Antioxidant Defense and Redox Signaling in Elite Soccer Players: Insights into Muscle Function, Recovery, and Training Adaptations
Abstract
1. Introduction
1.1. Physiological Demands of Elite Soccer and Oxidative Load
1.2. Antioxidant Systems in Skeletal Muscle
2. Literature Selection and Scope
3. Redox Biology and Antioxidant Defenses in Skeletal Muscle
3.1. Sources and Types of Reactive Species During Exercise
3.2. Antioxidant Defense Systems in Skeletal Muscle
3.3. Dual Role of RONS: Signaling and Damage
4. Redox Homeostasis and Exercise in Elite Soccer Players
4.1. Exercise Demands and RONS Generation in Soccer
4.2. Acute and Chronic Oxidative Stress Responses
4.3. Biomarker Monitoring and Practical Applications
5. Redox Signaling and Muscle Function in Soccer Performance
5.1. Redox Regulation of Neuromuscular Function and Energy Metabolism
5.2. Redox Contribution to Fatigue, Recovery, and Muscle Damage
6. Antioxidant Defense and Recovery Strategies
6.1. Endogenous Adaptation Versus Exogenous Antioxidant Supplementation
6.2. Nutritional and Physiological Recovery Interventions
6.3. Strategic Application and the Adaptation-Blunting Debate
7. Periodization, Redox Adaptation, and Long-Term Conditioning
7.1. Seasonal Variation and Oxidative Stress Profiles
7.2. Periodized Antioxidant Strategies and Individual Redox Profiling
8. Future Research Directions
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RONS | Reactive Oxygen and Nitrogen Species |
E–C coupling | Excitation–Contraction Coupling |
ROS | Reactive Oxygen Species |
NADPH | Nicotinamide Adenine Dinucleotide Phosphate |
NOX | NADPH Oxidase |
NOS | Nitric Oxide Synthase |
SOD | Superoxide Dismutase |
GPx | Glutathione Peroxidase |
CAT | Catalase |
GSH | Reduced Glutathione |
AMPK | AMP-Activated Protein Kinase |
PGC-1α | Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha |
Nrf2 | Nuclear Factor Erythroid 2–Related Factor 2 |
NF-κB | Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells |
TAC | Total Antioxidant Capacity |
8-OHdG | 8-Hydroxy-2′-Deoxyguanosine |
DOMS | Delayed-Onset Muscle Soreness |
CK | Creatine Kinase |
HRV | Heart Rate Variability |
SERCA | Sarcoplasmic/Endoplasmic Reticulum Calcium ATPase |
MAPK | Mitogen-Activated Protein Kinase |
FOXO | Forkhead Box O Transcription Factor |
SIRT1 | Sirtuin 1 |
CHO | Carbohydrates |
NAC | N-Acetylcysteine |
FAO | Fatty Acid Oxidation |
GPS | Global Positioning System (Athlete Tracking) |
RPE | Rating of Perceived Exertion |
References
- Rago, V.; Leo, I.; Pizzuto, F.; Costa, J.; Angeicchio, G.; Tafuri, D.; Raiola, G. Variation of Oxidative Stress of Elite Football Players during Pre-Season and In-Season. J. Phys. Educ. Sport 2016, 16, 326–329. [Google Scholar] [CrossRef]
- Radák, Z.; Powers, S.; Jackson, M.; Ji, L. Reactive Oxygen Species Promote Endurance Exercise-Induced Adaptations in Skeletal Muscles. J. Sport Health Sci. 2024, 13, 780–792. [Google Scholar] [CrossRef]
- Toledo, I.C. Clinical, Cellular and Molecular Approaches to Oxidative Stress in Athletes’ Bodies: A Systematic and Integrative Review. Int. J. Nutrology 2023, 16, e23106. [Google Scholar] [CrossRef]
- Ruzicic, R.; Jakovljevic, V.; Djordjevic, D. Oxidative Stress in Training, Overtraining and Detraining: From Experimental to Applied Research. Serb. J. Exp. Clin. Res. 2016, 17, 343–348. [Google Scholar] [CrossRef]
- Gomez-Cabrera, M.C.; Carretero, A.; Millan-Domingo, F.; Garcia-Dominguez, E.; Correas, Á.G.; Olaso-Gonzalez, G.; Viña, J. Redox-Related Biomarkers in Physical Exercise. Redox Biol. 2021, 42, 101956. [Google Scholar] [CrossRef] [PubMed]
- Zulfahmidah, Z.; Safei, I. The Role of Reactive Oxygen Species in Muscle: Beneficial/Harmful. Green Med. J. 2022, 4, 84–92. [Google Scholar] [CrossRef]
- Chen, M.; Li, Y.; Deng, S.-L.; Zhao, Y.; Lian, Z.; Yu, K. Mitochondrial Function and Reactive Oxygen/Nitrogen Species in Skeletal Muscle. Front. Cell Dev. Biol. 2022, 10, 826981. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, X.; Davison, G.; Zhou, Y.; Baker, J. Redox Signaling and Skeletal Muscle Adaptation during Aerobic Exercise. iScience 2024, 27, 109643. [Google Scholar] [CrossRef]
- Owen, A.L. Biochemical Response Comparisons of a Competitive Microcycle vs. Congested Fixture Periods in Elite Level European Champions League Soccer Players. J. Complement. Med. Alt. Healthc. 2019, 10, 555778. [Google Scholar] [CrossRef]
- Murach, K.; Dyar, K.; Smith, J.; Zierath, J. Exercise Metabolism and Adaptation in Skeletal Muscle. Nat. Rev. Mol. Cell Biol. 2023, 24, 607–632. [Google Scholar] [CrossRef]
- Mohr, M.; Vigh-Larsen, J.F.; Krustrup, P. Muscle Glycogen in Elite Soccer—A Perspective on the Implication for Performance, Fatigue, and Recovery. Front. Sports Act. Living 2022, 4, 876534. [Google Scholar] [CrossRef] [PubMed]
- Zouhal, H.; Granacher, U.; Laher, I.; Abderrahman, A.; Hage, R.; Saeidi, A.; Saidi, K.; Hackney, A.; Bideau, B. Immune Inflammation Markers and Physical Fitness during a Congested Match Play Period in Elite Male Soccer Players. Sci. Rep. 2024, 14, 81225. [Google Scholar] [CrossRef]
- Liu, G. Extended Match Time Exacerbates Fatigue and Impacts Physiological Responses in Male Soccer Players. Med. Sci. Sports Exerc. 2022, 55, 80–92. [Google Scholar] [CrossRef]
- Saidi, K.; Zouhal, H.; Boullosa, D.; Dupont, G.; Hackney, A.C.; Bideau, B.; Granacher, U.; Ben Abderrahman, A. Biochemical Markers and Wellness Status During a Congested Match Play Period in Elite Soccer Players. Int. J. Sports Physiol. Perform. 2022, 17, 605–620. [Google Scholar] [CrossRef]
- Saidi, K.; Zouhal, H.; Rhibi, F.; Tijani, J.M.; Boullosa, D.; Chebbi, A.; Hackney, A.C.; Granacher, U.; Bideau, B.; Ben Abderrahman, A. Effects of a Six-Week Period of Congested Match Play on Plasma Volume Variations, Hematological Parameters, Training Workload and Physical Fitness in Elite Soccer Players. PLoS ONE 2019, 14, e0219692. [Google Scholar] [CrossRef]
- Mankowski, R.T.; Anton, S.D.; Buford, T.W.; Leeuwenburgh, C. Dietary Antioxidants as Modifiers of Physiologic Adaptations to Exercise. Med. Sci. Sports Exerc. 2015, 47, 1857–1868. [Google Scholar] [CrossRef]
- Bhol, N.; Samal, R.; Duttaroy, A.; Jena, A. Cellular Red-Ox System in Health and Disease: The Latest Update. Biomed. Pharmacother. 2023, 162, 114606. [Google Scholar] [CrossRef]
- Kang, I.; Ha, J.; Fu, M.; Choe, W.; Yoon, K. Crosstalk Between Antioxidants and Adipogenesis: Mechanistic Pathways and Their Roles in Metabolic Health. Antioxidants 2025, 14, 203. [Google Scholar] [CrossRef]
- Kawamura, T.; Muraoka, I. Exercise-Induced Oxidative Stress and the Effects of Antioxidant Intake from a Physiological Viewpoint. Antioxidants 2018, 7, 119. [Google Scholar] [CrossRef]
- Supruniuk, E.; Górski, J.; Chabowski, A. Endogenous and Exogenous Antioxidants in Skeletal Muscle Fatigue Development during Exercise. Antioxidants 2023, 12, 501. [Google Scholar] [CrossRef]
- Vargas-Mendoza, N.; Angeles-Valencia, M.; Morales-González, Á.; Madrigal-Santillán, E.; Morales-Martínez, M.; Madrigal-Bujaidar, E.; Álvarez-González, I.; Gutiérrez-Salinas, J.; Esquivel-Chirino, C.; Chamorro-Cevallos, G.; et al. Oxidative Stress, Mitochondrial Function and Adaptation to Exercise: New Perspectives in Nutrition. Life 2021, 11, 1269. [Google Scholar] [CrossRef] [PubMed]
- McLeay, Y.; Stannard, S.R.; Houltham, S.D.; Starck, C. Dietary Thiols in Exercise: Oxidative Stress Defence, Exercise Performance, and Adaptation. J. Int. Soc. Sports Nutr. 2017, 14, 12. [Google Scholar] [CrossRef] [PubMed]
- Fransson, D.; Nielsen, T.S.; Olsson, K.; Christensson, T.; Bradley, P.S.; Fatouros, I.G.; Krustrup, P.; Nordsborg, N.B.; Mohr, M. Skeletal Muscle and Performance Adaptations to High-Intensity Training in Elite Male Soccer Players: Speed Endurance Runs versus Small-Sided Game Training. Eur. J. Appl. Physiol. 2018, 118, 111–121. [Google Scholar] [CrossRef]
- Dutka, T.L.; Mollica, J.P.; Lamb, G.D. Differential Effects of Peroxynitrite on Contractile Protein Properties in Fast- and Slow-Twitch Skeletal Muscle Fibers of Rat. J. Appl. Physiol. 2011, 110, 705–716. [Google Scholar] [CrossRef]
- da Silva, A.N.; Freitas-Lima, L.C. The Association between Physical Exercise and Reactive Oxygen Species (ROS) Production. J. Sports Med. Doping Stud. 2015, 5, 1000152. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Bustamante-Sánchez, Á.; Mielgo-Ayuso, J.; Martínez-Guardado, I.; Martín-Rodríguez, A.; Tornero-Aguilera, J.F. Antioxidants and Sports Performance. Nutrients 2023, 15, 2371. [Google Scholar] [CrossRef] [PubMed]
- Yavari, A.; Javadi, M.; Mirmiran, P.; Bahadoran, Z. Exercise-Induced Oxidative Stress and Dietary Antioxidants. Asian J. Sports Med. 2015, 6, e24898. [Google Scholar] [CrossRef]
- Townsend, J.; Hoffman, J.; Gonzalez, A.; Pinzone, A. Supplementation with Nitric Oxide Precursors for Strength Performance: A Review of the Current Literature. Nutrients 2023, 15, 660. [Google Scholar] [CrossRef]
- Mobley, C.; Mueller, B.; Judd, R.; Roberts, M.; Kavazis, A. Nitric Oxide in Exercise Physiology: Past and Present Perspectives. Front. Physiol. 2025, 15, 1504978. [Google Scholar] [CrossRef]
- Aldous, J.W.F.; Chrismas, B.C.R.; Akubat, I.; Dascombe, B.J.; Abt, G.; Taylor, L. Hot and Hypoxic Environments Inhibit Simulated Soccer Performance and Exacerbate Performance Decrements When Combined. Front. Physiol. 2015, 6, 421. [Google Scholar] [CrossRef]
- Powers, S.K.; Goldstein, E.R.; Schrager, M.A.; Ji, L.L. Exercise Training and Skeletal Muscle Antioxidant Enzymes: An Update. Antioxidants 2022, 12, 39. [Google Scholar] [CrossRef] [PubMed]
- Kozakowska, M.; Pietraszek-Gremplewicz, K.; Jozkowicz, A.; Dulak, J. The Role of Oxidative Stress in Skeletal Muscle Injury and Regeneration: Focus on Antioxidant Enzymes. J. Muscle Res. Cell Motil. 2015, 36, 377–393. [Google Scholar] [CrossRef]
- Bjelakovic, L.; Kocic, G.; Radovanović, D.; Antić, V.; Bjelakovic, B.; Antić, Z. Antioxidants and Their Importance during Muscular Exercise: A Review. Facta Univ. Ser. Med. Biol. 2017, 19, 48–56. [Google Scholar] [CrossRef]
- Da Silva, T.; Meierjohann, S.; Mosteo, L.; Goding, C.; Santos, A.; Kreß, J.; Hufnagel, A.; Jessen, C.; Angeli, J.; Schmitz, W. The Integrated Stress Response Effector ATF4 Is an Obligatory Metabolic Activator of NRF2. Cell Rep. 2023, 42, 112724. [Google Scholar] [CrossRef]
- Lee, H.; Choi, J. MLL1 Histone Methyltransferase and UTX Histone Demethylase Functionally Cooperate to Regulate the Expression of NRF2 in Response to ROS-Induced Oxidative Stress. Free Radic. Biol. Med. 2024, 217, 34–59. [Google Scholar] [CrossRef]
- Gutowicz, M. Antioxidant and Detoxyactive Mechanisms in Central Nervous System. Postep. Hig. Med. Dosw. 2020, 74, 1–11. [Google Scholar] [CrossRef]
- Baktiyani, S.C.W. The Changes of H2O2 Level and Glutathione/Glutathione Dioxide Ratio with the Administration of N-Acetylcysteine, Vitamin C, and Vitamin E towards In Vitro Eclampsia Human Umbilical Vein Endothelial Cell Model. Indones. J. Obstet. Gynecol. 2011, 34, 64–68. [Google Scholar]
- Arulselvan, P.; Fard, M.T.; Tan, W.S.; Gothai, S.; Fakurazi, S.; Norhaizan, M.E.; Kumar, S.S. Role of Antioxidants and Natural Products in Inflammation. Oxid. Med. Cell. Longev. 2016, 2016, 5276130. [Google Scholar] [CrossRef]
- Maskhulia, L.; Kakhabrishvili, Z.; Akhalkatsi, V.; Tskhvediani, N.; Kapetivadze, I. Evaluation of the Effect of Oxidative Stress on Dynamics of Cardiac Biomarkers in Georgian Elite Athletes with Overtraining Syndrome. Eur. J. Prev. Cardiol. 2023, 30 (Suppl. S1), zwad125.126. [Google Scholar] [CrossRef]
- Bouviere, J.; Fortunato, R.S.; Dupuy, C.; Werneck-de-Castro, J.P.; Carvalho, D.P.; Louzada, R.A.N. Exercise-Stimulated ROS Sensitive Signaling Pathways in Skeletal Muscle. Antioxidants 2021, 10, 537. [Google Scholar] [CrossRef]
- Nemes, R.; Koltai, E.; Taylor, A.W.; Suzuki, K.; Gyori, F.; Radak, Z. Reactive Oxygen and Nitrogen Species Regulate Key Metabolic, Anabolic, and Catabolic Pathways in Skeletal Muscle. Antioxidants 2018, 7, 85. [Google Scholar] [CrossRef]
- Llanos, P.; Palomero, J. Reactive Oxygen and Nitrogen Species (RONS) and Cytokines—Myokines Involved in Glucose Uptake and Insulin Resistance in Skeletal Muscle. Cells 2022, 11, 4008. [Google Scholar] [CrossRef] [PubMed]
- Arif, I.S.; Kamal, Y.M.; Raoof, I.B. Nrf2 as a Modulator of Oxidative Stress. Al Mustansiriyah J. Pharm. Sci. 2022, 21, 17–23. [Google Scholar] [CrossRef]
- Haghdoost, S.; Emami, S.; Cesário, R.; Godoy, P.; Raftari, M.; Hammad, M.; Salma, R. Roles of Oxidative Stress and Nrf2 Signaling in Pathogenic and Non-Pathogenic Cells: A Possible General Mechanism of Resistance to Therapy. Antioxidants 2023, 12, 1371. [Google Scholar] [CrossRef]
- Ngo, V.T.-K.; Duennwald, M.L. Nrf2 and Oxidative Stress: A General Overview of Mechanisms and Implications in Human Disease. Antioxidants 2022, 11, 2345. [Google Scholar] [CrossRef]
- Lian, D.; Chen, M.-M.; Wu, H.; Deng, S.; Hu, X. The Role of Oxidative Stress in Skeletal Muscle Myogenesis and Muscle Disease. Antioxidants 2022, 11, 755. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Simmen, T.; Makio, T. ER Stress as a Sentinel Mechanism for ER Ca2+ Homeostasis. Cell Calcium 2024, 124, 102961. [Google Scholar] [CrossRef]
- Powers, S.K.; Hogan, M.C. Exercise and Oxidative Stress. J. Physiol. 2016, 594, 5079–5080. [Google Scholar] [CrossRef]
- Romagnoli, M.; Sanchis-Gomar, F.; Alis, R.; Risso-Ballester, J.; Bosio, A.; Graziani, R.L.; Rampinini, E. Changes in Muscle Damage, Inflammation, and Fatigue-Related Parameters in Young Elite Soccer Players after a Match. J. Sports Med. Phys. Fit. 2016, 56, 1198–1205. [Google Scholar]
- Nocella, C.; Cammisotto, V.; Pigozzi, F.; Borrione, P.; Fossati, C.; D’Amico, A.; Cangemi, R.; Peruzzi, M.; Gobbi, G.; Ettorre, E.; et al. Impairment between Oxidant and Antioxidant Systems: Short- and Long-Term Implications for Athletes’ Health. Nutrients 2019, 11, 1353. [Google Scholar] [CrossRef]
- Shalfawi, S.A.I.; Tjelta, L.I. A Critical Evaluation of the Aerobic Capacity Demands of Elite Male Soccer Players. Int. J. Appl. Sports Sci. 2016, 28, 200–212. [Google Scholar] [CrossRef]
- Harper, D.; Harper, D.; Carling, C.; Kiely, J. High-Intensity Acceleration and Deceleration Demands in Elite Team Sports Competitive Match Play: A Systematic Review and Meta-Analysis of Observational Studies. Sports Med. 2019, 49, 1923–1947. [Google Scholar] [CrossRef] [PubMed]
- Di Meo, S.; Napolitano, G.; Venditti, P. Mediators of Physical Activity Protection against ROS-Linked Skeletal Muscle Damage. Int. J. Mol. Sci. 2019, 20, 3024. [Google Scholar] [CrossRef]
- Heyat, F. Cellular and Molecular Mechanisms of the Production of Free Radicals during Exercise and Their Function on Skeletal Muscles. J. Fasa Univ. Med. Sci. 2017, 7, 1–11. [Google Scholar]
- Alghannam, A.F. Metabolic Limitations of Performance and Fatigue in Football. Asian J. Sports Med. 2012, 3, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Pérez-López, A.; Pérez-López, A.; Martin-Rincon, M.; Santana, A.; Perez-Suarez, I.; Dorado, C.; Calbet, J.A.L.; Morales-Alamo, D. Antioxidants Facilitate High-Intensity Exercise IL-15 Expression in Skeletal Muscle. Int. J. Sports Med. 2019, 40, 16–22. [Google Scholar] [CrossRef]
- Petrick, H.L.; Dennis, K.M.J.H.; Miotto, P.M. The Importance of Exercise Intensity, Volume and Metabolic Signalling Events in the Induction of Mitochondrial Biogenesis. J. Physiol. 2018, 596, 4571–4572. [Google Scholar] [CrossRef]
- Abbas, K.; Batool, U.; Memon, A.S.; Soomro, S. Oxidative Stress: A Double Edged Sword. Biomed. Innov. Open Sci. 2021, 2, 4–12. [Google Scholar] [CrossRef]
- Meiliana, A.; Wijaya, A. Hormesis in Health and Disease: Molecular Mechanisms. Indones. Biomed. J. 2020, 12, 288–303. [Google Scholar] [CrossRef]
- Demirci-Çekiç, S.; Özkan, G.; Avan, A.; Uzunboy, S.; Çapanoğlu, E.; Apak, R. Biomarkers of Oxidative Stress and Antioxidant Defense. J. Pharm. Biomed. Anal. 2021, 209, 114477. [Google Scholar] [CrossRef]
- Li, J.; Pan, L.; Pan, W.; Li, N.; Tang, B. Recent Progress of Oxidative Stress Associated Biomarker Detection. Chem. Commun. 2023, 59, 7361–7374. [Google Scholar] [CrossRef] [PubMed]
- Verstuyft, C.; Poinsignon, V.; Becquemont, L.; Chappell, K.; Tayeb, A.; Bouligand, J. Major Depressive Disorder and Oxidative Stress: A Review of Peripheral and Genetic Biomarkers According to Clinical Characteristics and Disease Stages. Antioxidants 2023, 12, 942. [Google Scholar] [CrossRef]
- Pedlar, C.R.; Newell, J.; Lewis, N.A. Blood Biomarker Profiling and Monitoring for High-Performance Physiology and Nutrition: Current Perspectives, Limitations and Recommendations. Sports Med. 2019, 49, 185–198. [Google Scholar] [CrossRef]
- Lewis, N.A.; Newell, J.; Burden, R.; Howatson, G.; Pedlar, C.R. Critical Difference and Biological Variation in Biomarkers of Oxidative Stress and Nutritional Status in Athletes. PLoS ONE 2016, 11, e0149927. [Google Scholar] [CrossRef] [PubMed]
- Haller, N.; Behringer, M.; Reichel, T.; Wahl, P.; Simon, P.; Krüger, K.; Zimmer, P.; Stöggl, T. Blood-Based Biomarkers for Managing Workload in Athletes: Considerations and Recommendations for Evidence-Based Use of Established Biomarkers. Sports Med. 2023, 53, 1315–1333. [Google Scholar] [CrossRef] [PubMed]
- Nowakowska, A.; Kostrzewa-Nowak, D.; Buryta, R.; Nowak, R. Blood Biomarkers of Recovery Efficiency in Soccer Players. Int. J. Environ. Res. Public Health 2019, 16, 3279. [Google Scholar] [CrossRef]
- Schliep, E.M.; Schafer, T.L.J.; Hawkey, M. Distributed Lag Models to Identify the Cumulative Effects of Training and Recovery in Athletes Using Multivariate Ordinal Wellness Data. J. Quant. Anal. Sports 2021, 17, 241–254. [Google Scholar] [CrossRef]
- Sun, Q.A.; Wang, B.; Miyagi, M.; Hess, D.T.; Stamler, J.S. Oxygen-Coupled Redox Regulation of the Skeletal Muscle Ryanodine Receptor/Ca2+ Release Channel (RyR1): Sites and Nature of Oxidative Modification. J. Biol. Chem. 2013, 288, 22961–22971. [Google Scholar] [CrossRef]
- Sun, Q.A.; Hess, D.T.; Nogueira, L.; Yong, S.; Bowles, D.E.; Eu, J.; Laurita, K.R.; Meissner, G.; Stamler, J.S. Oxygen-Coupled Redox Regulation of the Skeletal Muscle Ryanodine Receptor-Ca2+ Release Channel by NADPH Oxidase 4. Proc. Natl. Acad. Sci. USA 2011, 108, 16098–16103. [Google Scholar] [CrossRef]
- Kumar, R.; Coggan, A.R.; Ferreira, L.F. Nitric Oxide and Skeletal Muscle Contractile Function. Nitric Oxide 2022, 122–123, 54–61. [Google Scholar] [CrossRef]
- Jackson, M.J.; Pollock, N.; Staunton, C.A.; Jones, S.W.; McArdle, A. Redox Control of Signalling Responses to Contractile Activity and Ageing in Skeletal Muscle. Cells 2022, 11, 1698. [Google Scholar] [CrossRef] [PubMed]
- Pietrangelo, L.; Carraro, M.; Bernardi, P.; Raffaello, A.; Marcucci, L.; Nogara, L.; Reggiani, C.; Paolocci, N.; Canato, M.; Boncompagni, S.; et al. Mitochondria Can Substitute for Parvalbumin to Lower Cytosolic Calcium Levels in the Murine Fast Skeletal Muscle. Acta Physiol. 2024, 240, e14208. [Google Scholar] [CrossRef]
- Cheng, A.J.; Yamada, T.; Rassier, D.E.; Andersson, D.C.; Westerblad, H.; Lanner, J.T. Reactive Oxygen/Nitrogen Species and Contractile Function in Skeletal Muscle during Fatigue and Recovery. J. Physiol. 2016, 594, 5149–5160. [Google Scholar] [CrossRef] [PubMed]
- Martín-Prieto, E.; Márquez, C.; Fernández-Puente, E.; Palomero, J. Effect of RONS-Induced Intracellular Redox Homeostasis in 6-NBDG/Glucose Uptake in C2C12 Myotubes and Single Isolated Skeletal Muscle Fibres. Int. J. Mol. Sci. 2023, 24, 8082. [Google Scholar] [CrossRef]
- Kjøbsted, R.; Hingst, J.R.; Fentz, J.; Foretz, M.; Sanz, M.N.; Pehmøller, C.; Shum, M.; Marette, A.; Mounier, R.; Treebak, J.T.; et al. AMPK in Skeletal Muscle Function and Metabolism. FASEB J. 2018, 32, 1741–1777. [Google Scholar] [CrossRef]
- Popović, L.; Mitić, R.N. Influence of Free Radicals on Muscle Function and Adaptation in Exercise. Praemeditatus 2014, 43, 73–77. [Google Scholar] [CrossRef]
- Kanda, K.; Sugama, K.; Hayashida, H.; Sakuma, J.; Kawakami, Y.; Miura, S.; Yoshioka, H.; Mori, Y.; Suzuki, K. Eccentric Exercise-Induced Delayed-Onset Muscle Soreness and Changes in Markers of Muscle Damage and Inflammation. Exerc. Immunol. Rev. 2013, 19, 72–85. [Google Scholar] [PubMed]
- Devrnja, A.; Matković, B. The Effects of a Soccer Match on Muscle Damage Indicators. Kinesiology 2018, 50, 112–123. [Google Scholar] [CrossRef]
- Schwiete, C.; Roth, C.; Skutschik, C.; Möck, S.; Rettenmaier, L.; Happ, K.; Broich, H.; Behringer, M. Effects of Muscle Fatigue on Exercise-Induced Hamstring Muscle Damage: A Three-Armed Randomized Controlled Trial. Eur. J. Appl. Physiol. 2023, 123, 2545–2561. [Google Scholar] [CrossRef]
- Vargas-Mendoza, N.; Morales-González, Á.; Madrigal-Santillán, E.; Madrigal-Bujaidar, E.; Álvarez-González, I.; Garcia-Melo, L.F.; Anguiano-Robledo, L.; Fregoso-Aguilar, T.; Morales-González, J.A. Antioxidant and Adaptative Response Mediated by Nrf2 during Physical Exercise. Antioxidants 2019, 8, 196. [Google Scholar] [CrossRef]
- Koyama, K. Exercise-Induced Oxidative Stress: A Tool for “Hormesis” and “Adaptive Response”. J. Phys. Fit. Sports Med. 2014, 3, 115–120. [Google Scholar] [CrossRef]
- Bartlett, M.F.; Miehm, J.D.; Fitzgerald, L.F.; Straight, C.R. Do Changes in Mitochondrial Quality Contribute to Increases in Skeletal Muscle Oxidative Capacity Following Endurance Training? J. Physiol. 2017, 595, 1861–1862. [Google Scholar] [CrossRef]
- Mason, S.A.; Trewin, A.J.; Parker, L.; Wadley, G.D. Antioxidant Supplements and Endurance Exercise: Current Evidence and Mechanistic Insights. Redox Biol. 2020, 35, 101471. [Google Scholar] [CrossRef] [PubMed]
- Rickards, L.; Lynn, A.; Harrop, D.; Baker, M.E.; Russell, M.; Ranchordas, M. Effect of Polyphenol-Rich Foods, Juices, and Concentrates on Recovery from Exercise-Induced Muscle Damage: A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 2988. [Google Scholar] [CrossRef] [PubMed]
- Devrim-Lanpir, A.; Hill, L.; Knechtle, B. How N-Acetylcysteine Supplementation Affects Redox Regulation, Especially at Mitohormesis and Sarcohormesis Level: Current Perspective. Antioxidants 2021, 10, 153. [Google Scholar] [CrossRef]
- Peeri, M.; Shamsnia, E.; Azarbayjani, M.; Matinhomaee, H. The Effect of Aerobic Exercise on Oxidative Stress in Skeletal Muscle Tissue: A Narrative Review. Gene Cell Tissue 2023, 10, e131964. [Google Scholar] [CrossRef]
- Ponce-González, J.; Corral-Pérez, J.; Villarreal, E.; Gutiérrez-Manzanedo, J.; De Castro-Maqueda, G.; Casals, C. Antioxidants Markers of Professional Soccer Players During the Season and Their Relationship with Competitive Performance. J. Hum. Kinet. 2021, 80, 113–123. [Google Scholar] [CrossRef]
- Bell, P.; Stevenson, E.; Davison, G.; Howatson, G. The Effects of Montmorency Tart Cherry Concentrate Supplementation on Recovery Following Prolonged, Intermittent Exercise. Nutrients 2016, 8, 441. [Google Scholar] [CrossRef]
- Carrera-Quintanar, L.; Funes, L.; Herranz-López, M.; Vicente-Salar, N.; Bonet-García, R.; Blasco-Peris, C.; Micol, V.; Pons, A.; Roche, E. Modulation of Oxidative Stress and Antioxidant Response by Different Polyphenol Supplements in Five-a-Side Football Players. Nutrients 2023, 15, 177. [Google Scholar] [CrossRef]
- Higgins, M.R.; Izadi, A.; Kaviani, M. Antioxidants and Exercise Performance: With a Focus on Vitamin E and C Supplementation. Int. J. Environ. Res. Public Health 2020, 17, 8452. [Google Scholar] [CrossRef]
- Bhol, N.; Dash, U.; Majhi, S.; Bhanjadeo, M.; Singh, A.; Duttaroy, A.; Ojha, R.; Jena, A. The Interplay Between Cytokines, Inflammation, and Antioxidants: Mechanistic Insights and Therapeutic Potentials of Various Antioxidants and Anti-Cytokine Compounds. Biomed. Pharmacother. 2024, 178, 117177. [Google Scholar] [CrossRef] [PubMed]
- Nedelec, M.; McCall, A.; Carling, C.; Legall, F.; Berthoin, S.; Dupont, G. Recovery in Soccer: Part II—Recovery Strategies. Sports Med. 2013, 43, 9–22. [Google Scholar] [CrossRef]
- White, G.E.; Caterini, J.E. Cold Water Immersion Mechanisms for Recovery Following Exercise: Cellular Stress and Inflammation Require Closer Examination. J. Physiol. 2017, 595, 631–632. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.-W.; Jeong, J.-H.; Hong, S.C. The Impact of Sleep and Circadian Disturbance on Hormones and Metabolism. Int. J. Endocrinol. 2015, 2015, 591729. [Google Scholar] [CrossRef]
- Nedelec, M.; Halson, S.L.; Delecroix, B.; Abaidia, A.-E.; Ahmaidi, S.; Dupont, G. Sleep Hygiene and Recovery Strategies in Elite Soccer Players. Sports Med. 2015, 45, 1547–1559. [Google Scholar] [CrossRef]
- Güllü, E.; Güllü, A. Recovery after High-Intensity Interval Training in Professional Soccer Players: Passive-Active Combination Recovery Technique. Int. J. Relig. 2024, 5, 221–229. [Google Scholar] [CrossRef]
- Merry, T.L.; Ristow, M. Do Antioxidant Supplements Interfere with Skeletal Muscle Adaptation to Exercise Training? J. Physiol. 2016, 594, 5135–5147. [Google Scholar] [CrossRef]
- Lamberti, I.; Buzzetti, E.; Cristani, A. Oxidative Stress Management in Elite Athletes. Recent. Prog. Med. 2013, 104, 490–492. [Google Scholar] [CrossRef]
- Liu, C.; Lu, N.; Zhao, H.; Liu, J.; Song, G.; Teng, J.; Yun, H.; Zou, D.; Zhu, H. Assessment of Urolithin A Effects on Muscle Endurance, Strength, Inflammation, Oxidative Stress, and Protein Metabolism in Male Athletes with Resistance Training: An 8-Week Randomized, Double-Blind, Placebo-Controlled Study. J. Int. Soc. Sports Nutr. 2024, 21, 2419388. [Google Scholar] [CrossRef]
- Lee, E.C.; Fragala, M.S.; Kavouras, S.A.; Queen, R.M.; Pryor, J.L.; Casa, D.J. Biomarkers in Sports and Exercise: Tracking Health, Performance, and Recovery in Athletes. J. Strength Cond. Res. 2017, 31, 2920–2937. [Google Scholar] [CrossRef]
- Reid, M.B. Redox Interventions to Increase Exercise Performance. J. Physiol. 2016, 594, 5125–5133. [Google Scholar] [CrossRef]
- Vassalle, C.; Pingitore, A.; De Giuseppe, R.; Vigna, L.; Bamonti, F. Biomarkers Part II: Biomarkers to Estimate Bioefficacy of Dietary/Supplemental Antioxidants in Sport. Adv. Clin. Chem. 2015, 69, 209–222. [Google Scholar]
- Meckel, Y.; Doron, O.; Eliakim, E.; Eliakim, A. Seasonal Variations in Physical Fitness and Performance Indices of Elite Soccer Players. Sports 2018, 6, 14. [Google Scholar] [CrossRef] [PubMed]
- Abate, M.; Pellegrino, R.; Di Iorio, A.; Salini, V. Oxidative Stress and Performance after Training in Professional Soccer (European Football) Players. Antioxidants 2023, 12, 1470. [Google Scholar] [CrossRef] [PubMed]
- Flockhart, M.; Nilsson, L.; Tillqvist, E.; Vinge, F.; Millbert, F.; Lännerström, J.; Nilsson, P.; Samyn, D.; Apró, W.; Sundqvist, M.; et al. Glucosinolate-Rich Broccoli Sprouts Protect against Oxidative Stress and Improve Adaptations to Intense Exercise Training. Redox Biol. 2023, 67, 102873. [Google Scholar] [CrossRef]
- Su, C.; Meng, Q. The Impact of Physical Exercise on Oxidative and Nitrosative Stress: Balancing the Benefits and Risks. Antioxidants 2024, 13, 573. [Google Scholar] [CrossRef]
- Ranchordas, M.; Dawson, J.T.; Russell, M. Practical Nutritional Recovery Strategies for Elite Soccer Players When Limited Time Separates Repeated Matches. J. Int. Soc. Sports Nutr. 2017, 14, 35. [Google Scholar] [CrossRef] [PubMed]
- Heaton, L.E.; Davis, J.K.; Rawson, E.S.; Nuccio, R.P.; Witard, O.C.; Stein, K.W.; Baar, K.; Carter, J.M.; Baker, L.B. Selected In-Season Nutritional Strategies to Enhance Recovery for Team Sport Athletes: A Practical Overview. Sports Med. 2017, 47, 2201–2218. [Google Scholar] [CrossRef]
- Baldelli, S.; Ciccarone, F.; Limongi, D.; Checconi, P.; Palamara, A.T.; Ciriolo, M.R. Glutathione and Nitric Oxide: Key Team Players in Use and Disuse of Skeletal Muscle. Nutrients 2019, 11, 2318. [Google Scholar] [CrossRef]
- Taherkhani, S.; Valaei, K.; Arazi, H.; Suzuki, K. An Overview of Physical Exercise and Antioxidant Supplementation Influences on Skeletal Muscle Oxidative Stress. Antioxidants 2021, 10, 1528. [Google Scholar] [CrossRef]
- Poulios, A.; Papanikolaou, K.; Draganidis, D.; Tsimeas, P.; Chatzinikolaou, A.; Tsiokanos, A.; Jamurtas, A.Z.; Fatouros, I.G. The Effects of Antioxidant Supplementation on Soccer Performance and Recovery: A Critical Review of the Available Evidence. Nutrients 2024, 16, 3803. [Google Scholar] [CrossRef] [PubMed]
- Besedovsky, L.; Lange, T.; Haack, M. The Sleep-Immune Crosstalk in Health and Disease. Physiol. Rev. 2019, 99, 1325–1380. [Google Scholar] [CrossRef] [PubMed]
- Seifi-Skishahr, F.; Damirchi, A.; Farjaminezhad, M.; Babaei, P. Physical Training Status Determines Oxidative Stress and Redox Changes in Response to an Acute Aerobic Exercise. Biochem. Res. Int. 2016, 2016, 3757623. [Google Scholar] [CrossRef] [PubMed]
- Devrim-Lanpir, A.; Bilgiç, P.; Kocahan, T.; Deliceoğlu, G.; Rosemann, T.; Knechtle, B. Total Dietary Antioxidant Intake Including Polyphenol Content: Is It Capable to Fight against Increased Oxidants within the Body of Ultra-Endurance Athletes? Nutrients 2020, 12, 1877. [Google Scholar] [CrossRef]
- Ruderman, E.B.W.; White, G.E. Don’t Mess with Stress: Vitamin Supplementation and the Role of Oxidative Stress for Aerobic Exercise Adaptation. J. Physiol. 2014, 592, 3951–3952. [Google Scholar] [CrossRef]
- Canals-Garzón, C.; Guisado-Barrilao, R.; Martínez-García, D.; Chirosa-Ríos, I.; Jérez-Mayorga, D.; Guisado-Requena, I. Effect of Antioxidant Supplementation on Markers of Oxidative Stress and Muscle Damage after Strength Exercise: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 1803. [Google Scholar] [CrossRef]
- Margaritelis, N.V.; Chatzinikolaou, P.N.; Theodorou, A.A.; Paschalis, V.; Vrabas, I.S.; Kyparos, A.; Fatouros, I.G.; Nikolaidis, M.G. Inter-Individual Variability in Redox and Performance Responses after Antioxidant Supplementation: A Randomized Double Blind Crossover Study. Acta Physiol. 2023, 238, e14017. [Google Scholar] [CrossRef]
- Zare, M.; Shateri, Z.; Nouri, M.; Sarbakhsh, P.; Eftekhari, M.H.; Gargari, B.P. Association between Urinary Levels of 8-Hydroxy-2-Deoxyguanosine and F2α-Isoprostane in Male Football Players and Healthy Non-Athlete Controls with Dietary Inflammatory and Antioxidant Indices. Front. Nutr. 2023, 9, 1101532. [Google Scholar] [CrossRef]
- Clemente, F.M.; González-Fernández, F.T.; Ceylan, H.İ.; Silva, R.; Younesi, S.; Chen, Y.-S.; Badicu, G.; Wolański, P.; Murawska-Ciałowicz, E. Blood Biomarkers Variations across the Pre-Season and Interactions with Training Load: A Study in Professional Soccer Players. J. Clin. Med. 2021, 10, 5576. [Google Scholar] [CrossRef]
Mechanism | Primary Sources and Examples | Key Molecular Targets/ Components | Effects at Physiological Levels | Effects when Excessive | Practical Implications for Elite Soccer Players | References |
---|---|---|---|---|---|---|
Reactive Species Generation | Mitochondria (Complex I and III), NADPH oxidase (NOX2/4), xanthine oxidase, uncoupled NOS | Superoxide (O2•−), H2O2, •OH, NO•, ONOO− | Signal transduction, mitochondrial biogenesis, and glucose uptake | Oxidative stress, lipid/protein/DNA damage, impaired calcium handling | Requires modulation through recovery protocols and load management | [7,24,25,26,27,28,30] |
Antioxidant Defense—Enzymatic | SOD (cytosolic/mitochondrial), CAT, GPx | Detoxification of superoxide and hydrogen peroxide | Maintains redox homeostasis, supports adaptation | Inadequate during overtraining or insufficient recovery | Endogenous enzyme expression can be enhanced through training hormesis | [31,32,33,43] |
Antioxidant Defense—Non-Enzymatic | Glutathione (GSH), vitamins C and E, polyphenols (quercetin, resveratrol) | Neutralization of free radicals, regeneration of enzymatic antioxidants | Protects membranes and proteins, supports recovery | Risk of adaptation blunting if over-supplemented | Timing and dosing of supplements must align with a training phase | [34,35,36,37,38] |
Signaling Pathways | RONS-mediated activation of AMPK, Nrf2, MAPKs | Antioxidant gene transcription, mitochondrial biogenesis | Promotes metabolic flexibility, muscle remodeling | Suppressed adaptation if RONS is excessively neutralized | Controlled RONS exposure is essential for long-term conditioning | [7,40,41,42,43,44,45] |
Muscle Fiber Susceptibility | Fast-twitch (Type II) fibers in sprinting, cutting | Lower intrinsic antioxidant levels | Greater capacity for power but higher vulnerability to oxidative damage | Increased injury risk, especially under congested schedules | Customized antioxidant support is needed based on positional demands | [28,29,49] |
Mechanism or Concept | Description and Key Features | Effects/Outcomes | Implications for Elite Soccer Players | References |
---|---|---|---|---|
RONS Generation in Match Play | High-intensity actions, ischemia–reperfusion cycles, eccentric contractions | Elevated oxidative load, disrupted calcium handling, and inflammation | Needs monitoring during congested schedules; impacts recovery and injury risk | [15,51,52,53,54,55] |
Acute Oxidative Stress | Transient RONS production post-exercise; activates signaling pathways (e.g., AMPK, Nrf2) | Stimulates mitochondrial biogenesis, antioxidant enzyme expression | Essential for adaptation; should not be overly suppressed | [40,57] |
Chronic Oxidative Stress | Repeated exposure due to overtraining, poor nutrition, and insufficient rest | Lipid/protein/DNA damage, mitochondrial dysfunction, fatigue | Leads to maladaptation and injury risk if unmanaged | [21,58] |
Hormesis Principle | Moderate stress promotes adaptation; excessive stress causes damage | Enhances redox resilience vs. elevates injury and inflammation | Guides training load and antioxidant strategy design | [4,59] |
Individual Variability | Influenced by genetics, age, training, and nutrition | Determines antioxidant capacity and stress response | Necessitates personalized recovery and supplementation plans | [3,4,21] |
Oxidative Stress Biomarkers | MDA, 8-OHdG, F2-isoprostanes, protein carbonyls | Reflect lipid, DNA, and protein oxidation status | Enables early detection of redox imbalance | [60,61,62] |
Antioxidant Defense Biomarkers | Total antioxidant capacity, SOD, CAT, GPx activity | Assess redox buffering capacity and recovery state | Support real-time monitoring and intervention tailoring | [63,64,65] |
Practical Monitoring Applications | Longitudinal biomarker tracking + HRV, RPE, performance data | Informs precision training, recovery, and nutrition | Enhances resilience and minimizes maladaptation risks | [63,66,67] |
Mechanism or Concept | Description and Key Features | Effects/Outcomes | Implications for Elite Soccer Players | References |
---|---|---|---|---|
Excitation–Contraction (E–C) Coupling Modulation | RONS modulate RyR1 and SERCA through reversible oxidation | Enhances calcium handling and contractile performance | Supports sustained submaximal output; vulnerable to oxidative damage in fatigue | [68,69,70,71] |
Excessive RONS and E–C Disruption | Irreversible protein oxidation impairs calcium flux | Reduces force production and muscle responsiveness | Leads to late-match fatigue, especially under high load | [72,73] |
AMPK–PGC-1α Pathway Activation | AMPK is activated by oxidative and energetic stress | Promotes glucose uptake, FAO, mitochondrial biogenesis | Enhances energy efficiency and endurance performance | [40,74,75] |
Redox and Mitochondrial Regulation | RONS-sensitive transcription (e.g., SIRT1, FOXO) affects mitochondrial health | Improves metabolic flexibility and quality control | Disrupted under chronic oxidative overload, reducing ATP | [40,41] |
Fast-Twitch Fiber Susceptibility | Type II fibers with low antioxidant capacity under high load | Accumulate oxidative damage, reduce contraction efficiency | Require targeted recovery and antioxidant strategies | [2,73] |
RONS Role in Muscle Damage and DOMS | Secondary oxidative stress from immune activation post-exercise | Lipid and protein oxidation, prolonged inflammation | Increases soreness and injury risk under poor recovery | [13,73,77,78] |
RONS in Muscle Repair and Remodeling | Activate NF-κB and AP-1, stimulating cytokines and growth factors | Support satellite cell activation and muscle regeneration | Necessary for adaptation; indiscriminate antioxidant use may impair the process | [72,79] |
Recovery Management Strategy | Combines redox biomarker monitoring with neuromuscular and fatigue data | Enables precise intervention timing (e.g., antioxidant, cryotherapy) | Prevents maladaptation and maintains performance | [2,76,79] |
Mechanism or Concept | Description and Key Features | Effects/Outcomes | Implications for Elite Soccer Players | References |
---|---|---|---|---|
Endogenous Antioxidant Adaptation | Nrf2 activation induces antioxidant enzymes (SOD, CAT, GPx) in response to RONS | Enhances redox resilience and mitochondrial efficiency | Promotes natural adaptation; training must provide a moderate oxidative stimulus | [2,80,81] |
PGC–1α–Mediated Adaptation | Triggered by oxidative and energetic stress; supports mitochondrial biogenesis and metabolism | Increases endurance, delays fatigue, and improves energy utilization | Critical for long-term adaptation and performance enhancement | [82] |
Exogenous Supplementation—Vitamins C, E, NAC | Reduces oxidative stress and inflammation but may blunt signaling if misused | Can impair AMPK and PGC-1α activation, reducing adaptation | Use cautiously during injury or overload periods, not chronically | [22,83,85] |
Polyphenol-Based Supplementation | Quercetin, curcumin, resveratrol have antioxidant and signaling effects | Aid inflammation control and recovery; modulate NF-κB and Nrf2 | Apply selectively based on training intensity and goals | [84,88,90] |
Physiological Interventions | Cryotherapy, cold-water immersion, sleep, massage, and active recovery | Support acute recovery and tissue repair; reduce inflammatory oxidative bursts | Effective when timed appropriately; avoid overuse to preserve adaptations | [92,93,94,95,96] |
Adaptation-Blunting Hypothesis | High antioxidant doses suppress redox-sensitive pathways (AMPK, PGC-1α, Nrf2) | May limit mitochondrial biogenesis and oxidative capacity | Highlights the importance of precise timing and dosing | [26,83,97] |
Training Periodization of Antioxidants | Strategy varies between adaptation-focused and performance-focused phases | Balances oxidative signaling and damage control | Periodized planning enhances recovery and preserves adaptation | [9,98] |
Individual Variability and Precision Recovery | Redox response is influenced by genetics, diet, training, and playing position | Biomarkers (MDA, 8-OHdG, GPx) enable targeted intervention | Supports personalized antioxidant and recovery protocols | [1,26,99,100,101,102] |
Mechanism or Concept | Description and Key Features | Effects/Outcomes | Implications for Elite Soccer Players | References |
---|---|---|---|---|
Preseason Redox Challenge | High training volume and eccentric exercises increase RONS via mitochondrial respiration, NOX activity, and inflammation | Activates Nrf2, enhances antioxidant enzyme expression, and promotes mitochondrial biogenesis | Forms an adaptive foundation for in-season performance; must be monitored for overload | [2,80,103,104,105,106] |
In-Season Oxidative Load | Frequent high-intensity matches, travel, and limited rest elevate oxidative stress, CK, and inflammation | Can impair recovery, increase muscle damage, and raise injury risk | Demands targeted nutrition (CHO, protein, vitamin D), biomarker monitoring, and rotation strategies | [9,14,107,108] |
Off-Season Redox Recalibration | Reduced load allows antioxidant restoration and inflammation resolution; improved sleep supports redox reset | Enhances glutathione, vitamin C/E levels, immune function, and mitochondrial maintenance | Ideal for physiological regeneration and dietary reassessment | [4,26,109,110,111,112,113,114] |
Periodized Antioxidant Strategy | High-dose antioxidants during adaptation phases may suppress AMPK, PGC-1α, and Nrf2 pathways | May blunt training adaptations and mitochondrial gains | Strategy should match training cycle—minimal during adaptation blocks, moderate during congestion | [26,97,115,116] |
Redox Genetic Variability | Individual differences in antioxidant enzyme genes (SOD2, GPX1, CAT) modulate oxidative response | Affects susceptibility to oxidative stress and efficacy of supplementation | Highlights the need for genetically informed nutrition and recovery protocols | [2,4,50,117] |
Biomarker-Guided Personalization | Redox markers (MDA, 8-OHdG, protein carbonyls, TAC) with GPS, HRV, and RPE data provide a recovery profile | Supports individualized training, antioxidant timing, and stress management | Reduces overtraining risk and optimizes performance through precision conditioning | [4,117,118,119] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Q.; Su, C.-H. Antioxidant Defense and Redox Signaling in Elite Soccer Players: Insights into Muscle Function, Recovery, and Training Adaptations. Antioxidants 2025, 14, 815. https://doi.org/10.3390/antiox14070815
Meng Q, Su C-H. Antioxidant Defense and Redox Signaling in Elite Soccer Players: Insights into Muscle Function, Recovery, and Training Adaptations. Antioxidants. 2025; 14(7):815. https://doi.org/10.3390/antiox14070815
Chicago/Turabian StyleMeng, Qing, and Chun-Hsien Su. 2025. "Antioxidant Defense and Redox Signaling in Elite Soccer Players: Insights into Muscle Function, Recovery, and Training Adaptations" Antioxidants 14, no. 7: 815. https://doi.org/10.3390/antiox14070815
APA StyleMeng, Q., & Su, C.-H. (2025). Antioxidant Defense and Redox Signaling in Elite Soccer Players: Insights into Muscle Function, Recovery, and Training Adaptations. Antioxidants, 14(7), 815. https://doi.org/10.3390/antiox14070815