Time Matters: Methane Inhalation Mitigates Mitochondrial and Organ Dysfunction in Advanced Experimental Sepsis
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Protocol
2.2. Methane Treatment
2.3. Organ Failure Assessment
2.4. Measurements of the Oxygen Dynamics
2.5. Mitochondrial Respiration Assessment
2.6. Plasma MPO Measurement
2.7. Statistical Analysis
3. Results
3.1. Changes in Well-Being
3.2. Organ Function Alterations
3.3. Oxygen Dynamics Alterations
3.4. Cerebellar and Renal Mitochondrial Function Alterations
3.5. Neutrophil Granulocyte Activation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AKI | Acute Kidney Injury |
ALT | Alanine Aminotransferase |
ARRIVE | Animal Research: Reporting of In Vivo Experiments |
ATP | Adenosine Triphosphate |
C-I, C-II | Mitochondrial Complex I and II |
CH4 | Methane |
CytC% | Cytochrome c–induced oxygen consumption as a percentage of OXPHOS |
DO2 | Oxygen Delivery |
ECMO | Extracorporeal Membrane Oxygenation |
ExO2 | Oxygen Extraction |
FiO2 | Fraction of Inspired Oxygen |
LEAKGM | Glutamate-Malate–supported Leak Respiration |
LEAKS | Succinate-supported Leak Respiration |
MAP | Mean Arterial Pressure |
MQTiPSS | Minimum Quality Threshold in Preclinical Sepsis Studies |
MPO | Myeloperoxidase |
NF-κB | Nuclear Factor kappa-light-chain-enhancer of activated B cells |
OXPHOS | ADP-Stimulated Oxidative Phosphorylation |
PaO2 | Partial Pressure of Arterial Oxygen |
PaO2/FiO2 | Arterial oxygen partial pressure/fraction of inspired oxygen |
pCO2-gap | Central Venous-to-Arterial Carbon Dioxide Gap |
ROFA | Rat-Specific Organ Failure Assessment |
ROS | Reactive Oxygen Species |
RSS | Rat-Specific Sickness Score |
SOFA | Sequential Organ Failure Assessment |
VO2 | Oxygen Consumption |
References
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Ince, C. The microcirculation is the motor of sepsis. Crit. Care 2005, 9 (Suppl. S4), S13–S19. [Google Scholar] [CrossRef] [PubMed]
- Singer, M. The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence 2014, 5, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Nedel, W.; Deutschendorf, C.; Portela, L.V.C. Sepsis-induced mitochondrial dysfunction: A narrative review. World J. Crit. Care Med. 2023, 12, 139–152. [Google Scholar] [CrossRef]
- Vincent, J.L.; Moreno, R.; Takala, J.; Willatts, S.; De Mendonça, A.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G. The SOFA (Sepsis-Related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef]
- Lyu, J.; Zheng, G.; Chen, Z.; Wang, B.; Tao, S.; Xiang, D.; Xie, M.; Huang, J.; Liu, C.; Zeng, Q. Sepsis-induced brain mitochondrial dysfunction is associated with altered mitochondrial Src and PTP1B levels. Brain Res. 2015, 1620, 130–138. [Google Scholar] [CrossRef]
- Manrique-Caballero, C.L.; Rio-Pertuz, G.D.; Gomez, H. Sepsis-associated acute kidney injury. Crit. Care Clin. 2021, 37, 279–301. [Google Scholar] [CrossRef]
- Zhang, X.; Agborbesong, E.; Li, X. The role of mitochondria in acute kidney injury and chronic kidney disease and its therapeutic potential. Int. J. Mol. Sci. 2021, 22, 11253. [Google Scholar] [CrossRef]
- Bauer, M.; Gerlach, H.; Vogelmann, T.; Preissing, F.; Stiefel, J.; Adam, D. Mortality in sepsis and septic shock in Europe, North America and Australia between 2009 and 2019: Results from a systematic review and meta-analysis. Crit. Care 2020, 24, 239. [Google Scholar] [CrossRef]
- Prest, J.; Sathananthan, M.; Jeganathan, N. Current trends in sepsis-related mortality in the United States. Crit. Care Med. 2021, 49, 1276–1284. [Google Scholar] [CrossRef]
- Moore, J.P.R.; Dyson, A.; Singer, M.; Fraser, J. Microcirculatory dysfunction and resuscitation: Why, when, and how. Br. J. Anaesth. 2015, 115, 366–375. [Google Scholar] [CrossRef]
- Napolitano, L.M. Sepsis 2018: Definitions and guideline changes. Surg. Infect. 2018, 19, 117–125. [Google Scholar] [CrossRef]
- Boros, M.; Keppler, F. Methane production and bioactivity − A link to oxido-reductive stress. Front. Physiol. 2019, 10, 1244. [Google Scholar] [CrossRef]
- Juhász, L.; Tallósy, S.P.; Nászai, A.; Varga, G.; Érces, D.; Boros, M. Bioactivity of inhaled CH4 and interactions with other biological gases. Front. Cell Dev. Biol. 2022, 9, 824749. [Google Scholar] [CrossRef]
- Jia, Y.; Li, Z.; Liu, C.; Zhang, J. Methane medicine: A rising star gas with powerful anti-inflammation, antioxidant, and antiapoptosis properties. Oxid. Med. Cell. Longev. 2018, 2018, 1912746. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Li, Z.; Feng, Y.; Cui, R.; Dong, Y.; Zhang, X.; Xiang, X.; Qu, K.; Liu, C.; Zhang, J. Methane-rich saline ameliorates sepsis-induced acute kidney injury through anti-inflammation, antioxidative, and antiapoptosis effects by regulating endoplasmic reticulum stress. Oxid. Med. Cell. Longev. 2018, 2018, 4756846. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Jia, Y.; Feng, Y.; Cui, R.; Wang, Z.; Qu, K.; Liu, C.; Zhang, J. Methane-rich saline protects against sepsis-induced liver damage by regulating the PPAR-γ/NF-κB signaling pathway. Shock 2019, 52, e163–e172. [Google Scholar] [CrossRef] [PubMed]
- Vida, N.; Varga, Z.; Szabó-Biczók, A.; Bari, G.; Vigyikán, G.; Hodoniczki, Á.; Gajda, Á.; Rutai, A.; Juhász, L.; Tallósy, S.P.; et al. Methane administration during oxygenation mitigates acute kidney injury in a pig model of 24-h veno-venous extracorporeal membrane oxygenation. Shock 2025, 63, 935–943. [Google Scholar] [CrossRef]
- Tallósy, S.P.; Poles, M.Z.; Rutai, A.; Fejes, R.; Juhász, L.; Burián, K.; Sóki, J.; Szabó, A.; Boros, M.; Kaszaki, J. The microbial composition of the initial insult can predict the prognosis of experimental sepsis. Sci. Rep. 2021, 11, 22772. [Google Scholar] [CrossRef] [PubMed]
- Osuchowski, M.F.; Alfred, A.; Bahrami, S.; Bauer, M.; Boros, M.; Cavaillon, J.M.; Chaudry, I.H.; Coopersmith, C.M.; Deutschman, C.S.; Drechsler, S.; et al. Minimum quality threshold in pre-clinical sepsis studies (MQTIPSS): An international expert consensus initiative for improvement of animal modeling in sepsis. Shock 2018, 50, 377–380. [Google Scholar] [CrossRef]
- Juhász, L.; Rutai, A.; Fejes, R.; Tallósy, S.P.; Poles, M.Z.; Szabó, A.; Szatmári, I.; Fülöp, F.; Vécsei, L.; Boros, M.; et al. Divergent effects of the N-methyl-D-aspartate receptor antagonist kynurenic acid and the synthetic analog SZR-72 on microcirculatory and mitochondrial dysfunction in experimental sepsis. Front. Med. 2020, 7, 566582. [Google Scholar] [CrossRef] [PubMed]
- Kuebler, W.M.; Abels, C.; Schuerer, L. Measurement of neutrophil content in brain and lung tissue by a modified myeloperoxidase assay. Int. J. Microcirc. Clin. Exp. 1996, 16, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Poles, M.Z.; Bódi, N.; Bagyánszki, M.; Fekete, É.; Mészáros, A.T.; Varga, G.; Szűcs, S.; Nászai, A.; Kiss, L.; Kozlov, A.V.; et al. Reduction of nitrosative stress by CH4: Neuroprotection through xanthine oxidoreductase inhibition in a rat model of mesenteric ischemia-reperfusion. Free Radic. Biol. Med. 2018, 120, 160–169. [Google Scholar] [CrossRef]
- Zhang, X.; Li, N.; Shao, H.; Meng, Y.; Wang, L.; Wu, Q.; Yao, Y.; Li, J.; Bian, J.; Zhang, Y.; et al. Methane limits LPS-induced NF-κB/MAPKs signal in macrophages and suppresses immune response in mice by enhancing PI3K/AKT/GSK-3β-mediated IL-10 expression. Sci. Rep. 2016, 6, 29359. [Google Scholar]
- Wang, Y.; Wang, C.; Zhang, D.; Wang, L.; Wang, H.; Hu, B.; Bo, L. Methane-rich saline protects against sepsis-associated cognitive deficits in mice. Brain Res. 2022, 1791, 148000. [Google Scholar] [CrossRef]
- Ng, K.T.; Kwok, P.E.; Lim, W.E.; Teoh, W.Y.; Hasan, M.S.; Zainal Abidin, M.F. The use of methylene blue in adult patients with septic shock: A systematic review and meta-analysis. Braz. J. Anesthesiol. 2025, 75, 844580. [Google Scholar] [CrossRef]
- Alissa, A.; Alrashed, M.A.; Alshaya, A.I.; Al Sulaiman, K.; Alharbi, S. Reevaluating vitamin C in sepsis and septic shock: A potential benefit in severe cases? Front. Med. 2024, 11, 1476242. [Google Scholar] [CrossRef]
- Juneja, D.; Nasa, P.; Jain, R. Current role of high dose vitamin C in sepsis management: A concise review. World J. Crit. Care Med. 2022, 11, 349–363. [Google Scholar] [CrossRef]
- Boros, M.; Ghyczy, M.; Érces, D.; Varga, G.; Tőkés, T.; Kupai, K.; Torday, C.; Kaszaki, J. The anti-inflammatory effects of CH4. Crit. Care Med. 2012, 40, 1269–1278. [Google Scholar] [CrossRef] [PubMed]
- Tengan, C.H.; Moraes, C.T. NO control of mitochondrial function in normal and transformed cells. Biochim. Biophys. Acta 2017, 1858, 573–581. [Google Scholar] [CrossRef]
- Zhang, B.; Tian, X.; Li, G.; Zhao, H.; Wang, X.; Yin, Y.; Yu, J.; Meng, C. Methane inhalation protects against lung ischemia-reperfusion injury in rats by regulating pulmonary surfactant via the Nrf2 pathway. Front. Physiol. 2021, 12, 615974. [Google Scholar] [CrossRef] [PubMed]
- Batliwala, H.; Somasundaram, T.; Uzgiris, E.E. Methane-induced haemolysis of human erythrocytes. Biochem. J. 1995, 307, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Mayne, C.G.; Arcario, M.J.; Mahinthichaichan, P.; Baylon, J.L.; Vermaas, J.V.; Navidpour, L.; Wen, P.C.; Thangapandian, S.; Tajkhorshid, E. The cellular membrane as a mediator for small molecule interaction with membrane proteins. Biochim. Biophys. Acta Biomembr. 2016, 1858, 2290–2304. [Google Scholar] [CrossRef] [PubMed]
- Gu, M.; Mei, X.L.; Zhao, Y.N. Sepsis and cerebral dysfunction: BBB damage, neuroinflammation, oxidative stress, apoptosis and autophagy as key mediators and the potential therapeutic approaches. Neurotox. Res. 2021, 39, 489–503. [Google Scholar] [CrossRef] [PubMed]
- Barichello, T.; Giridharan, V.V.; Catalão, C.H.R.; Ritter, C.; Dal-Pizzol, F. Neurochemical effects of sepsis on the brain. Clin. Sci. 2023, 137, 401–414. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yao, Y.; He, R.; Meng, Y.; Li, N.; Zhang, D.; Xu, J.; Chen, O.; Cui, J.; Bian, J.; et al. Methane ameliorates spinal cord ischemia-reperfusion injury in rats: Antioxidant, anti-inflammatory and anti-apoptotic activity mediated by Nrf2 activation. Free Radic. Biol. Med. 2017, 103, 69–86. [Google Scholar] [CrossRef]
- Exline, M.C.; Crouser, E.D. Mitochondrial mechanisms of sepsis-induced organ failure. Front. Biosci. 2008, 13, 5030–5041. [Google Scholar] [PubMed]
- Bhargava, P.; Schnellmann, R.G. Mitochondrial energetics in the kidney. Nat. Rev. Nephrol. 2017, 13, 629–642. [Google Scholar] [CrossRef] [PubMed]
- Müller, J.; Chvojka, J.; Ledvinova, L.; Benes, J.; Tuma, Z.; Grundmanova, M.; Jedlicka, J.; Kuncova, J.; Matejovic, M. Renal mitochondria response to sepsis: A sequential biopsy evaluation of experimental porcine model. Intensive Care Med. Exp. 2025, 13, 25. [Google Scholar] [CrossRef]
- Moullan, N.; Mouchiroud, L.; Wang, X.; Ryu, D.; Williams, E.G.; Mottis, A.; Jovaisaite, V.; Frochaux, M.V.; Quiros, P.M.; Deplancke, B.; et al. Tetracyclines Disturb Mitochondrial Function across Eukaryotic Models: A Call for Caution in Biomedical Research. Cell Rep. 2015, 10, 1681–1691. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gulácsi, L.F.; Rutai, A.; Juhász, L.; Czakó, B.L.; Szabó, A.; Boros, M.; Kaszaki, J.; Poles, M.Z.; Tallósy, S.P. Time Matters: Methane Inhalation Mitigates Mitochondrial and Organ Dysfunction in Advanced Experimental Sepsis. Antioxidants 2025, 14, 814. https://doi.org/10.3390/antiox14070814
Gulácsi LF, Rutai A, Juhász L, Czakó BL, Szabó A, Boros M, Kaszaki J, Poles MZ, Tallósy SP. Time Matters: Methane Inhalation Mitigates Mitochondrial and Organ Dysfunction in Advanced Experimental Sepsis. Antioxidants. 2025; 14(7):814. https://doi.org/10.3390/antiox14070814
Chicago/Turabian StyleGulácsi, Levente Frigyes, Attila Rutai, László Juhász, Bálint László Czakó, Andrea Szabó, Mihály Boros, József Kaszaki, Marietta Zita Poles, and Szabolcs Péter Tallósy. 2025. "Time Matters: Methane Inhalation Mitigates Mitochondrial and Organ Dysfunction in Advanced Experimental Sepsis" Antioxidants 14, no. 7: 814. https://doi.org/10.3390/antiox14070814
APA StyleGulácsi, L. F., Rutai, A., Juhász, L., Czakó, B. L., Szabó, A., Boros, M., Kaszaki, J., Poles, M. Z., & Tallósy, S. P. (2025). Time Matters: Methane Inhalation Mitigates Mitochondrial and Organ Dysfunction in Advanced Experimental Sepsis. Antioxidants, 14(7), 814. https://doi.org/10.3390/antiox14070814