Blood Orange (Citrus sinensis L. Osbeck) Juice By-Product Extract as a Functional Feed Additive: Effects on Growth Performance, Digestive Enzyme Activity, Antioxidant Status, Immune Parameters, and Disease Resistance Against Vibrio harveyi in Juvenile Black Rockfish (Sebastes schlegelii)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of BJBE
2.2. Chemical and Antibacterial Activity Analyses of BJBE
2.3. Formulation of Experimental Diets
2.4. Feeding Trial Condition and Experimental Design
2.5. Growth Performance Parameters
2.6. Blood Sampling for Analysis
2.7. Digestive Enzyme Activity
2.8. Proximate Body Composition and Plasma Biochemical Analyses
2.9. Antioxidant Enzyme Activity Analysis
2.10. Immune Parameter Analysis
2.11. Challenge Test Against V. harveyi
2.12. Statistical Analysis
3. Results
3.1. Chemical Composition and Antioxidant Activities of BJBE
3.2. Antibacterial Effect of BJBE Against V. harveyi
3.3. Growth Performance and Feed Utilization
3.4. Digestive Enzyme Activities
3.5. Whole-Body Composition and Blood Biochemical Indices
3.6. Antioxidant Enzyme Activities
3.7. Immune Parameters
3.8. Challenge Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Toop, T.A.; Ward, S.; Oldfield, T.; Hull, M.; Kirby, M.E.; Theodorou, M.K. AgroCycle–developing a circular economy in agriculture. Energy Procedia 2017, 123, 76–80. [Google Scholar] [CrossRef]
- Ladisa, C.; Bruni, M.; Lovatelli, A. Overview of ornamental species aquaculture. FAO Aquac. Newsl. 2017, 56, 39. [Google Scholar]
- Stead, S.M. Using systems thinking and open innovation to strengthen aquaculture policy for the United Nations Sustainable Development Goals. J. Fish Biol. 2019, 94, 837–844. [Google Scholar] [CrossRef] [PubMed]
- FAO. The State of World Fisheries and Aquaculture. Sustainability in Action; FAO: Rome, Italy, 2020. [Google Scholar]
- Obi, F.; Ugwuishiwu, B.; Nwakaire, J. Agricultural waste concept, generation. Utilization and management. Niger. J. Technol. 2016, 35, 957. [Google Scholar] [CrossRef]
- Chaouch, M.A.; Benvenuti, S. The role of fruit by-products as bioactive compounds for intestinal health. Foods 2020, 9, 1716. [Google Scholar] [CrossRef] [PubMed]
- Rathnakumar, K.; Kumar Anal, A.; Lakshmi, K. Optimization of ultrasonic assisted extraction of bioactive components from different parts of pineapple waste. Int. J. Agric. Environ. Biotechnol. 2017, 10, 553–563. [Google Scholar] [CrossRef]
- Lau, K.Q.; Sabran, M.R.; Shafie, S.R. Utilization of vegetable and fruit by-products as functional ingredient and food. Front. Nutr. 2021, 8, 661693. [Google Scholar] [CrossRef]
- Saleh, M.; Amro, L.; Barakat, H.; Baker, R.; Reyash, A.A.; Amro, R.; Qasem, J. Fruit by-product processing and bioactive compounds. J. Food Qual. 2021, 2021, 5513358. [Google Scholar] [CrossRef]
- Yousefi, M.; Hoseini, S.M.; Kulikov, E.V.; Babichev, N.V.; Bolshakova, M.V.; Shopinskaya, M.I.; Zharov, A.N. Effects of dietary pomegranate peel supplementation on growth performance and biochemical responses of common carp, Cyprinus carpio, to chronic crowding stress. Aquac. Rep. 2023, 30, 101532. [Google Scholar] [CrossRef]
- Qiang, J.; Khamis, O.A.M.; Jiang, H.J.; Cao, Z.M.; He, J.; Tao, Y.F.; Bao, J.W. Effects of dietary supplementation with apple peel powder on the growth, blood and liver parameters, and transcriptome of genetically improved farmed tilapia (GIFT, Oreochromis niloticus). PLoS ONE 2019, 14, e0224995. [Google Scholar] [CrossRef]
- Rattanavichai, W.; Cheng, W. Dietary supplement of banana (Musa acuminata) peels hot-water extract to enhance the growth, anti-hypothermal stress, immunity and disease resistance of the giant freshwater prawn, Macrobrachium rosenbergii. Fish Shellfish Immunol. 2015, 43, 415–426. [Google Scholar] [CrossRef]
- Zhuo, L.C.; Yong, A.S.K.; Shapawi, R.; Lin, Y.H. Effects of fermented lemon peel supplementation in diet on growth, immune responses, and intestinal morphology of Asian sea bass, Lates calcarifer. Aquac. Rep. 2021, 21, 100801. [Google Scholar] [CrossRef]
- Mousavi, S.; Sheikhzadeh, N.; Hamidian, G.; Mardani, K.; Oushani, A.K.; Firouzamandi, M.; Shohreh, P. Changes in rainbow trout (Oncorhynchus mykiss) growth and mucosal immune parameters after dietary administration of grape (Vitis vinifera) seed extract. Fish Physiol. Biochem. 2021, 47, 547–563. [Google Scholar] [CrossRef] [PubMed]
- Badrey, A.A.; Osman, A.S.; Farrag, M.; Toutou, M.M.M.; Moustafa, M.A. Influences of diets supplemented with pomegranate peel on haematology, blood biochemistry and immune status in monosex Nile tilapia, Oreochromis niloticus. Egypt J. Aquat. Biol. Fish. 2019, 23, 133–144. [Google Scholar] [CrossRef]
- Cebadera-Miranda, L.; Dominguez, L.; Dias, M.I.; Barros, L.; Ferreira, I.C.; Igual, M.; Camara, M. Sanguinello and Tarocco (Citrus sinensis [L.] Osbeck): Bioactive compounds and colour appearance of blood oranges. Food Chem. 2019, 270, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations. FAOSTAT Statistical Database; FAO: Rome, Italy, 2020. [Google Scholar]
- Legua, P.; Modica, G.; Porras, I.; Conesa, A.; Continella, A. Bioactive compounds, antioxidant activity and fruit quality evaluation of eleven blood orange cultivars. J. Sci. Food Agric. 2022, 102, 2960–2971. [Google Scholar] [CrossRef]
- Habibi, F.; Garcia-Pastor, M.E.; Puente-Moreno, J.; Garrido-Aunon, F.; Serrano, M.; Valero, D. Anthocyanin in blood oranges: A review on postharvest approaches for its enhancement and preservation. Crit. Rev. Food Sci. Nutr. 2022, 63, 12089–12101. [Google Scholar] [CrossRef]
- Anwar, F.; Naseer, R.; Bhanger, M.I.; Ashraf, S.; Talpur, F.N.; Aladedunye, F.A. Physico-chemical characteristics of Citrus seeds and seed oils from Pakistan. J. Am. Oil Chem. Soc. 2008, 85, 321–330. [Google Scholar] [CrossRef]
- Dawood, M.A.; Habotta, O.A.; Elsabagh, M.; Azra, M.N.; Van Doan, H.; Kari, Z.A.; Sewilam, H. Fruit processing by-products in the aquafeed industry: A feasible strategy for aquaculture sustainability. Rev. Aquac. 2022, 14, 1945–1965. [Google Scholar] [CrossRef]
- Lee, T.H.; Kim, K.-T.; Oh, H.Y.; Park, S.Y.; Lee, G.J.; Kim, H.-S.; Kim, H.S. Effect of Blood Orange (Citrus sinensis L. Osbeck) Peel Waste as a Feed Additive on the Growth Performance, Digestive Enzyme Activity, Antioxidant Capacity, and Immune Response in Juvenile Black Rockfish (Sebastes schlegelii). Antioxidants 2024, 13, 1452. [Google Scholar] [CrossRef]
- Salem, M.E.S.; Abdel-Ghany, H.M.; Sallam, A.E.; El-Feky, M.M.; Almisherfi, H.M. Effects of dietary orange peel on growth performance, antioxidant activity, intestinal microbiota and liver histology of Gilthead sea bream (Sparus aurata) larvae. Aquac. Nutr. 2019, 25, 1087–1097. [Google Scholar] [CrossRef]
- García Beltrán, J.M.; Espinosa, C.; Guardiola, F.A.; Esteban, M.Á. Dietary dehydrated lemon peel improves the immune but not the antioxidant status of gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol. 2017, 64, 426–436. [Google Scholar] [CrossRef] [PubMed]
- Kesbiç, O.S.; Acar, Ü.; Mohammady, E.Y.; Salem, S.M.; Ragaza, J.A.; El-Haroun, E.; Hassaan, M.S. The beneficial effects of citrus peel waste and its extract on fish performance and health status: A review. Aquac. Res. 2022, 53, 4217–4232. [Google Scholar] [CrossRef]
- Mir, S.A.; Manickavasagan, A.; Shah, M.A. (Eds.) Plant Extracts: Applications in the Food Industry; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar]
- Feringa, H.H.; Laskey, D.A.; Dickson, J.E.; Coleman, C.I. The effect of grape seed extract on cardiovascular risk markers: A meta-analysis of randomized controlled trials. J. Am. Diet. Assoc. 2011, 111, 1173–1181. [Google Scholar] [CrossRef]
- Pourhossein, Z.; Qotbi, A.A.A.; Seidavi, A.; Laudadio, V.; Centoducati, G.; Tufarelli, V. Effect of different levels of dietary sweet orange (Citrus sinensis) peel extract on humoral immune system responses in broiler chickens. Anim. Sci. J. 2015, 86, 105–110. [Google Scholar] [CrossRef]
- Kesbiç, O.S.; Acar, Ü.; Hassaan, M.S.; Yılmaz, S.; Guerrera, M.C.; Fazio, F. Effects of tomato paste by-product extract on growth performance and blood parameters in common carp (Cyprinus carpio). Animals 2022, 12, 3387. [Google Scholar] [CrossRef]
- Samavat, M.; Shamsaie, S.; Jamili, M.; Soltani, S.P. Hosseini, Determination of grapefruit (Citrus paradisi) peel extract bio-active substances and its application in Caspian white fish (Rutilus frisii kutum) diet: Growth, haemato-biochemical parameters and intestinal morphology. Aquac. Res. 2019, 50, 2496–2504. [Google Scholar] [CrossRef]
- Sokooti, R.; Chelemal Dezfoulnejad, M.; Javaheri baboli, M. Effects of olive leaf extract (Olea europaea Leecino) on growth, haematological parameters, immune system and carcass composition in common carp (Cyprinus carpio). Aquac. Res. 2021, 52, 2415–2423. [Google Scholar] [CrossRef]
- Kim, J.H.; Kang, J.C. Influence of dietary ascorbic acid on the immune responses of juvenile Korean rockfish Sebastes schlegelii. J. Aquat. Anim. Health 2015, 27, 178–184. [Google Scholar] [CrossRef]
- KOSIS (Korean Statistical Information Service). Survey on the Status of Aquaculture; KOSIS: Daejeon, Republic of Korea, 2025. [Google Scholar]
- Han, H.J.; Song, J.Y.; Cho, M.Y.; Choi, H.S.; Jung, S.H.; Seo, H.G. Monitoring of disease including Nematode Clavinema mariae infections in the cultured Korean rockfish Sebastes schlegeli during 2013–2016. Korean J. Fish. Aquat. Sci. 2020, 53, 432–442. [Google Scholar] [CrossRef]
- Oh, H.Y.; Lee, T.H.; Lee, C.H.; Lee, D.Y.; Sohn, M.Y.; Kwon, R.W.; Kim, H.S. Effects of by-products from producing yacon (Smallanthus sonchifolius) juice as feed additive on growth performance, digestive enzyme activity, antioxidant status, related gene expression, and disease resistance against Streptococcus iniae in juvenile black rockfish (Sebastes schlegelii). Aquaculture 2023, 569, 739383. [Google Scholar] [CrossRef]
- Oh, H.Y.; Lee, T.H.; Lee, D.Y.; Lee, C.H.; Sohn, M.Y.; Kwon, R.W.; Kim, K.D. Evaluation of garlic juice processing waste supplementation in juvenile black rockfish (Sebastes schlegelii) diets on growth performance, antioxidant and digestive enzyme activity, growth-and antioxidant-related gene expression, and disease resistance against Streptococcus iniae. Animals 2022, 12, 3512. [Google Scholar] [CrossRef]
- Oh, H.Y.; Lee, T.H.; Lee, D.Y.; Lee, C.H.; Joo, M.S.; Kim, H.S.; Kim, K.D. Dietary Supplementation with Ginger (Zingiber officinale) Residue from juice extraction improves juvenile black rockfish (Sebastes schlegelii) growth performance, antioxidant enzyme activity, and resistance to Streptococcus iniae infection. Animals 2022, 12, 546. [Google Scholar] [CrossRef] [PubMed]
- Gutfinger, T. Polyphenols in olive oils. J. Am. Oil Chem. Soc. 1981, 58, 966–968. [Google Scholar] [CrossRef]
- Moreno, M.I.N.; Isla, M.I.; Sampietro, A.R.; Vattuone, M.A. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J. Ethnopharmacol. 2000, 71, 109–114. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of Association of Official Analytical Chemists International, 18th ed.; AOAC: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Lange, S.; Gudmundsdottir, B.K.; Magnadottir, B. Humoral immune parameters of cultured Atlantic halibut (Hippoglossus hippoglossus L.). Fish Shellfish Immunol. 2001, 11, 523–535. [Google Scholar] [CrossRef]
- Nekoubin, H.; Hajimoradloo, A.; Hoseinifar, S.H. Effects of apple cider vinegar on growth performance and non-specific immune parameters of skin mucus in common carp (Cyprinus carpio) fingerlings. Int. J. Aquat. Biol. 2020, 8, 311–316. [Google Scholar]
- Sachintha, S.; Coswatte, A.; Bambaranda, B. Development of Fish Feed Using Marigold Petals and Banana Peel to Enhance the Coloration of Koi Carp (Cyprinus carpio). In Proceedings of the International Research Conference of Uva Wellassa University, Online, 29–30 July 2020. [Google Scholar]
- Morante, V.H.P.; Copatti, C.E.; Souza, A.R.L.; da Costa, M.M.; Braga, L.G.T.; Souza, A.M.; Melo, J.F.B. Assessment the crude grape extract as feed additive for tambaqui (Colossoma macropomum), an omnivorous fish. Aquaculture 2021, 544, 737068. [Google Scholar] [CrossRef]
- Ben-Othman, S.; Jõudu, I.; Bhat, R. Bioactives from agri-food wastes: Present insights and future challenges. Molecules 2020, 25, 510. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.Q. Citrus Fruits Nutrition; Science Press: Beijing, China, 2012; Volume 19, pp. 85–96. [Google Scholar]
- Rajendran, P.; Nandakumar, N.; Rengarajan, T.; Palaniswami, R.; Gnanadhas, E.N.; Lakshminarasaiah, U.; Nishigaki, I. Antioxidants and human diseases. Clin. Chim. Acta 2014, 436, 332–347. [Google Scholar] [CrossRef] [PubMed]
- Ke, Z.; Pan, Y.; Xu, X.D.; Nie, C.; Zhou, Z.Q. Citrus flavonoids and human cancers. J. Food Nutr. Res. 2015, 3, 341–351. [Google Scholar] [CrossRef]
- Zhang, H.; Xi, W.; Yang, Y.; Zhou, X.; Liu, X.; Yin, S.; Zhou, Z. An on-line HPLC-FRSD system for rapid evaluation of the total antioxidant capacity of Citrus fruits. Food Chem. 2015, 172, 622–629. [Google Scholar] [CrossRef]
- Sujitha, M.V.; Kannan, S. Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 102, 15–23. [Google Scholar] [CrossRef]
- Cui, Y.; Tian, Z.; Wang, G.; Ma, X.; Chen, W. Citrus extract improves the absorption and utilization of nitrogen and gut health of piglets. Animals 2020, 10, 112. [Google Scholar] [CrossRef]
- Schieber, A.; Stintzing, F.C.; Carle, R. By-products of plant food processing as a source of functional compounds—Recent developments. Trends Food Sci. Technol. 2001, 12, 401–413. [Google Scholar] [CrossRef]
- Negro, V.; Mancini, G.; Ruggeri, B.; Fino, D. Citrus waste as feedstock for biobased products recovery: Review on limonenecase study and energy valorization. Bioresour. Technol. 2016, 214, 806–815. [Google Scholar] [CrossRef]
- Mathur, A.; Verma, S.K.; Purohit, R.; Gupta, V.; Dua, V.K.; Prasad, G.B.K.S.; Singh, S. Evaluation of in vitro antimicrobial and antioxidant activities of peel and pulp of some citrus fruits. J. Biotechnol. Biother. 2011, 1, 1–17. [Google Scholar]
- Álvarez-Ordóñez, A.; Carvajal, A.; Arguello, H.; Martínez-Lobo, F.J.; Naharro, G.; Rubio, P. Antibacterial activity and mode of action of a commercial citrus fruit extract. J. Appl. Microbiol. 2013, 115, 50–60. [Google Scholar] [CrossRef]
- Skandamis, P.; Koutsoumanis, K.; Fasseas, K.; Nychas, G.J.E. Inhibition of oregano essential oil and EDTA on Escherichia coli O157:H7. Ital. J. Food Sci. 2001, 13, 65–75. [Google Scholar]
- Carson, C.F.; Mee, B.J.; Riley, T.V. Mechanism of Action of Melaleuca alternifolia (tea tree) Oil on Staphylococcus aureus Determined by Time-Kill, Lysis, Leakage and Salt Tolerance Assays and Electron Microscopy. Antimicrob. Agents Chemother. 2002, 46, 1914–1920. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.L.; Meng, X.L.; Lu, R.H.; Wu, C.; Luo, Y.T.; Yan, X.; Nile, G.X. Effects of Rehmannia glutinosa on growth performance, immunological parameters and disease resistance to Aeromonas hydrophila in common carp (Cyprinus carpio L.). Aquaculture 2015, 435, 293–300. [Google Scholar] [CrossRef]
- Eh, Y.Y.; Park, Y.B. Analysis of the Competitive Power in the Bastard Halibut Aquaculture Type. J. Fish. Bus. Adm. 1997, 28, 106–119. [Google Scholar]
- Mohamed, R.A.; Yousef, Y.M.; El-Tras, Y.F.; Khalafallaa, M.M. Dietary essential oil extract from sweet orange (Citrus sinensis) and bitter lemon (Citrus limon) peels improved Nile tilapia performance and health status. Aquac. Res. 2021, 52, 1463–1479. [Google Scholar] [CrossRef]
- Al-Saadi, N.M.; Ahmad, N.S.; Saeed, S.E. Determination of some chemical compounds and the effect of oil extract from orange peel on some pathogens. J. Kerbala Univ. 2009, 7, 33–39. [Google Scholar]
- Immanuel, G.; Uma, R.P.; Iyapparaj, P.; Citarasu, T.; Punitha Peter, S.M.; Michael Babu, M.; Palavesam, A. Dietary medicinal plant extracts improve growth, immune activity and survival of tilapia Oreochromis mossambicus. J. Fish Biol. 2009, 74, 1462–1475. [Google Scholar] [CrossRef]
- Citarasu, T. Herbal biomedicines: A new opportunity for aquaculture industry. Aquac. Int. 2010, 18, 403–414. [Google Scholar] [CrossRef]
- Hashemi, S.R.; Davoodi, H. Herbal plants and their derivatives as growth and health promoters in animal nutrition. Vet. Res. Commun. 2011, 35, 169–180. [Google Scholar] [CrossRef]
- Shabana, M.S.; Karthika, M.; Ramasubramanian, V. Effect of dietary Citrus sinensis peel extract on growth performance, digestive enzyme activity, muscle biochemical composition, and metabolic enzyme status of the freshwater fish, Catla catla. J. Basic Appl. Zool. 2019, 80, 1–9. [Google Scholar] [CrossRef]
- Jiang, J.; Wu, X.Y.; Zhou, X.Q.; Feng, L.; Liu, Y.; Jiang, W.D.; Zhao, Y. Effects of dietary curcumin supplementation on growth performance, intestinal digestive enzyme activities and antioxidant capacity of crucian carp Carassius auratus. Aquaculture 2016, 463, 174–180. [Google Scholar] [CrossRef]
- Vandermarliere, E.; Mueller, M.; Martens, L. Getting intimate with trypsin, the leading protease in proteomics. Mass. Spectrom. Rev. 2013, 32, 453–465. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.X.; Song, C.Y.; Xie, J.; Ge, X.P.; Liu, B.; Xia, S.L.; Zhu, S.H. Effects of fish meal replacement by soybean peptide on growth performance, digestive enzyme activities, and immune responses of yellow catfish Pelteobagrus fulvidraco. Fish. Sci. 2016, 82, 665–673. [Google Scholar] [CrossRef]
- Assan, D.; Kuebutornye, F.K.A.; Hlordzi, V.; Chen, H.; Mraz, J.; Mustapha, U.F.; Abarike, E.D. Effects of probiotics on digestive enzymes of fish (finfish and shellfish); status and prospects: A mini review. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2022, 257, 110653. [Google Scholar] [CrossRef]
- Adel, M.; Dawood, M.A.; Gholamhosseini, A.; Sakhaie, F.; Banaee, M. Effect of the extract of lemon verbena (Aloysia citrodora) on the growth performance, digestive enzyme activities, and immune-related genes in Siberian sturgeon (Acipenser baerii). Aquaculture 2021, 541, 736797. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and Polyphenolics in Foods, Beverages and Spices: Antioxidant Activity and Health Effects—A Review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Res. Int. 2020, 132, 109114. [Google Scholar] [CrossRef]
- Butt, R.L.; Volkoff, H. Gut microbiota and energy homeostasis in fish. Front. Endocrinol. 2019, 10, 9. [Google Scholar] [CrossRef]
- Holst, B.; Williamson, G. Nutrients and phytochemicals: From bioavailability to bio efficacy beyond antioxidants. Curr. Opin. Biotechnol. 2008, 19, 73–82. [Google Scholar] [CrossRef]
- Turan, F.; Yiğitarslan, D. The effects of rosemary extract (Rosemaria officinalis) as a feed additive on growth and whole-body composition of the African catfish (Clarias gariepinus (Burchell, 1822)). Nat. Eng. Sci. 2016, 1, 49–55. [Google Scholar] [CrossRef]
- Hamid, N.K.A.; Somdare, P.O.; Harashid, K.A.M.; Othman, N.A.; Kari, Z.A.; Wei, L.S.; Dawood, M.A. Effect of papaya (Carica papaya) leaf extract as dietary growth promoter supplement in red hybrid tilapia (Oreochromis mossambicus × Oreochromis niloticus) diet. Saudi J. Biol. Sci. 2022, 29, 3911–3917. [Google Scholar] [CrossRef] [PubMed]
- Khumsrisuk, P.; Mapanao, R.; Nithikulworawong, N. Evaluation of pineapple waste crude extract in improving growth performance and resistance to Aeromonas hydrophila in Nile tilapia (Oreochromis niloticus). Int. J. Aquat. Biol. 2022, 10, 417–428. [Google Scholar] [CrossRef]
- Frankic, T.; Voljc, M.; Salobir, J.; Rezar, V. Use of herbs and spices and their extracts in animal nutrition. Acta Agric. Slov. 2009, 94, 95–102. [Google Scholar] [CrossRef]
- Yılmaz, S.; Ergün, S. Effects of garlic and ginger oils on hematological and biochemical variables of sea bass Dicentrarchus labrax. J. Aquat. Anim. Health 2012, 24, 219–224. [Google Scholar] [CrossRef]
- Toutou, M.M.; Soliman, A.A.; Elokaby, M.A.; Ahmed, R.A.; Baghdady, E.S. Growth performance and biochemical blood parameters of Nile tilapia, Oreochromis niloticus, and thinlip mullet, Liza ramada, fed a diet supplemented with lemon (Citrus aurantifolia) peel in a polyculture system. Egypt J. Aquat. Biol. Fish. 2018, 22, 183–192. [Google Scholar] [CrossRef]
- Adeli, A.; Shamloofar, M.; Akrami, R. Dietary effect of Lemon Verbena (Aloysia triphylla) extract on growth performance, some haematological, biochemical, and non-specific immunity and stocking density challenge of rainbow trout juveniles (Oncorhynchus mykiss). J. Appl. Anim. Res. 2021, 49, 382–390. [Google Scholar] [CrossRef]
- Oh, H.Y.; Lee, T.H.; Lee, G.J.; Park, S.Y.; Hong, S.B.; Kim, Y.W.; Kim, Y.S.; Kim, H.S. Effects of Sweet Wormwood (Artemisia annua L.) in Diet on Growth Performance, Feed Utilization, Body Composition, Blood Chemistry, and Lysozyme Activity of Juvenile Korean Rockfish (Sebastes schlegelii). J. Fish. Mar. Sci. Educ. 2024, 36, 612–624. [Google Scholar] [CrossRef]
- Kim, K.D.; Seo, J.S.; Hur, S.W.; Kim, K.W.; Lee, B.J.; Bae, K.M. Effects of Dietary Supplementation of Cactus Opuntia ficus-indica on Growth, Flesh Quality, Lysozyme Activity and Histological Change of Growing Korean Rockfish Sebastes schlegeli. Korean J. Fish. Aquat. Sci. 2019, 52, 358–365. [Google Scholar] [CrossRef]
- Srikanth, K.; Pereira, E.; Duarte, A.C.; Ahmad, I. Glutathione and its dependent enzymes’ modulatory responses to toxic metals and metalloids in fish—A review. Environ. Sci. Pollut. Res. 2013, 20, 2133–2149. [Google Scholar] [CrossRef]
- Yousefi, M.; Farsani, M.N.; Ghafarifarsani, H.; Hoseinifar, S.H.; Van Doan, H. The effects of dietary supplementation of mistletoe (Viscum album) extract on the growth performance, antioxidant, and innate, immune responses of rainbow trout (Oncorhynchus mykiss). Aquaculture 2021, 536, 736385. [Google Scholar] [CrossRef]
- Bilen, S.; Altief, T.A.S.; Özdemir, K.Y.; Salem, M.O.A.; Terzi, E.; Güney, K. Effect of lemon balm (Melissa officinalis) extract on growth performance, digestive and antioxidant enzyme activities, and immune responses in rainbow trout (Oncorhynchus mykiss). Fish. Physiol. Biochem. 2020, 46, 471–481. [Google Scholar] [CrossRef]
- Chun, O.K.Y.; Chung, S.J.; Claycombe, K.J.; Song, W.O. Serum C-reactive protein concentrations are inversely associated with dietary flavonoid intake in U.S. Adults. Nutrition 2008, 138, 753–760. [Google Scholar] [CrossRef] [PubMed]
- İnan, Ö.; Özcan, M.M.; Aljuhaimi, F. Effect of location and Citrus species on total phenolic, antioxidant, and radical scavenging activities of some Citrus seed and oils. J. Food Process. Preserv. 2018, 42, e13555. [Google Scholar] [CrossRef]
- Han, X.; Shen, T.; Lou, H. Dietary polyphenols and their biological significance. Int. J. Mol. Sci. 2000, 8, 950–988. [Google Scholar] [CrossRef]
- Virgili, F.; Marino, M. Regulation of cellular signals from nutritional molecules: A specific role for phytochemicals, beyond antioxidant activity. Free Radic. Biol. Med. 2008, 45, 1205–1216. [Google Scholar] [CrossRef]
- Saurabh, S.; Sahoo, P.K. Lysozyme: An important defence molecule of fish innate immune syste. Aquac. Res. 2008, 39, 223–239. [Google Scholar] [CrossRef]
- Magnadóttir, B. Comparison of immunoglobulin (IgM) from four fish species. Icel. Agric. Sci. 1998, 12, 47–59. [Google Scholar]
- Engelsma, M.Y.; Huising, M.O.; van Muiswinkel, W.B.; Flik, G.; Kwang, J.; Savelkoul, H.F.; Verburg-van Kemenade, B.L. Neuroendocrine–immune interactions in fish: A role for interleukin-1. Vet. Immunol. Immunopathol. 2022, 87, 467–479. [Google Scholar] [CrossRef]
- Ahmadifar, E.; Mohammadzadeh, S.; Kalhor, N.; Yousefi, M.; Moghadam, M.S.; Naraballobh, W.; Van Doan, H. Cornelian cherry (Cornus mas L.) fruit extract improves growth performance, disease resistance, and serum immune-and antioxidant-related gene expression of common carp (Cyprinus carpio). Aquaculture 2022, 558, 738372. [Google Scholar] [CrossRef]
- Shekarabi, S.P.H.; Mehrgan, M.S.; Ramezani, F.; Dawood, M.A.; Van Doan, H.; Moonmanee, T.; Kari, Z.A. Effect of dietary barberry fruit (Berberis vulgaris) extract on immune function, antioxidant capacity, antibacterial activity, and stress-related gene expression of Siberian sturgeon (Acipenser baerii). Aquac. Rep. 2022, 23, 101041. [Google Scholar] [CrossRef]
- Guardiola, F.A.; Porcino, C.; Cerezuela, R.; Cuesta, A.; Faggio, C.; Esteban, M.A. Impact of date palm fruits extracts and probiotic enriched diet on antioxidant status, innate immune response and immune-related gene expression of European seabass (Dicentrarchus labrax). Fish Shellfish Immunol. 2016, 52, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Latif, H.M.; Abdel-Tawwab, M.; Khafaga, A.F.; Dawood, M.A. Dietary origanum essential oil improved antioxidative status, immune-related genes, and resistance of common carp (Cyprinus carpio L.) to Aeromonas hydrophila infection. Fish Shellfish Immunol. 2020, 104, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Yang, G.; Sheng, Y.; Li, P.; Qiu, H.; Zhou, X.; Huang, L.; Chao, Z. Glomus mosseae inoculation improves the root system architecture, photosynthetic efficiency and flavonoids accumulation of liquorice under nutrient stress. Front. Plant Sci. 2017, 8, 931. [Google Scholar] [CrossRef] [PubMed]
- Faheem, M.; Rao, Z.A.; Liaqat, I.; Hoseinifar, S.H.; Maneepitaksanti, W.; Van Doan, H. Bio-active components in medicinal plants: A mechanistic review of their effects on fish growth and physiological parameters—A review. Ann. Anim. Sci. 2022, 22, 1127–1149. [Google Scholar] [CrossRef]
- Giri, S.S.; Sen, S.S.; Chi, C.; Kim, H.J.; Yun, S.; Park, S.C.; Sukumaran, V. Effect of guava leaves on the growth performance and cytokine gene expression of Labeo rohita and its susceptibility to Aeromonas hydrophila infection. Fish Shellfish Immunol. 2015, 46, 217–224. [Google Scholar] [CrossRef]
- Li, M.; Zhu, X.; Tian, J.; Liu, M.; Wang, G. Dietary flavonoids from Allium mongolicum Regel promotes growth, improves immune, antioxidant status, immune related signaling molecules and disease resistance in juvenile northern snakehead fish (Channa argus). Aquaculture 2019, 501, 473–481. [Google Scholar] [CrossRef]
- Acar, Ü.; Kesbiç, O.S.; Yılmaz, S.; Gültepe, N.; Türker, A. Evaluation of the effects of essential oil extracted from sweet orange peel (Citrus sinensis) on growth rate of tilapia (Oreochromis mossambicus) and possible disease resistance against Streptococcus iniae. Aquaculture 2015, 437, 282–286. [Google Scholar] [CrossRef]
- Soltanian, S.; Fereidouni, M.S. Effect of Henna (Lawsonia inermis) extract on the immunity and survival of common carp, Cyprinus carpio infected with Aeromonas hydrophila. Int. Aquat. Res. 2016, 8, 247–261. [Google Scholar] [CrossRef]
- Sivaram, V.; Babu, M.M.; Immanuel, G.; Murugadass, S.; Citarasu, T.; Marian, M.P. Growth and immune response of juvenile greasy groupers (Epinephelus tauvina) fed with herbal antibacterial active principle supplemented diets against Vibrio harveyi infections. Aquaculture 2004, 237, 9–20. [Google Scholar] [CrossRef]
- Ringø, E.; Olsen, R.E.; Vecino, J.G.; Wadsworth, S.; Song, S.K. Use of immunostimulants and nucleotides in aquaculture: A review. J. Mar. Sci. Res. Dev. 2012, 2, 104. [Google Scholar] [CrossRef]
Ingredients | Experimental Diets | ||||||
---|---|---|---|---|---|---|---|
BJBE0 | BJBE0.1 | BJBE0.2 | BJBE0.3 | BJBE0.5 | BJBE0.7 | BJBE1 | |
Sardine meal | 560 | 560 | 560 | 560 | 560 | 560 | 560 |
Dehulled soybean meal | 120 | 120 | 120 | 120 | 120 | 120 | 120 |
Wheat flour | 215 | 215 | 215 | 215 | 215 | 215 | 215 |
BJBE | 0 | 0.1 | 0.2 | 0.3 | 0.5 | 0.7 | 1 |
Fish oil | 40 | 40 | 40 | 40 | 40 | 40 | 40 |
Soybean oil | 40 | 40 | 40 | 40 | 40 | 40 | 40 |
Vitamin premix a | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
Mineral premix b | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
Choline | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Proximate composition (g kg−1) | |||||||
Dry matter | 917 | 920 | 920 | 922 | 918 | 920 | 919 |
Crude protein | 526 | 521 | 521 | 510 | 515 | 508 | 511 |
Crude lipid | 145 | 148 | 148 | 145 | 145 | 139 | 145 |
Ash | 105 | 104 | 105 | 98 | 104 | 102 | 104 |
BJBE Composition | ||||||||
---|---|---|---|---|---|---|---|---|
Chemical compounds | Vitamin C (mg 100 g−1) | 41.93 | ||||||
Total phenolics (gallic acid mg 100 g−1) | 28.7 ± 3.48 | |||||||
Total flavonoids (quercetin mg g−1) | 15.3 ± 7.37 | |||||||
Concentration (µg mL−1) | 4000 | 2000 | 1000 | 500 | 250 | 125 | IC50 | |
Radical scavenging activity | DPPH (%) | 61.2 ± 0.95 | 41.9 ± 2.14 | 33.4 ± 0.80 | 24.7 ± 0.61 | 22.3 ± 0.09 | 21.4 ± 0.06 | 5.5 |
ABTS (%) | 69.5 ± 0.95 | 35.5 ± 4.59 | 31.0 ± 0.35 | 19.9 ± 0.30 | 12.9 ± 0.04 | 6.2 ± 0.04 | 5.5 |
Extracts/Antibiotic | Antibacterial Activity of Extracts | |
---|---|---|
Concentration (μL disk−1) | Inhibition Zone Diameter (mm) | |
Tetracycline (30 µg) | - | 1.5 |
BJBE | 20 | 1.7 |
40 | 2.4 | |
80 | 2.0 | |
160 | 2.4 |
Parameters | Experimental Diets | p Value | ||||||
---|---|---|---|---|---|---|---|---|
BJBE0 | BJBE0.1 | BJBE0.2 | BJBE0.3 | BJBE0.5 | BJBE0.7 | BJBE1 | ||
Initial weight (g fish−1) | 1.4 ± 0.00 | 1.4 ± 0.00 | 1.4 ± 0.00 | 1.4 ± 0.00 | 1.4 ± 0.00 | 1.4 ± 0.00 | 1.4 ± 0.00 | - |
Final weight (g fish−1) | 10.2 ± 0.24 a | 10.5 ± 0.08 ab | 10.5 ± 0.12 ab | 10.7 ± 0.18 ab | 10.7 ± 0.11 ab | 11.0 ± 0.14 b | 10.9 ± 0.12 b | 0.031 |
SR (%) | 100.0 ± 0.00 | 98.9 ± 1.11 | 100.0 ± 0.00 | 100.0 ± 0.00 | 100.0 ± 0.00 | 100.0 ± 0.00 | 100.0 ± 0.00 | 0.463 |
WG (g fish−1) | 8.8 ± 0.24 a | 9.2 ± 0.08 ab | 9.2 ± 0.12 ab | 9.3 ± 0.18 ab | 9.3 ± 0.11 ab | 9.6 ± 0.14 b | 9.6 ± 0.12 b | 0.029 |
SGR (%) | 3.66 ± 0.044 a | 3.73 ± 0.014 ab | 3.72 ± 0.024 ab | 3.75 ± 0.029 ab | 3.75 ± 0.017 ab | 3.80 ± 0.026 b | 3.79 ± 0.020 b | 0.039 |
FI (g/fish) | 10.0 ± 0.04 | 10.1 ± 0.08 | 10.2 ± 0.04 | 10.0 ± 0.09 | 9.9 ± 0.13 | 10.1 ± 0.13 | 10.1 ± 0.06 | 0.463 |
FE | 0.88 ± 0.021 a | 0.90 ± 0.009 ab | 0.90 ± 0.013 ab | 0.94 ± 0.014 ab | 0.94 ± 0.018 ab | 0.95 ± 0.014 b | 0.95 ± 0.007 ab | 0.022 |
PER | 1.68 ± 0.040 a | 1.73 ± 0.017 ab | 1.73 ± 0.026 ab | 1.84 ± 0.027 bc | 1.83 ± 0.035 bc | 1.88 ± 0.027 c | 1.85 ± 0.014 bc | 0.001 |
CF | 0.79 ± 0.040 | 0.87 ± 0.075 | 0.83 ± 0.046 | 0.84 ± 0.036 | 0.87 ± 0.058 | 0.85 ± 0.030 | 0.85 ± 0.060 | 0.924 |
VSI (%) | 14.94 ± 0.037 | 14.83 ± 0.339 | 14.48 ± 0.246 | 14.38 ± 0.276 | 14.42 ± 0.239 | 14.20 ± 0.219 | 14.35 ± 0.187 | 0.329 |
HSI (%) | 4.88 ± 0.087 | 4.59 ± 0.098 | 4.75 ± 0.255 | 4.56 ± 0.150 | 4.62 ± 0.200 | 4.85 ± 0.065 | 4.81 ± 0.200 | 0.696 |
Parameters | Experimental Diets | p Value | ||||||
---|---|---|---|---|---|---|---|---|
BJBE0 | BJBE0.1 | BJBE0.2 | BJBE0.3 | BJBE0.5 | BJBE0.7 | BJBE1 | ||
Amylase | 72.2 ± 7.83 a | 80.6 ± 7.38 ab | 88.4 ± 5.44 ab | 89.4 ± 5.24 ab | 104.6 ± 4.27 ab | 107.0 ± 4.19 b | 106.8 ± 10.76 b | 0.014 |
Trypsin | 35.6 ± 0.74 a | 35.4 ± 0.52 a | 36.0 ± 1.83 a | 36.6 ± 1.96 ab | 37.5 ± 1.40 ab | 42.6 ± 1.50 b | 41.9 ± 0.72 ab | 0.006 |
Lipase | 32.4 ± 4.52 | 32.5 ± 2.79 | 31.7 ± 1.73 | 32.2 ± 0.40 | 32.0 ± 1.38 | 33.2 ± 2.01 | 33.4 ± 1.79 | 0.998 |
Composition | Experimental Diets | p Value | ||||||
---|---|---|---|---|---|---|---|---|
BJBE0 | BJBE0.1 | BJBE0.2 | BJBE0.3 | BJBE0.5 | BJBE0.7 | BJBE1 | ||
Moisture | 69.4 ± 0.15 | 69.3 ± 0.07 | 69.4 ± 0.15 | 69.4 ± 0.19 | 69.4 ± 0.25 | 69.5 ± 0.12 | 69.3 ± 0.22 | 0.996 |
Crude protein | 17.0 ± 0.20 | 16.5 ± 0.03 | 16.5 ± 0.07 | 16.8 ± 0.07 | 16.5 ± 0.09 | 16.8 ± 0.24 | 16.7 ± 0.09 | 0.090 |
Crude lipid | 9.6 ± 0.10 | 9.5 ± 0.12 | 9.2 ± 0.10 | 9.6 ± 0.06 | 9.4 ± 0.09 | 9.4 ± 0.00 | 9.4 ± 0.09 | 0.072 |
Ash | 3.2 ± 0.09 | 3.3 ± 0.06 | 3.3 ± 0.12 | 3.4 ± 0.09 | 3.3 ± 0.15 | 3.1 ± 0.03 | 3.2 ± 0.07 | 0.460 |
AST (U L−1) | 153.0 ± 4.58 | 153.3 ± 4.63 | 157.3 ± 7.17 | 153.7 ± 5.36 | 151.0 ± 6.24 | 153.3 ± 6.36 | 153.0 ± 7.23 | 0.995 |
ALT (U L−1) | 40.0 ± 4.93 | 41.0 ± 5.57 | 40.7 ± 7.22 | 43.0 ± 6.66 | 45.0 ± 7.23 | 44.7 ± 4.91 | 44.3 ± 5.61 | 0.993 |
TCHO (mg dL−1) | 242.3 ± 11.55 | 247.3 ± 12.78 | 242.7 ± 11.29 | 238.3 ± 7.31 | 244.0 ± 11.93 | 245.0 ± 10.21 | 245.3 ± 13.37 | 0.999 |
GLU (mg dL−1) | 63.7 ± 8.11 | 62.3 ± 7.31 | 63.0 ± 5.57 | 63.3 ± 4.33 | 67.3 ± 4.91 | 65.7 ± 4.10 | 65.0 ± 5.29 | 0.996 |
TP (g dL−1) | 5.6 ± 0.26 | 5.7 ± 0.61 | 6.3 ± 0.75 | 5.6 ± 0.41 | 5.7 ± 1.14 | 6.3 ± 1.03 | 5.5 ± 0.35 | 0.960 |
Parameters | Experimental Diets | p Value | ||||||
---|---|---|---|---|---|---|---|---|
BJBE0 | BJBE0.1 | BJBE0.2 | BJBE0.3 | BJBE0.5 | BJBE0.7 | BJBE1 | ||
SOD (U mL−1) | 7.1 ± 0.28 a | 7.4 ± 0.47 a | 7.7 ± 0.37 ab | 7.8 ± 0.23 ab | 8.1 ± 0.24 ab | 8.6 ± 0.34 b | 8.7 ± 0.32 b | 0.033 |
CAT (nmol min−1 mL−1) | 558.3 ± 74.10 a | 584.8 ± 53.80 a | 613.6 ± 28.24 ab | 620.5 ± 64.15 ab | 632.6 ± 53.29 ab | 754.8 ± 27.27 bc | 797.3 ± 30.99 c | 0.037 |
GSH (µM) | 0.9 ± 0.10 a | 0.9 ± 0.02 a | 1.0 ± 0.19 a | 1.1 ± 0.09 a | 1.2 ± 0.12 a | 1.8 ± 0.19 b | 1.7 ± 0.21 b | 0.002 |
Parameters | Experimental Diets | p Value | ||||||
---|---|---|---|---|---|---|---|---|
BJBE0 | BJBE0.1 | BJBE0.2 | BJBE0.3 | BJBE0.5 | BJBE0.7 | BJBE1 | ||
Lysozyme activity (U mL−1) | 2.0 ± 0.24 a | 2.4 ± 0.34 ab | 2.5 ± 0.39 abc | 2.6 ± 0.36 abc | 2.8 ± 0.11 abc | 3.1 ± 0.10 bc | 3.3 ± 0.20 c | 0.068 |
IgM (mg mL−1) | 181.1 ± 11.28 a | 193.3 ± 31.67 ab | 197.8 ± 34.86 ab | 205.0 ± 7.88 ab | 223.9 ± 11.88 abc | 276.1 ± 34.03 bc | 297.2 ± 28.91 c | 0.040 |
IL-1 (pg mL−1) | 209.6 ± 21.13 | 181.9 ± 8.01 | 153.4 ± 23.12 | 177.8 ± 39.07 | 149.3 ± 23.81 | 184.9 ± 8.36 | 154.8 ± 18.03 | 0.511 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, A.; Oh, H.Y.; Lee, T.H.; Kang, D.Y.; Kim, K.-T.; Kim, H.-S.; Kim, H.S. Blood Orange (Citrus sinensis L. Osbeck) Juice By-Product Extract as a Functional Feed Additive: Effects on Growth Performance, Digestive Enzyme Activity, Antioxidant Status, Immune Parameters, and Disease Resistance Against Vibrio harveyi in Juvenile Black Rockfish (Sebastes schlegelii). Antioxidants 2025, 14, 745. https://doi.org/10.3390/antiox14060745
Yun A, Oh HY, Lee TH, Kang DY, Kim K-T, Kim H-S, Kim HS. Blood Orange (Citrus sinensis L. Osbeck) Juice By-Product Extract as a Functional Feed Additive: Effects on Growth Performance, Digestive Enzyme Activity, Antioxidant Status, Immune Parameters, and Disease Resistance Against Vibrio harveyi in Juvenile Black Rockfish (Sebastes schlegelii). Antioxidants. 2025; 14(6):745. https://doi.org/10.3390/antiox14060745
Chicago/Turabian StyleYun, Ahyeong, Hwa Yong Oh, Tae Hoon Lee, Da Ye Kang, Ki-Tae Kim, Hyun-Soo Kim, and Hee Sung Kim. 2025. "Blood Orange (Citrus sinensis L. Osbeck) Juice By-Product Extract as a Functional Feed Additive: Effects on Growth Performance, Digestive Enzyme Activity, Antioxidant Status, Immune Parameters, and Disease Resistance Against Vibrio harveyi in Juvenile Black Rockfish (Sebastes schlegelii)" Antioxidants 14, no. 6: 745. https://doi.org/10.3390/antiox14060745
APA StyleYun, A., Oh, H. Y., Lee, T. H., Kang, D. Y., Kim, K.-T., Kim, H.-S., & Kim, H. S. (2025). Blood Orange (Citrus sinensis L. Osbeck) Juice By-Product Extract as a Functional Feed Additive: Effects on Growth Performance, Digestive Enzyme Activity, Antioxidant Status, Immune Parameters, and Disease Resistance Against Vibrio harveyi in Juvenile Black Rockfish (Sebastes schlegelii). Antioxidants, 14(6), 745. https://doi.org/10.3390/antiox14060745