 | 4.86 | * | 5.32 |
Model | - | 2726.71 | 4 | 681.68 | 22.81 | ** | - |
Lack of fit | - | 626.02 | 20 | 31.30 | 1.48 | ns | - |
R2 | 0.883 | ||||||
Adjusted R2 | 0.878 | ||||||
Predicted R2 | 0.788 | ||||||
Adequate precision | 19.169 | ||||||
FRAP (mgAAE/gDM) | |||||||
α0 | 73.91293 | - | - | - | - | ** | - |
α1 (T) | −2.38291 | 446.29 | 1 | 446.29 | 9.45 | ** | 4.6 |
α3 (EtOH) | 1.81099 | 6884.20 | 1 | 6884.20 | 4.86 | *** | 70.98 |
α4 (S/L ratio) | −96.66875 | 738.95 | 1 | 738.95 | 15.64 | ** | 7.62 |
α34 (EtOH × S/L ratio) | −3.99053 | 254.79 | 1 | 254.79 | 5.39 | * | 2.63 |
α11 (T × T) | 0.02741 | 631.27 | 1 | 631.27 | 13.36 | ** | 6.50 |
α33 (EtOH × EtOH) | −0.012785 | 1371.54 | 1 | 1371.54 | 29.03 | *** | 14.14 |
Model | - | 9699.39 | 6 | 1616.57 | 34.21 | *** | - |
Lack of fit | - | 897.40 | 18 | 49.86 | 0.42 | ns | - |
R2 | 0.915 | ||||||
Adjusted R2 | 0.889 | ||||||
Predicted R2 | 0.835 | ||||||
Adequate precision | 20.890 | ||||||
DPPH (%) | |||||||
α0 | 50.31451 | - | - | - | - | *** | - |
α3 (EtOH) | −0.38078 | 392.62 | 1 | 392.62 | 8.34 | *** | 36.19 |
α12 (T × t) | −0.00366 | 173.65 | 1 | 173.65 | 7.69 | * | 16 |
α13 (T × EtOH) | 0.005884 | 448.65 | 1 | 448.65 | 12.53 | *** | 41.36 |
Model | - | 1084.82 | 5 | 216.96 | 4.61 | *** | - |
Lack of fit | - | 941.73 | 19 | 49.56 | 2.80 | ns | - |
R2 | 0.870 | ||||||
Adjusted R2 | 0.820 | ||||||
Predicted R2 | 0.795 | ||||||
Adequate precision | 13.187 | ||||||
ABTS (mgAAE/gDM) | |||||||
α0 | 109.9680 | - | - | - | - | ** | - |
α1 (T) | −3.093153 | 728.35 | 1 | 728.35 | 6.83 | * | 5 |
α3 (EtOH) | 1.890647 | 10,546.36 | 1 | 105,46.36 | 98.92 | *** | 72.51 |
α4 (S/L ratio) | −311.11111 | 1088.89 | 1 | 1088.89 | 10.21 | ** | 7.49 |
α11 (T × T) | 0.035535 | 1060.80 | 1 | 1060.80 | 9.95 | ** | 7.29 |
α33 (EtOH × EtOH) | −0.016069 | 2166.65 | 1 | 2166.65 | 20.32 | ** | 14.90 |
Model | - | 14,543.80 | 5 | 2908.76 | 27.28 | *** | - |
Lack of fit | - | 2126.88 | 19 | 111.94 | 1.56 | ns | - |
R2 | 0.942 | ||||||
Adjusted R2 | 0.910 | ||||||
Predicted R2 | 0.838 | ||||||
Adequate precision | 16.237 |
UAE | |||||||
---|---|---|---|---|---|---|---|
TPC (mgGAE/gDM) | |||||||
Coefficients | Sum of Squares | df | Mean Square | F-Value | p-Value | Contribution % | |
α0 | 3.81775 | - | - | - | - | ** | - |
α1 (T) | 0.297404 | 191.07 | 1 | 191.07 | 195.33 | *** | 54.75 |
α3 (EtOH) | 1.25735 | 93.51 | 1 | 93.51 | 95.59 | *** | 28.26 |
α12 (T × t) | 0.003581 | 10.38 | 1 | 10.38 | 10.62 | ** | 3.14 |
α13 (T × EtOH) | −0.004388 | 15.59 | 1 | 15.59 | 15.94 | ** | 4.71 |
α33 (EtOH × EtOH) | −0.010618 | 18.30 | 1 | 18.30 | 18.71 | ** | 5.56 |
α44 (Power × Power) | 0.000060 | 5.92 | 1 | 5.92 | 6.05 | * | 1.79 |
Model | - | 330.87 | 8 | 41.36 | 42.48 | *** | - |
Lack of fit | - | 94.5 | 10 | 9.45 | 1.05 | ns | - |
R2 | 0.955 | ||||||
Adjusted R2 | 0.932 | ||||||
Predicted R2 | 0.881 | ||||||
Adequate precision | 21.866 | ||||||
TFC (mgQE/gDM) | |||||||
α0 | 22.50699 | - | - | - | - | ** | - |
α1 (T) | 0.476451 | 71.87 | 1 | 71.87 | 11.09 | ** | 30.62 |
α3 (EtOH) | 0.164074 | 130.01 | 1 | 130.01 | 20.07 | *** | 55.39 |
α13 (T × EtOH) | −0.006241 | 31.55 | 1 | 31.55 | 4.87 | * | 13.44 |
Model | - | 234.73 | 4 | 58.68 | 12.48 | *** | - |
Lack of fit | - | 16.42 | 6 | 2.74 | 1.87 | ns | - |
R2 | 0.910 | ||||||
Adjusted R2 | 0.875 | ||||||
Predicted R2 | 0.793 | ||||||
Adequate precision | 13.445 | ||||||
FRAP (mgAAE/gDM) | |||||||
α0 | 48.79112 | - | - | - | - | *** | - |
α1 (T) | 0.68029 | 1874.34 | 1 | 1874.34 | 97.75 | *** | 92.79 |
α3 (EtOH) | −0.189417 | 145.31 | 1 | 145.31 | 7.58 | ** | 7.19 |
Model | - | 2019.94 | 4 | 504.99 | 26.33 | *** | - |
Lack of fit | - | 74.5 | 10 | 7.45 | 1.250 | ns | - |
R2 | 0.940 | ||||||
Adjusted R2 | 0.909 | ||||||
Predicted R2 | 0.857 | ||||||
Adequate precision | 17.279 | ||||||
DPPH (%) | |||||||
α0 | 136.43547 | - | - | - | - | ** | - |
α12 (T × t) | 0.00842 | 57.43 | 1 | 57.43 | 12.91 | *** | 27.38 |
α14 (T × Power) | 0.000657 | 34.50 | 1 | 34.50 | 7.76 | ** | 14.45 |
α34 (EtOH × Power) | 0.000559 | 25.33 | 1 | 25.33 | 5.69 | * | 12.08 |
α11 (T × T) | 0.015732 | 63.15 | 1 | 63.15 | 14.20 | *** | 30.10 |
Model | - | 209.77 | 8 | 26.22 | 6.12 | ** | - |
Lack of fit | - | 20.23 | 6 | 3.37 | 0.101 | ns | - |
R2 | 0.886 | ||||||
Adjusted R2 | 0.857 | ||||||
Predicted R2 | 0.778 | ||||||
Adequate precision | 18.105 | ||||||
ABTS (mgAAE/gDM) | |||||||
α0 | 56.21941 | - | - | - | - | *** | - |
α1 (T) | 0.83593 | 2830.03 | 1 | 2830.03 | 87.23 | *** | 93.34 |
α4(Power) | −0.02233 | 202.00 | 1 | 202.00 | 6.23 | * | 6.67 |
Model | - | 3032.03 | 2 | 1516.02 | 46.73 | *** | - |
Lack of fit | - | 187.18 | 6 | 31.20 | 0.065 | ns | - |
R2 | 0.890 | ||||||
Adjusted R2 | 0.822 | ||||||
Predicted R2 | 0.797 | ||||||
Adequate precision | 16.105 |
SLE | UAE | % Deviation | ||||
---|---|---|---|---|---|---|
Optimal processing conditions | T: 70 °C t: 34 min EtOH%: 75% S/L ratio: 0.05 g/mL | T: 70 °C t: 44 min EtOH%: 40% S/L ratio: 0.05 g/mL US power: 100 W | ||||
Predicted value | Experimental value | Predicted value | Experimental value | SLE | UAE | |
TPC (mgGAE/gDM) | 39.75 ± 0.30 a | 41.28 ± 0.90 a | 47.75 ± 0.85 b | 48.00 ± 0.85 b | 3.85 | 0.52 |
TFC (mgQE/gDM) | 39.74 ± 0.10 a | 40.64 ± 0.63 a | 46.82 ± 0.85 b | 43.68 ± 0.77 b | 2.26 | 6.71 |
FRAP (mgAAE/gDM) | 86.97 ± 1.20 a | 91.98 ± 1.48 a | 89.77 ± 0.85 b | 98.61 ± 1.15 b | 5.76 | 9.84 |
DPPH (%) | 67.83 ± 0.95 b | 64.26 ± 1.25 a | 64.49 ± 0.85 a | 66.73 ± 1.10 a | 5.27 | 3.47 |
ABTS (mgAAE/gDM) | 106.08 ± 1.30 a | 109.08 ± 1.70 a | 112.50 ± 0.85 b | 118.50 ± 1.35 b | 2.83 | 5.33 |
N. | Compound | Concentration | |
---|---|---|---|
SLE | UAE | ||
3 | Catechin | 0.04 ± 0 a | 0.04 ± 0 b |
4 | Chlorogenic acid | 1.68 ± 0.2 a | 2.42 ± 0.3 b |
6 | Epicatechin | 0.06 ± 0 a | 0.08 ± 0 b |
11 | Apigenin-8-C-glucoside-2′-rhamnoside | 1.28 ± 0.1 a | 1.75 ± 0.2 b |
N. | Compound | Formula | [M-H]- Theoretical (m/z) | [M-H]- Measured (m/z) | Error (ppm) |
---|---|---|---|---|---|
1 | Neochlorogenic acid | C16H18O9 | 353.0872 | 353.0867 | −1.42 |
2 | 1-O-galloyl-l-rhamnose | C13H16O9 | 315.0716 | 315.0714 | −0.63 |
3 | Catechin | C15H14O6 | 289.0712 | 289.0714 | 0.69 |
4 | Chlorogenic acid | C16H18O9 | 353.0872 | 353.0869 | −0.85 |
5 | Cryptochlorogenic acid | C16H18O9 | 353.0872 | 353.0881 | 2.55 |
6 | Epicatechin | C15H14O6 | 289.0712 | 289.0719 | 2.42 |
7 | Procyanidin C1 | C45H38O18 | 865.1979 | 865.1990 | 1.27 |
8 | Apigenin-6-C-glucoside-8-C-arabinoside | C26H28O14 | 563.1400 | 563.1411 | 1.95 |
9 | Luteolin-7-O-glucoside | C21H20O11 | 447.0927 | 447.0932 | 1.12 |
10 | Isovitexin-2″-O-arabinoside | C26H28O14 | 563.1400 | 563.1398 | −0.36 |
11 | Apigenin-8-C-glucoside-2′-rhamnoside | C27H30O14 | 577.1557 | 577.1565 | 1.39 |
12 | Isovitexin (apigenin-6-C-glucoside) | C21H20O10 | 431.0978 | 431.0975 | −0.70 |
13 | Vitexin (apigenin-8-C-glucoside) | C21H20O10 | 431.0978 | 431.0982 | 0.93 |
14 | Hyperoside (quercetin-3-O-galactoside) | C21H20O12 | 463.0876 | 463.0871 | −1.08 |
15 | Isoquercitrin (quercetin-3-O-glucoside) | C21H19O12 | 463.0876 | 463.0877 | 0.22 |
16 | Nothofagin | C21H24O10 | 435.1291 | 435.1297 | 1.38 |
17 | Quercetin 3-O-(6″-O-malonyl)-glucoside | C24H22O15 | 549.0880 | 549.0888 | 1.46 |
18 | Cinchonain 1A | C24H20O9 | 451.1029 | 451.1036 | 1.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nabiyeva, Z.; Kulaipbekova, A.; Carpentieri, S.; Pronina, Y.; Samadun, A.; Assembayeva, E.; Ferrari, G. Optimization of Conventional and Ultrasound-Assisted Extraction to Maximize Recovery of Total Phenolic Content and In Vitro Antioxidant Activity from Crataegus almaatensis Leaves. Antioxidants 2025, 14, 1003. https://doi.org/10.3390/antiox14081003
Nabiyeva Z, Kulaipbekova A, Carpentieri S, Pronina Y, Samadun A, Assembayeva E, Ferrari G. Optimization of Conventional and Ultrasound-Assisted Extraction to Maximize Recovery of Total Phenolic Content and In Vitro Antioxidant Activity from Crataegus almaatensis Leaves. Antioxidants. 2025; 14(8):1003. https://doi.org/10.3390/antiox14081003
Chicago/Turabian StyleNabiyeva, Zhanar, Akerke Kulaipbekova, Serena Carpentieri, Yuliya Pronina, Abdyssemat Samadun, Elmira Assembayeva, and Giovanna Ferrari. 2025. "Optimization of Conventional and Ultrasound-Assisted Extraction to Maximize Recovery of Total Phenolic Content and In Vitro Antioxidant Activity from Crataegus almaatensis Leaves" Antioxidants 14, no. 8: 1003. https://doi.org/10.3390/antiox14081003
APA StyleNabiyeva, Z., Kulaipbekova, A., Carpentieri, S., Pronina, Y., Samadun, A., Assembayeva, E., & Ferrari, G. (2025). Optimization of Conventional and Ultrasound-Assisted Extraction to Maximize Recovery of Total Phenolic Content and In Vitro Antioxidant Activity from Crataegus almaatensis Leaves. Antioxidants, 14(8), 1003. https://doi.org/10.3390/antiox14081003