Red Beetroot Skin Powder Addition as a Multifunctional Ingredient in Nougat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Beetroot Peel (BP) Powder Obtaining and Its Chemical Composition
2.3. Color Analysis
2.4. Mineral Analysis
2.5. Extraction of Beet Skin Powder
2.5.1. Determination of Total Betalain Content
2.5.2. Determination of Total Phenolic Content
2.5.3. Determination of Antioxidant Activity
2.5.4. HPLC Investigation of the Betalains from the Beetroot Skin Extract
2.5.5. In Vitro Enzyme Activity Inhibition of the Beetroot Skin Extract
2.6. Obtaining the Nougat Supplemented with Beetroot Skin Powder
2.6.1. Phytochemical and Physicochemical Characterization, and the Evaluation of the Antioxidant Potential of Supplemented Nougat
2.6.2. Storage Stability of Phytochemical Compounds
2.6.3. Determination of the CIELAB Colorimetric Parameters
2.6.4. Analysis of the Textural Parameters of Nougat Samples
2.6.5. Mineral Analysis of Nougat Samples
2.6.6. Sensory Analysis of Nougat Samples
2.7. Statistical Analysis of Data
3. Results and Discussion
3.1. Phytochemicals Extraction and Characterization of Beetroot Skin Powder
3.2. HPLC Investigation of Beetroot Skin Powder
3.3. In Vitro Enzyme Activity Inhibition
3.4. Phytochemical Characterization and Evaluation of the Antioxidant Potential of Supplemented Nougat
3.5. Physicochemical Characterization
3.6. Analysis of the CIELAB Colorimetric Parameters of the Supplemented Nougat
3.7. Texture Analysis for Supplemented Nougat Samples
3.8. Mineral Content of Supplemented Nougat Samples
3.9. Sensory Evaluation of Supplemented Nougat Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fernandez, M.V.; Bengardino, M.; Jagus, R.J.; Agüero, M.V. Enrichment and Preservation of a Vegetable Smoothie with an Antioxidant and Antimicrobial Extract Obtained from Beet By-Products. LWT 2020, 117, 108622. [Google Scholar] [CrossRef]
- Georgiev, V.G.; Weber, J.; Kneschke, E.-M.; Denev, P.N.; Bley, T.; Pavlov, A.I. Antioxidant Activity and Phenolic Content of Betalain Extracts from Intact Plants and Hairy Root Cultures of the Red Beetroot Beta vulgaris cv. Detroit Dark Red. Plant Foods Hum. Nutr. 2010, 65, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Neha, P.; Jain, S.; Jain, N.; Jain, H.; Mittal, H. Chemical and Functional Properties of Beetroot (Beta vulgaris L.) for Product Development: A Review. Int. J. Chem. Stud. 2018, 6, 3190–3194. [Google Scholar]
- Azeredo, H.M.C. Betalains: Properties, Sources, Applications, and Stability—A Review. Int. J. Food Sci. Technol. 2009, 44, 2365–2376. [Google Scholar] [CrossRef]
- Otálora, M.C.; de Jesús Barbosa, H.; Perilla, J.E.; Osorio, C.; Nazareno, M.A. Encapsulated Betalains (Opuntia ficus-indica) as Natural Colorants. Case Study: Gummy Candies. LWT 2019, 103, 222–227. [Google Scholar] [CrossRef]
- Ghasempour, Z.; Alizadeh Khaled-Abad, M.; Vardast, M.R.; Rezazad Bari, M.; Moghaddas Kia, E. Fabrication of Betanin Imprinted Polymer for Rapid Detection of Red Beet Adulteration in Pomegranate Juice. Polym. Bull. 2019, 76, 1793–1805. [Google Scholar] [CrossRef]
- Chandran, J.; Nisha, P.; Singhal, R.S.; Pandit, A.B. Degradation of Colour in Beetroot (Beta vulgaris L.): A Kinetics Study. J. Food Sci. Technol. 2014, 51, 2678–2684. [Google Scholar] [CrossRef]
- Helal, A.; Tagliazucchi, D. Impact of In-Vitro Gastro-Pancreatic Digestion on Polyphenols and Cinnamaldehyde Bioaccessibility and Antioxidant Activity in Stirred Cinnamon-Fortified Yogurt. LWT 2018, 89, 164–170. [Google Scholar] [CrossRef]
- Moghaddas Kia, E.; Ghaderzadeh, S.; Mojaddar Langroodi, A.; Ghasempour, Z.; Ehsani, A. Red Beet Extract Usage in Gelatin/Gellan Based Gummy Candy Formulation Introducing Salix aegyptiaca Distillate as a Flavouring Agent. J. Food. Sci. Technol. 2020, 57, 3355–3362. [Google Scholar] [CrossRef]
- Yadav, M.; Dorcus, M.; Chitra, S. Development and Quality Evaluation of Beetroot Powder Incorporated Yogurt. Int. J. Sci. Eng. Technol. 2016, 4, 582–596. [Google Scholar]
- Evstigneeva, T.; Iakovchenko, N.; Kuzmicheva, N.; Skvortsova, N. Applying Beetroot as Food Ingredient in Ice-Cream Production. Agron. Res. 2020, 18, 1662–1672. [Google Scholar]
- Lucky, A.; Al-Mamun, A.; Hosen, A.; Toma, M.; Mazumder, M.A.R. Nutritional and Sensory Quality Assessment of Plain Cake Enriched with Beetroot Powder. Food Res. 2020, 4, 2049–2053. [Google Scholar] [CrossRef] [PubMed]
- El-Beltagi, H.S.; El-Mogy, M.M.; Parmar, A.; Mansour, A.T.; Shalaby, T.A.; Ali, M.R. Phytochemical Characterization and Utilization of Dried Red Beetroot (Beta vulgaris) Peel Extract in Maintaining the Quality of Nile Tilapia Fish Fillet. Antioxidants 2022, 11, 906. [Google Scholar] [CrossRef]
- Theba, T.; Ravani, A.; Bhatt, H.G. Utilization of Beetroot Pomace for Food Fortification. Int. J. Chem. Stud. 2021, 9, 2653–2657. [Google Scholar] [CrossRef]
- Vulić, J.; Čanadanović-Brunet, J.; Ćetković, G.; Tumbas, V.; Djilas, S.; Četojević-Simin, D.; Čanadanović, V. Antioxidant and Cell Growth Activities of Beet Root Pomace Extracts. J. Funct. Foods 2012, 4, 670–678. [Google Scholar] [CrossRef]
- Hartel, R.W.; Hartel, A. Candy Bites: The Science of Sweets; Springer: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Kohajdová, Z.; Karovičová, J.; Kuchtová, V.; Lauková, M. Utilisation of Beetroot Powder for Bakery Applications. Chem. Pap. 2018, 72, 1507–1515. [Google Scholar] [CrossRef]
- López-Mas, L.; Romero del Castillo, R. Sensory Analysis of Nougat: Methodology, Training, and Validation of a Panel for Protected Geographical Indication Torró d’Agramunt. J. Sens. Stud. 2022, 37, e12722. [Google Scholar] [CrossRef]
- Horwitz, W.; Latimer, G.W. Official Methods of Analysis of AOAC International; Latimer, G.W., Jr., Ed.; Oxford University Press: New York, NY, USA, 2023; ISBN 978-0-19-761013-8. [Google Scholar]
- Pomeranz, Y.; Meloan, C.E. Determination of Moisture. In Food Analysis: Theory and Practice; Pomeranz, Y., Meloan, C.E., Eds.; Springer: Boston, MA, USA, 1994; pp. 575–601. ISBN 978-1-4615-6998-5. [Google Scholar]
- Escarnot, E.; Aguedo, M.; Agneessens, R.; Wathelet, B.; Paquot, M. Extraction and Characterization of Water-Extractable and Water-Unextractable Arabinoxylans from Spelt Bran: Study of the Hydrolysis Conditions for Monosaccharides Analysis. J. Cereal Sci. 2011, 53, 45–52. [Google Scholar] [CrossRef]
- Mosse, J. Nitrogen-to-Protein Conversion Factor for Ten Cereals and Six Legumes or Oilseeds. A Reappraisal of Its Definition and Determination. Variation According to Species and to Seed Protein Content. J. Agric. Food Chem. 1990, 38, 18–24. [Google Scholar] [CrossRef]
- Chantaro, P.; Devahastin, S.; Chiewchan, N. Production of Antioxidant High Dietary Fiber Powder from Carrot Peels. LWT Food Sci. Technol. 2008, 41, 1987–1994. [Google Scholar] [CrossRef]
- Stoica, F.; Rațu, R.N.; Motrescu, I.; Cara, I.G.; Filip, M.; Țopa, D.; Jităreanu, G. Application of Pomace Powder of Black Carrot as a Natural Food Ingredient in Yoghurt. Foods 2024, 13, 1130. [Google Scholar] [CrossRef] [PubMed]
- Stintzing, F.C.; Schieber, A.; Carle, R. Evaluation of Colour Properties and Chemical Quality Parameters of Cactus Juices. Eur. Food Res. Technol. 2003, 216, 303–311. [Google Scholar] [CrossRef]
- Constantin, O.E.; Stoica, F.; Lazăr (Mistrianu), S.; Andronoiu, D.G.; Turturică, M.; Stănciuc, N.; Rațu, R.N.; Croitoru, C.; Râpeanu, G. A Sustainable Approach: Repurposing Red Beetroot Peels for Innovative Meringue Products. Foods 2025, 14, 317. [Google Scholar] [CrossRef]
- Lazăr (Mistrianu), S.; Constantin, O.E.; Horincar, G.; Andronoiu, D.G.; Stănciuc, N.; Muresan, C.; Râpeanu, G. Beetroot By-Product as a Functional Ingredient for Obtaining Value-Added Mayonnaise. Processes 2022, 10, 227. [Google Scholar] [CrossRef]
- Roman, D.; Constantin, O.E.; Stănciuc, N.; Râpeanu, G. Bioactive Compounds and Antioxidant Activitity in Different Extracts of Sea Buckthorn. Ann. Univ. Dunarea Jos Galati Fascicle VI Food Technol. 2020, 44, 178–192. [Google Scholar] [CrossRef]
- Stoica, F.; Aprodu, I.; Enachi, E.; Stănciuc, N.; Condurache, N.N.; Duță, D.E.; Bahrim, G.E.; Râpeanu, G. Bioactive’s Characterization, Biological Activities, and In Silico Studies of Red Onion (Allium cepa L.) Skin Extracts. Plants 2021, 10, 2330. [Google Scholar] [CrossRef]
- Nistor, O.V.; Mocanu, G.D.; Andronoiu, D.G.; Barbu, V.V.; Ceclu, L. A Complex Characterization of Pumpkin and Quince Purees Obtained by a Combination of Freezing and Conventional Cooking. Foods 2022, 11, 2038. [Google Scholar] [CrossRef]
- Raikos, V.; McDonagh, A.; Ranawana, V.; Duthie, G. Processed Beetroot (Beta vulgaris L.) as a Natural Antioxidant in Mayonnaise: Effects on Physical Stability, Texture and Sensory Attributes. Food Sci. Hum. Wellness 2016, 5, 191–198. [Google Scholar] [CrossRef]
- Canadanović-Brunet Jasna, J.; Savatović, S.; Ćetković, G.; Vulić, J.J.; Djilas, S.M.; Markov, S.L.; Cvetković, D.D. Antioxidant and Antimicrobial Activities of Beet Root Pomace Extracts. Czech J. Food Sci. 2018, 29, 575–585. [Google Scholar] [CrossRef]
- Maqbool, H.; Safeena, M.P.; Abubacker, Z.; Azhar, M.; Kumar, S. Effect of Beetroot Peel Dip Treatment on the Quality Preservation of Deccan Mahseer (Tor khudree) Steaks during Frozen Storage (−18 °C). LWT 2021, 151, 112222. [Google Scholar] [CrossRef]
- Tarasevičienė, Ž.; Paulauskienė, A.; Černiauskienė, J.; Degimienė, A. Chemical Content and Color of Dried Organic Beetroot Powder Affected by Different Drying Methods. Horticulturae 2024, 10, 733. [Google Scholar] [CrossRef]
- Šeremet, D.; Durgo, K.; Jokić, S.; Huđek, A.; Vojvodić Cebin, A.; Mandura, A.; Jurasović, J.; Komes, D. Valorization of Banana and Red Beetroot Peels: Determination of Basic Macrocomponent Composition, Application of Novel Extraction Methodology and Assessment of Biological Activity In Vitro. Sustainability 2020, 12, 4539. [Google Scholar] [CrossRef]
- Shuaibu, B.S. Chemical Composition and Antioxidant Activities of Beetroot Peel. Afr. J. Eng. Environ. Res. 2021, 2, 61–73. [Google Scholar]
- Kavalcová, P.; Bystrická, J.; Tomáš, J.; Karovičová, J.; Kovarovič, J.; Lenková, M. The Content of Total Polyphenols and Antioxidant Activity in Red Beetroot. Potravin. Slovak J. Food Sci. 2015, 9, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Alshehry, G.A. Utilization of Beetroot As A Natural Antioxidant, Pigment and Antimicrobial in Cupcake During the Storage Period. Int. J. Eng. Res. Technol. 2019, 8, 652–659. [Google Scholar] [CrossRef]
- Khamphasan, P.; Lomthaisong, K.; Harakotr, B.; Ketthaisong, D.; Scott, M.P.; Lertrat, K.; Suriharn, B. Genotypic Variation in Anthocyanins, Phenolic Compounds, and Antioxidant Activity in Cob and Husk of Purple Field Corn. Agronomy 2018, 8, 271. [Google Scholar] [CrossRef]
- Kujala, T.S.; Vienola, M.S.; Klika, K.D.; Loponen, J.M.; Pihlaja, K. Betalain and Phenolic Compositions of Four Beetroot (Beta vulgaris) Cultivars. Eur. Food Res. Technol. 2002, 214, 505–510. [Google Scholar] [CrossRef]
- Rotich, V.; Wangila, P.; Cherutoi, J. Method Validation and Characterization of Red Pigment in Beta vulgaris Peels and Pomaces by HPLC-UV and UHPLC-MS/MS. J. Anal. Methods Chem. 2022, 2022, 2229500. [Google Scholar] [CrossRef]
- Prieto-Santiago, V.; Cavia, M.M.; Alonso-Torre, S.R.; Carrillo, C. Relationship between Color and Betalain Content in Different Thermally Treated Beetroot Products. J. Food Sci. Technol. 2020, 57, 3305–3313. [Google Scholar] [CrossRef]
- Ibrahim, M.A.; Koorbanally, N.A.; Islam, M.S. Antioxidative Activity and Inhibition of Key Enzymes Linked to Type-2 Diabetes (α-Glucosidase and α-Amylase) by Khaya Senegalensis. Acta Pharm. 2014, 64, 311–324. [Google Scholar] [CrossRef]
- Ojo, O.A.; Gyebi, G.A.; Ezenabor, E.H.; Iyobhebhe, M.; Emmanuel, D.A.; Adelowo, O.A.; Olujinmi, F.E.; Ogunwale, T.E.; Babatunde, D.E.; Ogunlakin, A.D.; et al. Exploring Beetroot (Beta vulgaris L.) for Diabetes Mellitus and Alzheimer’s Disease Dual Therapy: In Vitro and Computational Studies. RSC Adv. 2024, 14, 19362–19380. [Google Scholar] [CrossRef] [PubMed]
- Saeed, M.A.A.; Mohammed, A.A.; Bayasein, A.A.; Ba-saleh, A.H.; Babasil, B.A.; Badakhan, I.S.; AL-Amodi, A.S.; Alammari, A.S.; Abdullahi, A.J.; Blkhader, H.A.; et al. Phytochemical Screening, in Vitro α-Amylase and Pancreatic Lipase Inhibition Effects of Beta vulgaris Extracts. Yemeni J. Med. Sci. 2025, 19. [Google Scholar] [CrossRef]
- Saad, F.; Al-Shaikh, T.M.; Zouidi, F.; Taher, M.A.; Saidi, S.A.; Hamden, K. Betalain-Enriched Beetroots Exhibit Antiulcer and Anti-Inflammatory Potentials. J. Food Process. Preserv. 2023, 2023, 9522830. [Google Scholar] [CrossRef]
- Oboh, H.; Obayiuwana, O.; Aihie, E.; Iyayi, J.I.; Udoh, E.J. Beetroot (Beta vulgaris) Juice Inhibits Key Carbohydrate Metabolising Enzymes Associated With Type II Diabetes. Niger. J. Basic Appl. Sci. 2021, 28, 1–6. [Google Scholar] [CrossRef]
- Amnah, A.M.A. Nutritional, Sensory and Biological Study of Biscuits Fortified with Red Beet Roots. Life Sci. J. 2013, 10, 1579–1584. [Google Scholar]
- Dhadage, K.; Shinde, D.-G.; Gadhave, R. Development of the Functional Food i.e. Beetroot Fortified Multi Grain Snacks. Int. J. Sci. Res. (IJSR) 2015, 4, 469–473. [Google Scholar]
- Mitrevski, J.; Pantelić, N.Đ.; Dodevska, M.S.; Kojić, J.S.; Vulić, J.J.; Zlatanović, S.; Gorjanović, S.; Laličić-Petronijević, J.; Marjanović, S.; Antić, V.V. Effect of Beetroot Powder Incorporation on Functional Properties and Shelf Life of Biscuits. Foods 2023, 12, 322. [Google Scholar] [CrossRef] [PubMed]
- Kuzmanović Nedeljković, S.; Radan, M.; Ćujić Nikolić, N.; Mutavski, Z.; Krgović, N.; Marković, S.; Stević, T.; Živković, J.; Šavikin, K. Microencapsulated Bilberry and Chokeberry Leaf Extracts with Potential Health Benefits. Plants 2023, 12, 3979. [Google Scholar] [CrossRef]
- Ingle, M.; Ingle, M.P.; Thorat, S.S.; Nimbalkar, C.A.; Nawkar, R.R. Nutritional Evaluation of Cookies Enriched with Beetroot (Beta vulgaris L.) Powder. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1888–1896. [Google Scholar] [CrossRef]
- Weickert, M.O.; Pfeiffer, A.F. Impact of Dietary Fiber Consumption on Insulin Resistance and the Prevention of Type 2 Diabetes. J. Nutr. 2018, 148, 7–12. [Google Scholar] [CrossRef]
- Uthumporn, U.; Woo, W.L.; Tajul, A.Y.; Fazilah, A. Physico-Chemical and Nutritional Evaluation of Cookies with Different Levels of Eggplant Flour Substitution. CyTA J. Food 2015, 13, 220–226. [Google Scholar] [CrossRef]
- Aulia, F.; Sunarharum, W.B. Beetroot (Beta vulgaris L. Var. rubra L.) Flour Proportion and Oven Temperature Affect the Physicochemical Characteristics of Beetroot Cookies. IOP Conf. Ser. Earth Environ. Sci. 2020, 475, 012040. [Google Scholar] [CrossRef]
- Holovko, T.; Bordunova, O.; Natalia, B.; Vasylenko, O.; Nazarenko, Y.; Prymenko, V. Sponge Cake Enriched with Beetroot Powder and Chard Puree: Nutritional and Sensory Qualities. Food Sci. Technol. 2023, 17. [Google Scholar] [CrossRef]
- Vaitkevičienė, N.; Sapronaitė, A.; Kulaitienė, J. Evaluation of Proximate Composition, Mineral Elements and Bioactive Compounds in Skin and Flesh of Beetroot Grown in Lithuania. Agriculture 2022, 12, 1833. [Google Scholar] [CrossRef]
- Farhan, M.; Ahmad, Z.; Waseem, M.; Mehmood, T.; Javed, M.R.; Ali, M.; Manzoor, M.F.; Goksen, G. Assessment of Beetroot Powder as Nutritional, Antioxidant, and Sensory Evaluation in Candies. J. Agric. Food Res. 2024, 15, 101023. [Google Scholar] [CrossRef]
- Kaur, S.; Kaur, N.; Aggarwal, P.; Grover, K. Sensory Attributes, Bioactive Compounds, Antioxidant Activity and Color Values of Jam and Candy Developed from Beetroot (Beta vulgaris L.). J. Appl. Nat. Sci. 2022, 14, 459–468. [Google Scholar] [CrossRef]
- Ćujić Nikolić, N.; Žilić, S.; Simić, M.; Nikolić, V.; Živković, J.; Marković, S.; Šavikin, K. Microencapsulates of Blue Maize Polyphenolics as a Promising Ingredient in the Food and Pharmaceutical Industry: Characterization, Antioxidant Properties, and In Vitro-Simulated Digestion. Foods 2023, 12, 1870. [Google Scholar] [CrossRef]
Parameter | Beetroot Skin Powder Extract | |
---|---|---|
Total betalains, mg/g dw | 1.24 ± 0.04 | |
Total flavonoids, mg CE/g dw | 104.12 ± 0.84 | |
Total polyphenols, mg GAE/g dw | 212.14 ± 1.49 | |
Antioxidant activity, µM Trolox/g dw | DPPH | 33.42 ± 1.12 |
ABTS | 46.69 ± 0.31 | |
Inhibition, % | 93.32 ± 0.68 | |
L* | 36.90 ± 0.43 | |
a* | 30.99 ± 0.41 | |
b* | 5.11 ± 0.06 | |
Moisture, % | 8.05 ± 0.71 | |
Ash, % | 6.51 ± 0.48 | |
Fat, % | 0.59 ± 0.09 | |
Protein, % | 17.12 ± 0.74 | |
Carbohydrates, % of which Total dietary fiber, % | 67.73 ± 1.20 33.10 ± 1.22 | |
Calcium (Ca, mg/100 g) | 27.82 ± 0.81 | |
Phosphorus (P, mg/100 g) | 90.87 ± 1.02 | |
Potassium (K, mg/100 g) | 282.60 ± 1.12 | |
Magnesium (Mg, mg/100 g) | 26.31 ± 0.79 | |
Manganese (Mn, mg/100 g) | 0.46 ± 0.09 | |
Iron (Fe, mg/100 g) | 0.84 ± 0.52 | |
Copper (Cu, mg/100 g) | 0.06 ± 0.02 | |
Sodium (Na, mg/100 g) | 76.96 ± 0.99 | |
Zinc (Zn, mg/100 g) | 0.44 ± 0.22 |
Sample | IC50 (μg/mL) | |||
---|---|---|---|---|
α-Amylase | α-Glucosidase | Lipase | Lipoxygenase | |
Extract | 4.22 ± 0.40 a | 3.24 ± 0.27 a | 1.05 ± 0.23 b | 5.24 ± 0.59 a |
Acarbose | 2.69 ± 0.08 b | 1.78 ± 0.06 b | - | - |
Orlistat | - | - | 3.35 ± 0.24 a | - |
Quercetin | - | - | - | 2.40 ± 0.10 b |
Sample | Phytochemical | 0 Days | 7 Days | 14 Days | 21 Days | |
---|---|---|---|---|---|---|
H | Total betalain content (mg/100 g dw) | Nd * | Nd * | Nd * | Nd * | |
Total polyphenol content (mg GAE/100 g dw) | 32.95 ± 4.19 a | 30.00 ± 1.99 a | 26.76 ± 1.82 ab | 21.71 ± 1.20 b | ||
Antioxidant activity (µM Trolox/100 g dw) | DPPH | 2.68 ± 0.36 a | 2.67 ± 0.09 a | 2.28 ± 0.02 ab | 2.02 ± 0.05 b | |
ABTS | 3.86 ± 0.22 a | 3.12 ± 0.14 a | 3.10 ± 0.85 a | 2.99 ± 0.21 ab | ||
H1 | Total betalain content (mg/100 g dw) | 1.78 ± 0.08 a | 1.49 ± 0.03 b | 1.17 ± 0.06 c | 1.02 ± 0.09 c | |
Total polyphenol content (mg GAE/100 g dw) | 38.63 ± 1.26 a | 33.36 ± 1.81 b | 30.73 ±0.93 b | 25.46 ± 0.90 c | ||
Antioxidant activity (µM Trolox/100 g dw) | DPPH | 25.20 ± 0.81 a | 24.51 ± 0.78 a | 19.40 ±1.02 b | 16.21 ± 0.25 c | |
ABTS | 37.21 ± 0.36 a | 36.50 ± 1.02 a | 34.89 ± 1.01 b | 33.74 ± 0.63 b | ||
H2 | Total betalain content (mg/100 g dw) | 2.86 ± 0.03 a | 2.56 ± 0.04 b | 2.19 ± 0.16 c | 1.99 ± 0.06 c | |
Total polyphenol content (mg GAE/100 g dw) | 53.44 ± 1.33 a | 50.87 ± 0.62 a | 46.45± 1.67 b | 40.48 ± 0.76 c | ||
Antioxidant activity (µM Trolox/100 g dw) | DPPH | 54.94 ± 2.67 a | 50.55 ± 0.71 b | 46.42 ± 0.97 c | 41.47 ± 1.17 d | |
ABTS | 62.12 ± 1.2 a | 60.23 ± 0.52 a | 59.14 ± 0.63 b | 58.21 ± 1.14 b | ||
H3 | Total betalain content (mg/100 g dw) | 3.77 ± 0.09 a | 3.52 ± 0.09 b | 3.25 ± 0.11 c | 2.83 ± 0.08 d | |
Total polyphenol content (mg GAE/100 g dw) | 69.48 ± 2.88 a | 66.42 ± 1.82 ab | 61.55 ± 1.34 b | 53.65 ± 0.89 c | ||
Antioxidant activity (µM Trolox/100 g dw) | DPPH | 73.89 ± 3.65 a | 66.86 ± 1.59 b | 59.91 ± 2.37 c | 53.33 ± 1.92 d | |
ABTS | 81.06 ± 1.14 a | 78.14 ±0.63 a | 74.96 ± 0.85 b | 72.94 ± 1.20 c |
Physical-Chemical Characteristics | H | H1 | H2 | H3 |
---|---|---|---|---|
Proteins, g/100 g | 4.61 ± 0.12 a | 4.34 ± 0.11 b | 4.11 ± 0.07 c | 4.01 ± 0.09 c |
Lipids, g/100 g | 3.40 ± 0.17 a | 3.26 ± 0.15 b | 3.03 ± 0.14 c | 2.91 ± 0.12 d |
Carbohydrates, g/100 g | 88.06 ± 0.25 a | 87.89 ± 0.33 b | 87.80 ± 0.27 b | 87.47 ± 0.30 c |
Insoluble fibers, g/100 g | 0.00 ± 0.00 c | 1.10 ± 0.10 b | 1.76 ± 0.13 a | 1.64 ± 0.21 a |
Humidity, g/100 g | 3.51 ± 0.18 b | 3.55 ± 0.19 ab | 3.61 ± 0.24 a | 3.69 ± 0.28 a |
Ash, g/100 g | 0.42 ± 0.09 d | 0.96 ± 0.12 c | 1.45 ± 0.15 b | 1.92 ± 0.18 a |
Energetic value, %: Kcal/100 g kJ/100 g | 401.28 ± 0.25 a 1677.35 ± 0.25 a | 400.46 ± 0.22 a 1673.92 ± 0.22 a | 398.43 ± 0.19 b 1665.44 ± 0.19 b | 395.39 ± 0.17 c 1652.73 ± 0.17 c |
Sample | L* | a* | b* | Chroma | Hue Angle | ΔE |
---|---|---|---|---|---|---|
H | 104.79± 0.45 a | 7.08± 0.06 c | 5.57 ± 0.48 b | 9.01± 0.23 c | 0.67± 0.09 a | - |
H1 | 75.06 ± 0.35 b | 36.90 ± 2.59 b | 5.51 ± 1.16 b | 37.31± 0.65 b | 0.15± 0.03 b | 42.11± 0.23 c |
H2 | 53.11 ± 0.50 c | 42.50 ± 1.33 ab | 6.38± 0.90 ab | 42.98± 0.23 a | 0.16± 0.05 b | 62.66± 0.23 b |
H3 | 41.47 ± 1.10 d | 45.22 ± 3.57 a | 8.24 ± 1.03 a | 45.96± 0.23 a | 0.18± 0.06 b | 73.97± 0.23 a |
Parameter | H | H1 (2%) | H2 (4%) | H3 (6%) |
---|---|---|---|---|
Firmness, N | 0.54 ± 0.05 a | 0.56 ± 0.01 a | 1.06 ± 0.12 b | 1.51 ± 0.03 c |
Adhesion, mJ | 1.00 ± 0.03 a | 1.11 ± 0.18 a | 1.42 ± 0.02 a | 1.55 ± 0.03 a |
Cohesiveness | 0.57 ± 0.03 a | 0.45 ± 0.01 a | 0.43 ± 0.01 a | 0.38 ± 0.005 a |
Elasticity, mm | 3.65 ± 0.005 a | 3.23 ± 0.05 a | 2.32 ± 0.15 a | 1.28 ± 0.01 a |
Gumminess, N | 0.29 ± 0.005 a | 0.26 ± 0.04 a | 0.23 ± 0.02 a | 0.17 ± 0.05 a |
Chewability, mJ | 1.06 ± 0.06 a | 0.70 ± 0.02 ab | 0.52 ± 0.01 ab | 0.41 ± 0.01 c |
Parameters | H | H1 (2%) | H2 (4%) | H3(6%) |
---|---|---|---|---|
Calcium (Ca, mg/100 g) | 5.16 ± 0.07 d | 5.47 ± 0.11 c | 5.99 ± 0.15 b | 6.65 ± 0.28 a |
Phosphorus (P, mg/100 g) | 13.61 ± 0.15 c | 13.90 ± 0.19 c | 15.54 ± 0.26 b | 18.36 ± 0.35 a |
Potassium (K, mg/100 g) | 130.39 ± 1.03 d | 136.02 ± 0.89 c | 140.92 ± 0.95 b | 149.23 ± 1.12 a |
Magnesium (Mg, mg/100 g) | 8.11 ± 0.06 d | 8.97 ± 0.15 c | 9.68 ± 0.17 b | 10.09 ± 0.20 a |
Manganese (Mn, mg/100 g) | 0.01 ± 0.01 a | 0.01 ± 0.02 a | 0.02 ± 0.04 a | 0.02 ± 0.05 a |
Iron (Fe, mg/100 g) | 0.04 ± 0.02 b | 0.05 ± 0.14 ab | 0.07 ± 0.17 a | 0.09 ± 0.20 a |
Copper (Cu, mg/100 g) | 0.01 ± 0.01 a | 0.01 ± 0.02 a | 0.02 ± 0.03 a | 0.03 ± 0.03 a |
Sodium (Na, mg/100 g) | 125.31 ± 0.94 a | 122.38 ± 0.85 d | 123.97 ± 0.88 c | 124.98 ± 0.91 b |
Zinc (Zn, mg/100 g) | 0.02 ± 0.02 a | 0.03 ± 0.02 a | 0.04 ± 0.04 a | 0.05 ± 0.05 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Constantin, O.E.; Lazăr, S.; Stoica, F.; Rațu, R.N.; Andronoiu, D.G.; Stănciuc, N.; Banožić, M.; Ćujić Nikolić, N.; Mutavski, Z.; Râpeanu, G. Red Beetroot Skin Powder Addition as a Multifunctional Ingredient in Nougat. Antioxidants 2025, 14, 676. https://doi.org/10.3390/antiox14060676
Constantin OE, Lazăr S, Stoica F, Rațu RN, Andronoiu DG, Stănciuc N, Banožić M, Ćujić Nikolić N, Mutavski Z, Râpeanu G. Red Beetroot Skin Powder Addition as a Multifunctional Ingredient in Nougat. Antioxidants. 2025; 14(6):676. https://doi.org/10.3390/antiox14060676
Chicago/Turabian StyleConstantin, Oana Emilia, Silvia Lazăr (Mistrianu), Florina Stoica, Roxana Nicoleta Rațu, Doina Georgeta Andronoiu, Nicoleta Stănciuc, Marija Banožić, Nada Ćujić Nikolić, Zorana Mutavski, and Gabriela Râpeanu. 2025. "Red Beetroot Skin Powder Addition as a Multifunctional Ingredient in Nougat" Antioxidants 14, no. 6: 676. https://doi.org/10.3390/antiox14060676
APA StyleConstantin, O. E., Lazăr, S., Stoica, F., Rațu, R. N., Andronoiu, D. G., Stănciuc, N., Banožić, M., Ćujić Nikolić, N., Mutavski, Z., & Râpeanu, G. (2025). Red Beetroot Skin Powder Addition as a Multifunctional Ingredient in Nougat. Antioxidants, 14(6), 676. https://doi.org/10.3390/antiox14060676