Probiotics as Antioxidant Strategy for Managing Diabetes Mellitus and Its Complications
Abstract
1. Introduction
2. Diabetes Mellitus and Its Major Complications
2.1. Etiology and Pathophysiology of Diabetes Mellitus (DM)
2.2. Diabetic Neuropathy (DNR): Causes and Consequences
2.3. Kidney Complications in Diabetes: Diabetic Nephropathy (DNP)
3. Mechanisms of Oxidative Damage in Diabetes and Its Complications
4. Advances in Diabetes Management: From Hypoglycemic Agents to Probiotic Therapeutics
5. Antioxidant Potential of Probiotics in Managing Diabetes and Its Complications
5.1. Preclinical Evidence of Antioxidant and Antidiabetic Properties
Strains | Experimental Models | Key Findings | Reference |
---|---|---|---|
L. paracasei L14 | High-fat diet (HFD)/Streptozotocin (STZ)-induced diabetic rats | ↓ Blood glucose, preserved pancreatic β-cells integrity, improved liver function, ↓ serum malondialdehyde (MDA) levels, ↑ serum superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) levels. | [72] |
L. paracasei NL41 | HFD/STZ-induced diabetic rats | ↓ Blood glucose, ↓ Insulin resistance, ↓ glycated hemoglobin, preserved pancreatic β-cells integrity, ↓ liver MDA levels, ↑ liver SOD, CAT, and GPx levels. | [73] |
L. agilis | Alloxan-induced diabetic mice | ↓ Blood glucose, ↑ serum SOD, CAT, and reduced glutathione (GSH) levels, anti-inflammatory activity. | [74] |
L. plantarum, L. bulgaricu, L. casei, B. infantis, L. acidophilus, B. longum, B. breve + resveratrol | STZ + nicotinamide-induced diabetic rats | Probiotic alone or synbiotic: ↓ Insulin resistance, ↑ glucagon-like peptide-1 (GLP-1), and ↑ total antioxidant capacity in gut tissue. Synbiotic: ↓ Total oxidative status in gut tissue. | [75] |
L. salivarius subsp. salicinius AP-32, L. johnsonii MH-68, L. reuteri GL-104, and B. animalis subsp. lactis CP-9 (ProbiogluTM) | HFD/STZ + nicotinamide-induced diabetic rats | ↓ Blood glucose, ↓ insulin levels, ↓ insulin resistance, ↓ homeostatic model assessment of insulin resistance (HOMA-IR), preserved pancreatic β-cells integrity, ↓ serum MDA levels, and ↑ serum SOD levels. | [76] |
Akkermansia muciniphila (DSM 22959) | HFD/STZ-induced diabetic rats | ↓ Blood glucose and serum MDA levels. | [77] |
L. plantarum CKCC1312, L. gasseri CKCC1913, L. fermentum CKCC1858, and L. fermentum CKCC1369 | HFD/STZ-induced diabetic mice | ↓ Blood glucose, ↓ insulin levels, ↓ insulin resistance, ↓ HOMA-IR, ↑ GLP-1, preserved pancreatic β-cells integrity and function, ↓ liver MDA levels, ↑ liver SOD, CAT, and GSH levels, improved lipidic metabolism, anti-inflammatory activity. | [78] |
L. fermentum RS-2 | Alloxan-induced diabetic rats | ↓ Blood glucose, ↑ blood and liver SOD, CAT, and GPx levels, improved lipidic metabolism. | [79] |
L. casei + bioactive extracts of Cleome droserifolia | Alloxan-induced diabetic rats | ↓ Blood glucose and ↓ liver and kidney MDA levels, ↑ liver and kidney SOD, and CAT levels, improved lipidic metabolism, improved kidney and liver functions. | [80] |
5.2. Clinical Evidence of the Antidiabetic Potential of Probiotics
Strains | Experimental Models | Key Findings | Reference |
---|---|---|---|
L. acidophilus LA5 and B. lactis B12 | Patients with type 2 diabetes (T2D) | ↓ Blood glucose, ↓ glycated hemoglobin (HbA1c), ↑ serum superoxide dismutase (SOD), and glutathione peroxidase (GPx) levels, and ↑ total antioxidant capacity (TAC). | [82] |
B. bifidum, L. casei, and L. acidophilus | Patients with T2D | ↓ Blood glucose, ↓ Insulin levels, ↓ serum high-sensitivity C-reactive protein (hs-CRP), ↑ reduced glutathione (GSH) levels, and ↑ serum TAC, improved lipidic metabolism. | [83] |
L. acidophilus, L. casei, L. fermentum, and B. bifidum | Patients with T2D | ↓ Blood glucose, ↓ Insulin levels, ↓ HbA1c, ↓ serum hs-CRP, ↓ plasmatic malondialdehyde (MDA) levels, ↑ plasmatic TAC, and ↓ ulcer length, improved lipidic metabolism. | [84] |
L. acidophilus PTCC1643 + cinnamon | Patients with T2D | Probiotic alone or synbiotic: ↓ Blood glucose and HbA1c. Probiotic alone: ↑ serum SOD, catalase, and GPx levels. Synbiotic: ↓ serum advanced glycation end products levels. | [85] |
L. acidophilus, L. casei, L. rhamnosus, L. bulgaricus, B. breve, B. longum, S. thermophilus + fructooligosaccharides | Patients with T2D | ↓ Blood glucose, ↓ serum hs-CRP, and ↑ plasmatic GSH levels. | [86] |
L. sporogenes + inulin, and beta-carotene | Patients with T2D | ↓ Insulin levels, ↓ homeostatic model assessment of insulin resistance (HOMA-IR), ↓ homeostasis model assessment of β-cell function, ↓ plasmatic nitric oxide and ↓ GSH levels, improved lipidic metabolism. | [87] |
Bifidobacterium animalis + galacto-oligosaccharides | Patients with T2D | ↓ Blood glucose, ↓ Insulin levels, ↓ HOMA-IR, ↓ HbA1c, ↑ glucagon-like peptide-1, and ↑ serum GSH levels, and anti-inflammatory activity. | [88] |
L. acidophilus LA-5, Bifidobacterium BB-12, Streptococcus thermophilus STY-31, and L. delbrueckii bulgaricus LBY-27 | Patients with gestational diabetes mellitus | ↓ Blood glucose, ↓ serum hs-CRP, and ↓ MDA levels, and anti-inflammatory activity. | [90] |
5.3. Therapeutic Potential in DNR
5.4. Evidence in Diabetic Nephropathy (DNP)
Strains | Complication | Models/Disease | Key Findings | Reference |
---|---|---|---|---|
Lactobacillus spp. + Bifidobacterium spp. mixture | Diabetic neuropathy (DNR) | Streptozotocin (STZ)-induced diabetic rats | ↓ serum malondialdehyde (MDA) levels, ↑ serum superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels, and attenuates sensory manifestations associated with DNR. | [59] |
L. acidophilus LA85 | DNR | STZ-induced diabetic mice | ↓ Blood glucose, ↓ MDA and nitric oxide levels, ↑ SOD, catalase (CAT), and GPx levels, ↑ nuclear factor erythroid 2-related factor 2 in the spinal cord, and attenuates sensory manifestations associated with DNR. | [63] |
L. acidophilus TYCA06, B. bifidum VDD088, and B. longum BLI-02 | Diabetic nephropathy (DNP) | db/db mice 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay | ↓ Blood glucose, improved renal function, and ↓ renal fibrosis. B. longum increased antioxidative activity in the DPPH assay. | [93] |
L. plantarum NKK20 | DNP | STZ-induced diabetic ICR mice HK-2 cell culture | ↓ Blood glucose, ↑ serum butyrate and SOD levels, ↓ serum MDA and advanced glycation end products (AGEs) levels, and anti-inflammatory activity. Inhibition of renal injury and fibrosis. | [94] |
S. boulardii THT 500101 | DNP | STZ-induced diabetic mice (DNP) | ↓ Blood glucose, ↑ SOD, CAT and GPx levels in kidney tissue, and improved renal function. | [95] |
L. plantarum A7 | DNP | Patients with DNP | ↑ serum reduced glutathione (GSH), GPx and glutathione reductase levels, ↓ serum oxidized glutathione levels, and selective enhancement of antioxidant defenses. | [96] |
L. acidophilus, L. casei, and B. bifidum | DNP | Diabetic patients on hemodialysis | ↓ Blood glucose, ↓ homeostatic model assessment of insulin resistance (HOMA-IR), ↓ glycated hemoglobin, ↓ serum MDA and high-sensitivity C-reactive protein (hs-CRP) levels. | [97] |
L. acidophilus ZT-L1, L. reuteri ZT-Lre, L. fermentum ZT-L3, and B. bifidum ZT-B1 | DNP | Patients with DNP | ↓ Blood glucose, ↓ HOMA-IR, ↓ plasma MDA, serum hs-CRP and AGEs levels, ↑ serum GSH levels, and improved lipid profile. | [98] |
B. coagulans T11 IBRC-M10791 | DNP | Patients with DNP | ↓ HOMA-IR, ↓ insulin levels, ↓ plasma MDA, and serum hs-CRP levels, and improved lipid profile. | [99] |
6. Challenges in Translating Preclinical Findings and Other Limitations
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AGEs | Advanced glycation end-products |
CAT | Catalase |
CFU | Colony-forming units |
DM | Diabetes mellitus |
DNP | Diabetic nephropathy |
DNR | Diabetic neuropathy |
GDM | Gestational diabetes mellitus |
GLP-1 | Glucagon-like peptide-1 |
GPx | Glutathione peroxidase |
GSH | Glutathione |
HFD | High-fat diet |
HOMA-B | Homeostasis model assessment of β-cell function |
HOMA-IR | Homeostasis model assessment of insulin resistance |
hs-CRP | High-sensitivity C-reactive protein |
MDA | Malondialdehyde |
NF-κB | Nuclear factor kappa B |
NO | Nitric oxide |
Nrf2 | Nuclear factor erythroid 2-related factor 2 |
PKC | Protein kinase C |
ROS | Reactive oxygen species |
SCFA | Short-chain fatty acids |
STZ | Streptozotocin |
SOD | Superoxide dismutase |
TAC | Total antioxidant capacity |
T1D | Type 1 diabetes |
T2D | Type 2 diabetes |
References
- Antar, S.A.; Ashour, N.A.; Sharaky, M.; Khattab, M.; Ashour, N.A.; Zaid, R.T.; Roh, E.J.; Elkamhawy, A.; Al-Karmalawy, A.A. Diabetes Mellitus: Classification, Mediators, and Complications; A Gate to Identify Potential Targets for the Development of New Effective Treatments. Biomed. Pharmacother. 2023, 168, 115734. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation (IDF). IDF Diabetes Atlas, 11th ed.; IDF: Brussels, Belgium, 2024; Available online: https://diabetesatlas.org/resources/idf-diabetes-atlas-2025/# (accessed on 9 June 2025).
- Iatcu, C.O.; Steen, A.; Covasa, M. Gut Microbiota and Complications of Type-2 Diabetes. Nutrients 2022, 14, 166. [Google Scholar] [CrossRef]
- Albers, J.W.; Pop-Busui, R. Diabetic Neuropathy: Mechanisms, Emerging Treatments, and Subtypes. Curr. Neurol. Neurosci. Rep. 2014, 14, 473. [Google Scholar] [CrossRef]
- Hu, Q.; Chen, Y.; Deng, X.; Li, Y.; Ma, X.; Zeng, J.; Zhao, Y. Diabetic Nephropathy: Focusing on Pathological Signals, Clinical Treatment, and Dietary Regulation. Biomed. Pharmacother. 2023, 159, 114252. [Google Scholar] [CrossRef]
- Asmat, U.; Abad, K.; Ismail, K. Diabetes Mellitus and Oxidative Stress-A Concise Review. Saudi Pharm. J. 2016, 24, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert Consensus Document. The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, Y.; Wang, Y.; Xu, H.; Mei, X.; Yu, D.; Wang, Y.; Li, W. Antioxidant Properties of Probiotic Bacteria. Nutrients 2017, 9, 521. [Google Scholar] [CrossRef]
- Li, S.; Liu, Z.; Zhang, Q.; Su, D.; Wang, P.; Li, Y.; Shi, W.; Zhang, Q. The Antidiabetic Potential of Probiotics: A Review. Nutrients 2024, 16, 2494. [Google Scholar] [CrossRef]
- Chen, X.; Yan, L.; Yang, J.; Xu, C.; Yang, L. The Impact of Probiotics on Oxidative Stress and Inflammatory Markers in Patients with Diabetes: A Meta-Research of Meta-Analysis Studies. Front. Nutr. 2025, 12, 1552358. [Google Scholar] [CrossRef]
- Bohlouli, J.; Namjoo, I.; Borzoo-Isfahani, M.; Hojjati Kermani, M.A.; Balouch Zehi, Z.; Moravejolahkami, A.R. Effect of Probiotics on Oxidative Stress and Inflammatory Status in Diabetic Nephropathy: A Systematic Review and Meta-Analysis of Clinical Trials. Heliyon 2021, 7, e05925. [Google Scholar] [CrossRef]
- Santos, S.S.; de Souza, M.B.; Lauria, P.S.S.; Juiz, P.J.L.; Villarreal, C.F.; Viana, M.D.M. Technological Trends Involving Probiotics in the Treatment of Diabetic Neuropathy: A Patent Review (2009–2022). Curr. Diabetes Rev. 2024, 20, e220523217168. [Google Scholar] [CrossRef] [PubMed]
- International Probiotics Association. Global Analysis of Probiotic Data. Available online: https://internationalprobiotics.org/wp-content/uploads/Global-Analysis-of-Probiotic-Data-2024.pdf (accessed on 10 April 2025).
- Taylor, R. Understanding the Cause of Type 2 Diabetes. Lancet Diabetes Endocrinol. 2024, 12, 664–673. [Google Scholar] [CrossRef] [PubMed]
- Młynarska, E.; Czarnik, W.; Dzieża, N.; Jędraszak, W.; Majchrowicz, G.; Prusinowski, F.; Stabrawa, M.; Rysz, J.; Franczyk, B. Type 2 Diabetes Mellitus: New Pathogenetic Mechanisms, Treatment and the Most Important Complications. Int. J. Mol. Sci. 2025, 26, 1094. [Google Scholar] [CrossRef] [PubMed]
- DeFronzo, R.A.; Ferrannini, E.; Groop, L.; Henry, R.R.; Herman, W.H.; Holst, J.J.; Hu, F.B.; Kahn, C.R.; Raz, I.; Shulman, G.I.; et al. Type 2 Diabetes Mellitus. Nat. Rev. Dis. Primers 2015, 1, 15019. [Google Scholar] [CrossRef]
- Mittal, R.; McKenna, K.; Keith, G.; McKenna, E.; Lemos, J.R.N.; Mittal, J.; Hirani, K. Diabetic Peripheral Neuropathy and Neuromodulation Techniques: A Systematic Review of Progress and Prospects. Neural Regen. Res. 2025, 20, 2218–2230. [Google Scholar] [CrossRef]
- Ebrahimi, R.; Mohammadpour, A.; Medoro, A.; Davinelli, S.; Saso, L.; Miroliaei, M. Exploring the Links between Polyphenols, Nrf2, and Diabetes: A Review. Biomed. Pharmacother. 2025, 186, 118020. [Google Scholar] [CrossRef]
- Weinberg Sibony, R.; Segev, O.; Dor, S.; Raz, I. Overview of Oxidative Stress and Inflammation in Diabetes. J. Diabetes 2024, 16, e70014. [Google Scholar] [CrossRef]
- Schwartz, S.S.; Epstein, S.; Corkey, B.E.; Grant, S.F.A.; Gavin, J.R.; Aguilar, R.B. The Time Is Right for a New Classification System for Diabetes: Rationale and Implications of the β-Cell-Centric Classification Schema. Diabetes Care 2016, 39, 179–186. [Google Scholar] [CrossRef]
- Neri-Rosario, D.; Martínez-López, Y.E.; Esquivel-Hernández, D.A.; Sánchez-Castañeda, J.P.; Padron-Manrique, C.; Vázquez-Jiménez, A.; Giron-Villalobos, D.; Resendis-Antonio, O. Dysbiosis Signatures of Gut Microbiota and the Progression of Type 2 Diabetes: A Machine Learning Approach in a Mexican Cohort. Front. Endocrinol. 2023, 14, 1170459. [Google Scholar] [CrossRef]
- Portincasa, P.; Bonfrate, L.; Vacca, M.; De Angelis, M.; Farella, I.; Lanza, E.; Khalil, M.; Wang, D.Q.-H.; Sperandio, M.; Di Ciaula, A. Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis. Int. J. Mol. Sci. 2022, 23, 1105. [Google Scholar] [CrossRef]
- Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martín, C. Pathophysiology of Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2020, 21, 6275. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Li, S.; Hu, G.; Wang, Y.; Qi, Z.; Xu, X.; Wei, J.; Liu, Q.; Chen, T. Hypoglycemic Effect of C. Butyricum-pMTL007-GLP-1 Engineered Probiotics on Type 2 Diabetes Mellitus. Gut Microbes 2025, 17, 2447814. [Google Scholar] [CrossRef] [PubMed]
- Elafros, M.A.; Andersen, H.; Bennett, D.L.; Savelieff, M.G.; Viswanathan, V.; Callaghan, B.C.; Feldman, E.L. Towards Prevention of Diabetic Peripheral Neuropathy: Clinical Presentation, Pathogenesis, and New Treatments. Lancet Neurol. 2022, 21, 922–936. [Google Scholar] [CrossRef]
- Callaghan, B.C.; Cheng, H.T.; Stables, C.L.; Smith, A.L.; Feldman, E.L. Diabetic Neuropathy: Clinical Manifestations and Current Treatments. Lancet Neurol. 2012, 11, 521–534. [Google Scholar] [CrossRef]
- Vinik, A.I.; Ziegler, D. Diabetic Cardiovascular Autonomic Neuropathy. Circulation 2007, 115, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Zaino, B.; Goel, R.; Devaragudi, S.; Prakash, A.; Vaghamashi, Y.; Sethi, Y.; Patel, N.; Kaka, N. Diabetic Neuropathy: Pathogenesis and Evolving Principles of Management. Dis.-Mon. DM 2023, 69, 101582. [Google Scholar] [CrossRef]
- Naaman, S.C.; Bakris, G.L. Diabetic Nephropathy: Update on Pillars of Therapy Slowing Progression. Diabetes Care 2023, 46, 1574–1586. [Google Scholar] [CrossRef]
- González, P.; Lozano, P.; Ros, G.; Solano, F. Hyperglycemia and Oxidative Stress: An Integral, Updated and Critical Overview of Their Metabolic Interconnections. Int. J. Mol. Sci. 2023, 24, 9352. [Google Scholar] [CrossRef]
- Lin, Q.; Li, K.; Chen, Y.; Xie, J.; Wu, C.; Cui, C.; Deng, B. Oxidative Stress in Diabetic Peripheral Neuropathy: Pathway and Mechanism-Based Treatment. Mol. Neurobiol. 2023, 60, 4574–4594. [Google Scholar] [CrossRef]
- Singh, H.; Singh, R.; Singh, A.; Singh, H.; Singh, G.; Kaur, S.; Singh, B. Role of Oxidative Stress in Diabetes-Induced Complications and Their Management with Antioxidants. Arch. Physiol. Biochem. 2024, 130, 616–641. [Google Scholar] [CrossRef]
- Brownlee, M. The Pathobiology of Diabetic Complications: A Unifying Mechanism. Diabetes 2005, 54, 1615–1625. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Meng, Z.; Li, Y.; Liu, S.; Hu, P.; Luo, E. Advanced Glycation End Products and Reactive Oxygen Species: Uncovering the Potential Role of Ferroptosis in Diabetic Complications. Mol. Med. 2024, 30, 141. [Google Scholar] [CrossRef] [PubMed]
- Geraldes, P.; King, G.L. Activation of Protein Kinase C Isoforms and Its Impact on Diabetic Complications. Circ. Res. 2010, 106, 1319–1331. [Google Scholar] [CrossRef]
- Giacco, F.; Brownlee, M. Oxidative Stress and Diabetic Complications. Circ. Res. 2010, 107, 1058–1070. [Google Scholar] [CrossRef]
- Wadan, A.-H.S.; Moshref, A.S.; Emam, A.M.; Bakry, Y.G.; Khalil, B.O.; Chaurasia, A.; Ibrahim, R.A.H.; Badawy, T.; Mehanny, S.S. Mitochondrial Dysfunction as a Key Player in Aggravating Periodontitis among Diabetic Patients: Review of the Current Scope of Knowledge. Naunyn-Schmiedeberg’s Arch. Pharmacol. [CrossRef]
- Pan, H.; Zhang, L.; Guo, M.; Sui, H.; Li, H.; Wu, W.; Qu, N.; Liang, M.; Chang, D. The Oxidative Stress Status in Diabetes Mellitus and Diabetic Nephropathy. Acta Diabetol. 2010, 47 (Suppl. 1), 71–76. [Google Scholar] [CrossRef] [PubMed]
- Kasznicki, J.; Kosmalski, M.; Sliwinska, A.; Mrowicka, M.; Stanczyk, M.; Majsterek, I.; Drzewoski, J. Evaluation of Oxidative Stress Markers in Pathogenesis of Diabetic Neuropathy. Mol. Biol. Rep. 2012, 39, 8669–8678. [Google Scholar] [CrossRef]
- Miranda-Díaz, A.G.; Pazarín-Villaseñor, L.; Yanowsky-Escatell, F.G.; Andrade-Sierra, J. Oxidative Stress in Diabetic Nephropathy with Early Chronic Kidney Disease. J. Diabetes Res. 2016, 2016, 7047238. [Google Scholar] [CrossRef]
- Soloviev, A.; Sydorenko, V. Oxidative and Nitrous Stress Underlies Vascular Malfunction Induced by Ionizing Radiation and Diabetes. Cardiovasc. Toxicol. 2024, 24, 776–788. [Google Scholar] [CrossRef]
- Pal, B.; Ghosh, R.; Sarkar, R.D.; Roy, G.S. The Irreversible, towards Fatalic Neuropathy: From the Genesis of Diabetes. Acta Diabetol. 2025, 62, 139–156. [Google Scholar] [CrossRef]
- Cumaoglu, A.; Stefek, M.; Bauer, V.; Ari, N.; Aricioglu, A.; Karasu, C. Glycoxidative and Nitrosative Stress in Kidney of Experimental Diabetic Rats: Effects of the Prydoindole Antioxidant Stobadine. Neuro Endocrinol. Lett. 2010, 31, 313–318. [Google Scholar]
- Tota, Ł.; Matejko, B.; Morawska-Tota, M.; Pilch, W.; Mrozińska, S.; Pałka, T.; Klupa, T.; Malecki, M.T. Changes in Oxidative and Nitrosative Stress Indicators and Vascular Endothelial Growth Factor After Maximum-Intensity Exercise Assessing Aerobic Capacity in Males With Type 1 Diabetes Mellitus. Front. Physiol. 2021, 12, 672403. [Google Scholar] [CrossRef] [PubMed]
- Vincent, A.M.; Russell, J.W.; Low, P.; Feldman, E.L. Oxidative Stress in the Pathogenesis of Diabetic Neuropathy. Endocr. Rev. 2004, 25, 612–628. [Google Scholar] [CrossRef]
- Decroli, E.; Manaf, A.; Syahbuddin, S.; Syafrita, Y.; Dillasamola, D. The Correlation between Malondialdehyde and Nerve Growth Factor Serum Level with Diabetic Peripheral Neuropathy Score. Open Access Maced. J. Med. Sci. 2019, 7, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Kumawat, M.; Sharma, T.K.; Singh, I.; Singh, N.; Ghalaut, V.S.; Vardey, S.K.; Shankar, V. Antioxidant Enzymes and Lipid Peroxidation in Type 2 Diabetes Mellitus Patients with and without Nephropathy. N. Am. J. Med. Sci. 2013, 5, 213–219. [Google Scholar] [CrossRef]
- Chen, Z.; Tian, R.; She, Z.; Cai, J.; Li, H. Role of Oxidative Stress in the Pathogenesis of Nonalcoholic Fatty Liver Disease. Free Radic. Biol. Med. 2020, 152, 116–141. [Google Scholar] [CrossRef] [PubMed]
- Thaiss, C.A.; Levy, M.; Grosheva, I.; Zheng, D.; Soffer, E.; Blacher, E.; Braverman, S.; Tengeler, A.C.; Barak, O.; Elazar, M.; et al. Hyperglycemia Drives Intestinal Barrier Dysfunction and Risk for Enteric Infection. Science 2018, 359, 1376–1383. [Google Scholar] [CrossRef]
- Ang, L.; Jaiswal, M.; Martin, C.; Pop-Busui, R. Glucose Control and Diabetic Neuropathy: Lessons from Recent Large Clinical Trials. Curr. Diab. Rep. 2014, 14, 528. [Google Scholar] [CrossRef]
- Ahn, J.; Shahriarirad, R.; Kwon, K.; Bejarano-Pineda, L.; Waryasz, G.; Ashkani-Esfahani, S. Comparative Analysis of the Therapeutic Effects of Pregabalin, Gabapentin, and Duloxetine in Diabetic Peripheral Neuropathy: A Retrospective Study. J. Diabetes Complicat. 2025, 39, 109001. [Google Scholar] [CrossRef]
- Ardeleanu, V.; Toma, A.; Pafili, K.; Papanas, N.; Motofei, I.; Diaconu, C.C.; Rizzo, M.; Pantea Stoian, A. Current Pharmacological Treatment of Painful Diabetic Neuropathy: A Narrative Review. Medicina 2020, 56, 25. [Google Scholar] [CrossRef]
- Tesfaye, S.; Kempler, P. Conventional Management and Current Guidelines for Painful Diabetic Neuropathy. Diabetes Res. Clin. Pract. 2023, 206 (Suppl. 1), 110765. [Google Scholar] [CrossRef]
- Khurshid, S.; Saeed, A.; Kashif, M.; Nasreen, A.; Riaz, H. Effects of Multisystem Exercises on Balance, Postural Stability, Mobility, Walking Speed, and Pain in Patients with Diabetic Peripheral Neuropathy: A Randomized Controlled Trial. BMC Neurosci. 2025, 26, 16. [Google Scholar] [CrossRef]
- Sanglard, A.; Castello Branco Miranda, B.; França Vieira, A.L.; Miranda Macedo, M.V.; Lara Santos, R.; Stenner Rodrigues Radicchi Campos, A.; Campos Piva, A.; Simões E Silva, A.C. The Role of Renin-Angiotensin System in Diabetic Nephropathy: An Update. Mini Rev. Med. Chem. 2025, 25, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.-C.; Chen, J.-X.; Zou, R.; Liang, X.-B.; Tang, J.-X.; Yao, C.-W. Role and Mechanisms of SGLT-2 Inhibitors in the Treatment of Diabetic Kidney Disease. Front. Immunol. 2023, 14, 1213473. [Google Scholar] [CrossRef]
- Gofron, K.K.; Wasilewski, A.; Małgorzewicz, S. Effects of GLP-1 Analogues and Agonists on the Gut Microbiota: A Systematic Review. Nutrients 2025, 17, 1303. [Google Scholar] [CrossRef] [PubMed]
- Leiva-Gea, I.; Sánchez-Alcoholado, L.; Martín-Tejedor, B.; Castellano-Castillo, D.; Moreno-Indias, I.; Urda-Cardona, A.; Tinahones, F.J.; Fernández-García, J.C.; Queipo-Ortuño, M.I. Gut Microbiota Differs in Composition and Functionality Between Children With Type 1 Diabetes and MODY2 and Healthy Control Subjects: A Case-Control Study. Diabetes Care 2018, 41, 2385–2395. [Google Scholar] [CrossRef] [PubMed]
- Shabani, M.; Hassanpour, E.; Aghighi, F.; Mohammadifar, M.; Bahmani, F.; Talaei, S.A. A Probiotic Mixture Decreases Neuropathy and Oxidative Stress Markers in Diabetic Rats. OBM Neurobiol. 2024, 8, 247. [Google Scholar] [CrossRef]
- Al-Ghamdi, S.B. Probiotics as Renal Guardians: Modulating Gut Microbiota to Combat Diabetes-Induced Kidney Damage. Biology 2025, 14, 122. [Google Scholar] [CrossRef]
- Pane, K.; Boccella, S.; Guida, F.; Franzese, M.; Maione, S.; Salvatore, M. Role of Gut Microbiota in Neuropathy and Neuropathic Pain States: A Systematic Preclinical Review. Neurobiol. Dis. 2022, 170, 105773. [Google Scholar] [CrossRef]
- Lima, A.A.d.; Santos, S.S.; Araújo, M.A.d.; Vinderola, G.; Villarreal, C.F.; Viana, M.D.M. Probiotics as Technological Innovations in Psychiatric Disorders: Patents and Research Reviews. Front. Nutr. 2025, 12, 1567097. [Google Scholar] [CrossRef]
- Viana, M.D.M.; Silva Santos, S.; Bastos de Souza, M.; Opretzka, L.C.F.; Leite Lopes, D.; Pereira Soares, M.B.; Villarreal, C.F. Lactobacillus Acidophilus LA85 Reverses Experimental Diabetic Sensory Neuropathy by Restoring Redox Homeostasis in the Spinal Cord. Benef. Microbes 2025, 1, 1–15. [Google Scholar] [CrossRef]
- Cani, P.D.; Neyrinck, A.M.; Fava, F.; Knauf, C.; Burcelin, R.G.; Tuohy, K.M.; Gibson, G.R.; Delzenne, N.M. Selective Increases of Bifidobacteria in Gut Microflora Improve High-Fat-Diet-Induced Diabetes in Mice through a Mechanism Associated with Endotoxaemia. Diabetologia 2007, 50, 2374–2383. [Google Scholar] [CrossRef] [PubMed]
- Mostafavi Abdolmaleky, H.; Zhou, J.-R. Gut Microbiota Dysbiosis, Oxidative Stress, Inflammation, and Epigenetic Alterations in Metabolic Diseases. Antioxidants 2024, 13, 985. [Google Scholar] [CrossRef] [PubMed]
- Crudele, L.; Gadaleta, R.M.; Cariello, M.; Moschetta, A. Gut Microbiota in the Pathogenesis and Therapeutic Approaches of Diabetes. EBioMedicine 2023, 97, 104821. [Google Scholar] [CrossRef]
- Kottaisamy, C.P.D.; Raj, D.S.; Prasanth Kumar, V.; Sankaran, U. Experimental Animal Models for Diabetes and Its Related Complications—A Review. Lab. Anim. Res. 2021, 37, 23. [Google Scholar] [CrossRef]
- Rohilla, A.; Ali, S. Alloxan Induced Diabetes: Mechanisms and Effects. Int. J. Pharm. Sci. Res. 2012, 3, 819–823. [Google Scholar]
- Nahdi, A.M.T.A.; John, A.; Raza, H. Elucidation of Molecular Mechanisms of Streptozotocin-Induced Oxidative Stress, Apoptosis, and Mitochondrial Dysfunction in Rin-5F Pancreatic β-Cells. Oxid. Med. Cell. Longev. 2017, 2017, 7054272. [Google Scholar] [CrossRef]
- Skovsø, S. Modeling Type 2 Diabetes in Rats Using High Fat Diet and Streptozotocin. J. Diabetes Investig. 2014, 5, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Rais, N.; Ved, A.; Ahmad, R.; Parveen, K.; Gautam, G.K.; Bari, D.G.; Shukla, K.S.; Gaur, R.; Singh, A.P. Model of Streptozotocin-Nicotinamide Induced Type 2 Diabetes: A Comparative Review. Curr. Diabetes Rev. 2022, 18, e171121198001. [Google Scholar] [CrossRef]
- Zeng, Z.; Yang, Y.; Zhong, X.; Dai, F.; Chen, S.; Tong, X. Ameliorative Effects of Lactobacillus Paracasei L14 on Oxidative Stress and Gut Microbiota in Type 2 Diabetes Mellitus Rats. Antioxidants 2023, 12, 1515. [Google Scholar] [CrossRef]
- Zeng, Z.; Yuan, Q.; Yu, R.; Zhang, J.; Ma, H.; Chen, S. Ameliorative Effects of Probiotic Lactobacillus Paracasei NL41 on Insulin Sensitivity, Oxidative Stress, and Beta-Cell Function in a Type 2 Diabetes Mellitus Rat Model. Mol. Nutr. Food Res. 2019, 63, e1900457. [Google Scholar] [CrossRef]
- Nawaz Khan, A.; Ghazanfar, S.; Nadeem Hassan, M.; Ahmad, A.; Khan, N.; Khalid, S.; Yasmin, H. Probiotic Potential of Lactobacillus Agilis against Oxidative, Inflammatory and Diabetic Stresses. J. King Saud Univ.—Sci. 2024, 36, 103144. [Google Scholar] [CrossRef]
- Pegah, A.; Abbasi-Oshaghi, E.; Khodadadi, I.; Mirzaei, F.; Tayebinia, H. Probiotic and Resveratrol Normalize GLP-1 Levels and Oxidative Stress in the Intestine of Diabetic Rats. Metab. Open 2021, 10, 100093. [Google Scholar] [CrossRef]
- Hsieh, P.-S.; Ho, H.-H.; Tsao, S.P.; Hsieh, S.-H.; Lin, W.-Y.; Chen, J.-F.; Kuo, Y.-W.; Tsai, S.-Y.; Huang, H.-Y. Multi-Strain Probiotic Supplement Attenuates Streptozotocin-Induced Type-2 Diabetes by Reducing Inflammation and β-Cell Death in Rats. PLoS ONE 2021, 16, e0251646. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Qin, Q.; Liu, M.; Zhang, X.; He, F.; Wang, G. Akkermansia Muciniphila Can Reduce the Damage of Gluco/Lipotoxicity, Oxidative Stress and Inflammation, and Normalize Intestine Microbiota in Streptozotocin-Induced Diabetic Rats. Pathog. Dis. 2018, 76, fty028. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Xue, H.; Zhang, Z.; Wang, J.; Li, A.; Zhang, J.; Luo, P.; Zhan, M.; Zhou, X.; Chen, L.; et al. Amelioration of Type 2 Diabetes Using Four Strains of Lactobacillus Probiotics: Effects on Gut Microbiota Reconstitution-Mediated Regulation of Glucose Homeostasis, Inflammation, and Oxidative Stress in Mice. J. Agric. Food Chem. 2023, 71, 20801–20814. [Google Scholar] [CrossRef]
- Kumar, N.; Tomar, S.K.; Thakur, K.; Singh, A.K. The Ameliorative Effects of Probiotic Lactobacillus fermentum Strain RS-2 on Alloxan Induced Diabetic Rats. J. Funct. Foods 2017, 28, 275–284. [Google Scholar] [CrossRef]
- El Maksoud, A.I.A.; Al-Karmalawy, A.A.; ElEbeedy, D.; Ghanem, A.; Rasheed, Y.; Ibrahim, I.A.; Elghaish, R.A.; Belal, A.; Raslan, M.A.; Taher, R.F. Symbiotic Antidiabetic Effect of Lactobacillus Casei and the Bioactive Extract of Cleome Droserifolia (Forssk.) Del. on Mice with Type 2 Diabetes Induced by Alloxan. Chem. Biodivers. 2024, 21, e202301397. [Google Scholar] [CrossRef]
- Zheng, H.J.; Guo, J.; Jia, Q.; Huang, Y.S.; Huang, W.-J.; Zhang, W.; Zhang, F.; Liu, W.J.; Wang, Y. The Effect of Probiotic and Synbiotic Supplementation on Biomarkers of Inflammation and Oxidative Stress in Diabetic Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Pharmacol. Res. 2019, 142, 303–313. [Google Scholar] [CrossRef]
- Ejtahed, H.S.; Mohtadi-Nia, J.; Homayouni-Rad, A.; Niafar, M.; Asghari-Jafarabadi, M.; Mofid, V. Probiotic Yogurt Improves Antioxidant Status in Type 2 Diabetic Patients. Nutrition 2012, 28, 539–543. [Google Scholar] [CrossRef]
- Raygan, F.; Rezavandi, Z.; Bahmani, F.; Ostadmohammadi, V.; Mansournia, M.A.; Tajabadi-Ebrahimi, M.; Borzabadi, S.; Asemi, Z. The Effects of Probiotic Supplementation on Metabolic Status in Type 2 Diabetic Patients with Coronary Heart Disease. Diabetol. Metab. Syndr. 2018, 10, 51. [Google Scholar] [CrossRef]
- Mohseni, S.; Bayani, M.; Bahmani, F.; Tajabadi-Ebrahimi, M.; Bayani, M.A.; Jafari, P.; Asemi, Z. The Beneficial Effects of Probiotic Administration on Wound Healing and Metabolic Status in Patients with Diabetic Foot Ulcer: A Randomized, Double-Blind, Placebo-Controlled Trial. Diabetes Metab. Res. Rev. 2018, 34, e2970. [Google Scholar] [CrossRef] [PubMed]
- Mirmiranpour, H.; Huseini, H.F.; Derakhshanian, H.; Khodaii, Z.; Tavakoli-Far, B. Effects of Probiotic, Cinnamon, and Synbiotic Supplementation on Glycemic Control and Antioxidant Status in People with Type 2 Diabetes; a Randomized, Double-Blind, Placebo-Controlled Study. J. Diabetes Metab. Disord. 2020, 19, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Asemi, Z.; Zare, Z.; Shakeri, H.; Sabihi, S.-S.; Esmaillzadeh, A. Effect of Multispecies Probiotic Supplements on Metabolic Profiles, Hs-CRP, and Oxidative Stress in Patients with Type 2 Diabetes. Ann. Nutr. Metab. 2013, 63, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Asemi, Z.; Alizadeh, S.-A.; Ahmad, K.; Goli, M.; Esmaillzadeh, A. Effects of Beta-Carotene Fortified Synbiotic Food on Metabolic Control of Patients with Type 2 Diabetes Mellitus: A Double-Blind Randomized Cross-over Controlled Clinical Trial. Clin. Nutr. Edinb. Scotl. 2016, 35, 819–825. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Q.; Zhang, X.; Du, S.; Zhang, Y.; Wang, X.; Liu, Y.; Fang, B.; Chen, J.; Liu, R.; et al. Effects of Synbiotics Surpass Probiotics Alone in Improving Type 2 Diabetes Mellitus: A Randomized, Double-Blind, Placebo-Controlled Trial. Clin. Nutr. Edinb. Scotl. 2025, 44, 248–258. [Google Scholar] [CrossRef]
- Chen, Y.; Yue, R.; Zhang, B.; Li, Z.; Shui, J.; Huang, X. Effects of Probiotics on Blood Glucose, Biomarkers of Inflammation and Oxidative Stress in Pregnant Women with Gestational Diabetes Mellitus: A Meta-Analysis of Randomized Controlled Trials. Med. Clin. 2020, 154, 199–206. [Google Scholar] [CrossRef]
- Hajifaraji, M.; Jahanjou, F.; Abbasalizadeh, F.; Aghamohammadzadeh, N.; Abbasi, M.M.; Dolatkhah, N. Effect of Probiotic Supplements in Women with Gestational Diabetes Mellitus on Inflammation and Oxidative Stress Biomarkers: A Randomized Clinical Trial. Asia Pac. J. Clin. Nutr. 2018, 27, 581–591. [Google Scholar] [CrossRef]
- Yang, T.; Richards, E.M.; Pepine, C.J.; Raizada, M.K. The Gut Microbiota and the Brain-Gut-Kidney Axis in Hypertension and Chronic Kidney Disease. Nat. Rev. Nephrol. 2018, 14, 442–456. [Google Scholar] [CrossRef]
- Ayesha, I.E.; Monson, N.R.; Klair, N.; Patel, U.; Saxena, A.; Patel, D.; Venugopal, S. Probiotics and Their Role in the Management of Type 2 Diabetes Mellitus (Short-Term Versus Long-Term Effect): A Systematic Review and Meta-Analysis. Cureus 2023, 15, e46741. [Google Scholar] [CrossRef]
- Kuo, Y.-W.; Huang, Y.-Y.; Tsai, S.-Y.; Wang, J.-Y.; Lin, J.-H.; Syu, Z.-J.; Wang, H.-S.; Hsu, Y.-C.; Chen, J.-F.; Hsia, K.-C.; et al. Probiotic Formula Ameliorates Renal Dysfunction Indicators, Glycemic Levels, and Blood Pressure in a Diabetic Nephropathy Mouse Model. Nutrients 2023, 15, 2803. [Google Scholar] [CrossRef]
- Sun, X.; Xi, Y.; Yan, M.; Sun, C.; Tang, J.; Dong, X.; Yang, Z.; Wu, L. Lactiplantibacillus Plantarum NKK20 Increases Intestinal Butyrate Production and Inhibits Type 2 Diabetic Kidney Injury through PI3K/Akt Pathway. J. Diabetes Res. 2023, 2023, 8810106. [Google Scholar] [CrossRef]
- Abreu, I.C.M.E.d.; Albuquerque, R.C.M.F.d.; Brandão, A.B.P.; Barssotti, L.; de Souza, L.B.; Ferreira, F.G.; Oliveira, L.C.G.d.; Yokota, R.; Sparvoli, L.G.; Dias, D.d.S.; et al. Saccharomyces Boulardii Exerts Renoprotection by Modulating Oxidative Stress, Renin Angiotensin System and Uropathogenic Microbiota in a Murine Model of Diabetes. Life Sci. 2022, 301, 120616. [Google Scholar] [CrossRef] [PubMed]
- Miraghajani, M.; Zaghian, N.; Mirlohi, M.; Feizi, A.; Ghiasvand, R. The Impact of Probiotic Soy Milk Consumption on Oxidative Stress Among Type 2 Diabetic Kidney Disease Patients: A Randomized Controlled Clinical Trial. J. Ren. Nutr. 2017, 27, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, A.; Zarrati Mojarrad, M.; Bahmani, F.; Taghizadeh, M.; Ramezani, M.; Tajabadi-Ebrahimi, M.; Jafari, P.; Esmaillzadeh, A.; Asemi, Z. Probiotic Supplementation in Diabetic Hemodialysis Patients Has Beneficial Metabolic Effects. Kidney Int. 2017, 91, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Mafi, A.; Namazi, G.; Soleimani, A.; Bahmani, F.; Aghadavod, E.; Asemi, Z. Metabolic and Genetic Response to Probiotics Supplementation in Patients with Diabetic Nephropathy: A Randomized, Double-Blind, Placebo-Controlled Trial. Food Funct. 2018, 9, 4763–4770. [Google Scholar] [CrossRef]
- Mazruei Arani, N.; Emam-Djomeh, Z.; Tavakolipour, H.; Sharafati-Chaleshtori, R.; Soleimani, A.; Asemi, Z. The Effects of Probiotic Honey Consumption on Metabolic Status in Patients with Diabetic Nephropathy: A Randomized, Double-Blind, Controlled Trial. Probiotics Antimicrob. Proteins 2019, 11, 1195–1201. [Google Scholar] [CrossRef]
- Ismail, A.S.; Sreedharan, D.K.; Ng, Z.J.; Tan, J.S. Microencapsulation of Lactobacillus cells utilizing the β-glucan-rich cell wall of Saccharomyces cerevisiae for enhanced stability and efficacy. Int. J. Biol. Macromol. 2025, 311, 143971. [Google Scholar] [CrossRef]
- Peng, X.; Xian, H.; Ge, N.; Hou, L.; Tang, T.; Xie, D.; Gao, L.; Yue, J. Effect of probiotics on glycemic control and lipid profiles in patients with type 2 diabetes mellitus: A randomized, double blind, controlled trial. Front. Endocrinol. 2024, 15, 1440286. [Google Scholar] [CrossRef]
- Tipici, B.E.; Coskunpinar, E.; Altunkanat, D.; Cagatay, P.; Omer, B.; Palanduz, S.; Satman, I.; Aral, F. Lactobacillus GG is associated with mucin genes expressions in type 2 diabetes mellitus: A randomized, placebo-controlled trial. Eur. J. Nutr. 2023, 62, 2155–2164. [Google Scholar] [CrossRef]
- Ivey, K.L.; Hodgson, J.M.; Kerr, D.A.; Lewis, J.R.; Thompson, P.L.; Prince, R.L. The effects of probiotic bacteria on glycaemic control in overweight men and women: A randomised controlled trial. Eur. J. Clin. Nutr. 2014, 68, 447–452. [Google Scholar] [CrossRef]
- Barengolts, E.; Smith, E.D.; Reutrakul, S.; Tonucci, L.; Anothaisintawee, T. The effect of probiotic yogurt on glycemic control in type 2 diabetes or obesity: A meta-analysis of nine randomized controlled trials. Nutrients 2019, 11, 671. [Google Scholar] [CrossRef] [PubMed]
- Mazloom, Z.; Yousefinejad, A.; Dabbaghmanesh, M.H. Effect of probiotics on lipid profile, glycemic control, insulin action, oxidative stress, and inflammatory markers in patients with type 2 diabetes: A clinical trial. Iran. J. Med. Sci. 2013, 38, 38–43. [Google Scholar] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viana, M.D.M.; Santos, S.S.; Cruz, A.B.O.; de Jesus, M.V.A.C.; Lauria, P.S.S.; Lins, M.P.; Villarreal, C.F. Probiotics as Antioxidant Strategy for Managing Diabetes Mellitus and Its Complications. Antioxidants 2025, 14, 767. https://doi.org/10.3390/antiox14070767
Viana MDM, Santos SS, Cruz ABO, de Jesus MVAC, Lauria PSS, Lins MP, Villarreal CF. Probiotics as Antioxidant Strategy for Managing Diabetes Mellitus and Its Complications. Antioxidants. 2025; 14(7):767. https://doi.org/10.3390/antiox14070767
Chicago/Turabian StyleViana, Max Denisson Maurício, Sthefane Silva Santos, Anna Beatriz Oliveira Cruz, Maria Vitória Abreu Cardoso de Jesus, Pedro Santana Sales Lauria, Marvin Paulo Lins, and Cristiane Flora Villarreal. 2025. "Probiotics as Antioxidant Strategy for Managing Diabetes Mellitus and Its Complications" Antioxidants 14, no. 7: 767. https://doi.org/10.3390/antiox14070767
APA StyleViana, M. D. M., Santos, S. S., Cruz, A. B. O., de Jesus, M. V. A. C., Lauria, P. S. S., Lins, M. P., & Villarreal, C. F. (2025). Probiotics as Antioxidant Strategy for Managing Diabetes Mellitus and Its Complications. Antioxidants, 14(7), 767. https://doi.org/10.3390/antiox14070767