Phytochemical Profiling of Processed Açaí Pulp (Euterpe oleracea) Through Mass Spectrometry and Its Protective Effects Against Oxidative Stress in Cardiomyocytes and Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Obtaining Industrially Processed Açaí Pulp Consumed in the Amazon/Brazil and Exported Worldwide
2.2. Phytohemical Analysis via Ultrafast Liquid Chromatography Coupled to Mass Spectrometry (LC–MS/MS)
2.3. DPPH-Free-Radical-Scavenging Activity
2.4. Determination of the ABTS-Free-Radical-Scavenging Ability
2.5. Ferrous-Ion-Chelating Assay
2.6. Chelating Activity of Copper Ions
2.7. Hydroxyl-Radical-Scavenging Activity
2.8. Superoxide-Radical-Scavenging Assay
2.9. Cell Culture and Animals
2.10. Cell Viability Assays
2.11. Evaluation of Indicators of Apoptosis Through Incubation with DAPI
2.12. Intracellular ROS Assay
2.13. Oxidative Stress Assay
2.14. Carbon-Tetrachloride-Induced Oxidative Damage (CCl4) Assay
2.14.1. Sample Collection and Processing for Biological Tests
2.14.2. Preparation of Liver Homogenate
2.14.3. Oxidative Stress Analysis
2.15. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fragopoulou, E.; Antonopulou, S. The French paradox three decades later: Role of inflammation and thrombosis. Clin. Chim. Acta 2020, 510, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Mazza, E.; Ferro, Y.; Pujia, R.; Mare, R.; Maurotti, S.; Montalcini, T.; Pujia, A. Mediterranean Diet in Healthy Aging. J. Nutr. Health Aging 2021, 25, 1076–1083. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. Molecules 2020, 25, 3809. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.K.; Alasalvar, C.; Shahidi, F. Superfruits: Phytochemicals, antioxidant efficacies, and health effects—A comprehensive review. Crit. Rev. Food. Sci. Nutr. 2019, 59, 1580–1604. [Google Scholar] [CrossRef]
- Laurindo, L.F.; Barbalho, S.B.; Araújo, A.C.; Guiguer, E.L.; Mondal, A.; Bachtel, G.; Bishayee, A. Açaí (Euterpe oleracea Mart.) in Health and Disease: A Critical Review. Nutrients 2023, 15, 989. [Google Scholar] [CrossRef]
- Guerra, J.F.; Magalhães, C.L.; Costa, D.C.; Silva, M.E.; Pedrosa, M.L. Dietary açai modulates ROS production by neutrophils and gene expression of liver antioxidant enzymes in rats. J. Clin. Biochem. Nutr. 2011, 49, 188–194. [Google Scholar] [CrossRef]
- de Freitas Carvalho, M.M.; Lage, N.N.; de Souza Paulino, A.H.; Pereira, R.R.; de Almeida, L.T.; da Silva, T.F.; de Brito Magalhães, C.L.; de Lima, W.G.; Silva, M.E.; Pedrosa, M.L.; et al. Effects of açai on oxidative stress, ER stress, and inflammation-related parameters in mice with high fat diet-fed induced NAFLD. Sci. Rep. 2019, 30, 8107. [Google Scholar] [CrossRef]
- Figueiredo, A.M.; Cardoso, A.C.; Pereira, B.L.B.; Silva, R.A.C.; Ripa, A.F.G.D.; Pinelli, T.F.B.; Oliveira, B.C.; Rafacho, B.P.M.; Ishikawa, L.L.W.; Azevedo, P.S.; et al. Açai supplementation (Euterpe oleracea Mart.) attenuates cardiac remodeling after myocardial infarction in rats through different mechanistic pathways. PLoS ONE 2022, 17, e0264854. [Google Scholar] [CrossRef]
- González de Peredo, A.V.; Vázquez-Espinosa, M.; Espada-Bellido, E.; Jiménez-Cantizano, A.; Ferreiro-González, M.; Amores-Arrocha, A.; Palma, M.; Barroso, G.C.; F. Barbero, G. Development of New Analytical Microwave-Assisted Extraction Methods for Bioactive Compounds from Myrtle (Myrtus communis L.). Molecules 2018, 23, 2992. [Google Scholar] [CrossRef]
- González de Peredo, A.V.; Vázquez-Espinosa, M.; Espada-Bellido, E.; Ferreiro-González, M.; Amores-Arrocha, A.; Palma, M.; Barbero, G.F.; Jiménez-Cantizano, A. Alternative ultrasound-assisted method for the extraction of the bioactive compounds present in Myrtle (Myrtus communis L.). Molecules 2019, 24, 882. [Google Scholar] [CrossRef]
- Aliaño-González, M.J.; Ferreiro-González, M.; Espada-Bellido, E.; Carrera, C.; Palma, M.; Álvarez, J.A.; Ayuso, J.; Barbero, G.F. Extraction of anthocyanins and total phenolic compounds from açai (Euterpe oleracea Mart.) with an experimental design methodology. Part 1: Pressurized liquid extraction. Agronomy 2020, 10, 183. [Google Scholar] [CrossRef]
- Aliaño-González, M.J.; Espada-Bellido, E.; Ferreiro-González, M.; Carrera, C.; Palma, M.; Ayuso, J.; Álvarez, J.Á.; Barbero, G.F. Extraction of anthocyanins and total phenolic compounds from Açai (Euterpe oleracea Mart.) with an experimental design methodology. Part 2: Ultrasound-assisted extraction. Agronomy 2020, 10, 326. [Google Scholar] [CrossRef]
- Aliaño-González, M.J.; Ferreiro-González, M.; Espada-Bellido, E.; Carrera, C.; Palma, M.; Ayuso, J.; Barbero, G.F.; Álvarez, J.Á. Extraction of anthocyanins and total phenolic compounds from Açai (Euterpe oleracea Mart.) with an experimental design methodology. Part 3: Microwave-assisted extraction. Agronomy 2020, 10, 179. [Google Scholar] [CrossRef]
- Matta, F.V.; Xiong, J.; Lila, M.A.; Ward, N.I.; Felipe-Sotelo, M.; Esposito, D. Chemical Composition and Bioactive Properties of Commercial and Non-Commercial Purple and White Açaí Berries. Foods 2020, 9, 1481. [Google Scholar] [CrossRef]
- Salehi, B.; Sharifi-Rad, J.; Cappellin, F.; Reiner, Z.; Zorzan, D.; Imran, M.; Sener, B.; Kilic, M.; El-Shazly, M.; Fahmy, N.M.; et al. Therapeutic potential of anthocyanins: Current approaches are based on their molecular mechanisms of action. Front. Pharmacol. 2020, 11, 1300. [Google Scholar] [CrossRef]
- Tumilaar, S.G.; Hardianto, A.; Dohi, H.; Kurnia, D. A Comprehensive Review of Free Radicals, Oxidative Stress, and Antioxidants: Overview, Clinical Applications, Global Perspectives, Future Directions, and Mechanisms of Antioxidant Activity of Flavonoid Compounds. J. Chem. 2024, 594386. [Google Scholar] [CrossRef]
- Krishnamurthy, H.K.; Pereira, M.; Rajavelu, I.; Jayaraman, V.; Krishna, K.; Wang, T.; Bei, K.; Rajasekaran, J.J. Oxidative stress: Fundamentals and advances in quantification techniques. Front. Chem. 2024, 12, 1470458. [Google Scholar] [CrossRef]
- Dubois-Deruy, E.; Peugnet, V.; Turkieh, A.; Pinet, F. Oxidative stress in cardiovascular diseases. Antioxidants 2020, 9, 864. [Google Scholar] [CrossRef]
- Ou, J.; Tao, H.; Bao, Q.; Dai, Y.; Wang, Q.; Chen, Q.; Feng, Y. Investigating oxidative stress associated with myocardial fibrosis by high-fidelity visualization and accurate evaluation of mitochondrial GSH levels. Anal. Chem. 2024, 96, 4232–4241. [Google Scholar] [CrossRef]
- Zou, F.; Levine, H.; Mohanty, S.; Natale, A.; Di Biase, L. Atrial fibrillation-induced cardiomyopathy. Card. Electrophysiol. Clin. 2025, 17, 13–18. [Google Scholar] [CrossRef]
- Chen, G.; An, N.; Shen, J.; Chen, H.; Chen, Y.; Sun, J.; Hu, Z.; Qiu, J.; Jin, C.; He, S.; et al. Fibroblast growth factor 18 alleviates stress-induced pathological cardiac hypertrophy in male mice. Nat. Commun. 2023, 14, 1235. [Google Scholar] [CrossRef] [PubMed]
- Tokuyama, T.; Yanagi, S. Role of mitochondrial dynamics in heart diseases. Genes 2023, 14, 1876. [Google Scholar] [CrossRef] [PubMed]
- Wróbel-Nowicka, K.; Wojciechowska, C.; Jacheć, W.; Zalewska, M.; Romuk, E. Role of oxidative stress and inflammatory parameters in Heart Failure. Medicina 2024, 60, 760. [Google Scholar] [CrossRef]
- Chawla, V.; Singh, N.; Singh, S.B. Association Between Oxidative Stress and the Progression of Heart Failure: A Systematic Review. Cureus 2024, 16, e55313. [Google Scholar] [CrossRef]
- Yan, Q.; Liu, S.; Sun, Y.; Chen, C.; Yang, S.; Lin, M.; Long, J.; Yao, J.; Lin, Y.; Yi, F.; et al. Targeting oxidative stress as a preventive and therapeutic approach for cardiovascular disease. J. Transl. Med. 2023, 21, 519. [Google Scholar] [CrossRef]
- Netala, V.R.; Teertam, S.K.; Li, H.; Zhang, Z. A Comprehensive Review of Cardiovascular Disease Management: Cardiac Biomarkers, Imaging Modalities, Pharmacotherapy, Surgical Interventions, and Herbal Remedies. Cells 2024, 13, 1471. [Google Scholar] [CrossRef]
- Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014, 24, 53–62. [Google Scholar] [CrossRef]
- Oliveira, A.R.; Ribeiro, A.E.; Oliveira, E.R.; Garcia, M.C.; Soares-Júnior, M.S.; Calliari, M. Structural and physicochemical properties of freeze-dried açaí pulp (Euterpe oleracea Mart.). Food Sci. Technol. 2020, 40, 282–289. [Google Scholar] [CrossRef]
- Luz, J.R.D.d.; Barbosa, E.A.; Nascimento, T.E.S.D.; Rezende, A.A.; Ururahy, M.A.G.; Brito, A.D.S.; Araujo-Silva, G.; López, J.A.; Almeida, M.D.G. Chemical Characterization of Flowers and Leaf Extracts Obtained from Turnera subulata and Their Immunomodulatory Effect on LPS-Activated RAW 264.7 Macrophages. Molecules 2022, 27, 1084. [Google Scholar] [CrossRef]
- Senes-Lopes, T.F.; Luz, J.R.D.D.; Guterres, Z.D.R.; Barbosa, E.A.; Batista, D.; Galdino, O.A.; Ururahy, M.A.G.; Santos, E.C.G.; López, J.A.; Araujo-Silva, G.; et al. Pseudobombax parvifolium hydroalcoholic bark extract: Chemical characterization and cytotoxic, mutagenic, and preclinical aspects associated with a protective effect against oxidative stress. Metabolites 2023, 13, 748. [Google Scholar] [CrossRef]
- Luz, J.R.D.d.; López, J.A.; Ferreira, M.P.; de Sousa, R.M.; Silva, S.V.e.; Almeida, M.d.G.; Araujo-Silva, G. In vitro antithrombotic, antitumor, and antiangiogenic activities of green tea polyphenols and their Main Constituent Epigallocatechin-3-gallate. Processes 2023, 11, 76. [Google Scholar] [CrossRef]
- Silva, S.V.e.; Gallia, M.C.; Luz, J.R.D.d.; Rezende, A.A.d.; Bongiovanni, G.A.; Araujo-Silva, G.; Almeida, M.d.G. Antioxidant effect of coenzyme Q10 in the prevention of oxidative stress in arsenic-treated CHO-K1 cells and possible participation of zinc as a pro-oxidant agent. Nutrients 2022, 14, 3265. [Google Scholar] [CrossRef] [PubMed]
- Batista, D.; Luz, J.R.D.D.; Nascimento, T.E.S.D.; Senes-Lopes, T.F.; Galdino, O.A.; Silva, S.V.E.; Ferreira, M.P.; Azevedo, M.A.S.; Brandão-Neto, J.; Araujo-Silva, G.; et al. Licania rigida leaf extract: Protective effect on oxidative stress, associated with cytotoxic, mutagenic, and preclinical aspects. J. Toxicol. Environ. Health A 2022, 85, 276–290. [Google Scholar] [CrossRef]
- Yagi, K. Simple fluorometric assay for lipoperoxides in blood plasma. Biochem. Med. 1976, 15, 212–216. [Google Scholar] [CrossRef]
- Beutler, E. Reduced Glutathione (GSH). In Red Blood Cell Metabolism: A Manual of Biochemical Methods; Bergmeyen, H.V., Ed.; Grune and Stratton: New York, NY, USA, 1975; pp. 112–114. [Google Scholar]
- Beutler, E.; Duron, O.; Kelly, B.M. Improved method for the determination of blood glutathione. J. Lab. Clin. Med. 1963, 61, 882–888. [Google Scholar]
- Vaduganathan, M.; Mensah, G.A.; Turco, J.V.; Fuster, V.; Roth, G.A. Global Burden of Cardiovascular Diseases and Risk: A Compass for Future Health. J. Am. Coll. Cardiol. 2022, 80, 2361–2371. [Google Scholar] [CrossRef]
- Senoner, T.; Dichtl, W. Oxidative stress in cardiovascular diseases: Still a therapeutic target. Nutrients 2019, 11, 2090. [Google Scholar] [CrossRef]
- Kappagoda, C.T.; Amsterdam, E.A.; Wenger, N.K. Drugs in the primary and secondary prevention of coronary artery disease. In PanVascular Medicine; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–32. [Google Scholar]
- Jeemon, P.; Gupta, R.; Onen, C.; Adler, A.; Gaziano, T.A.; Dorairaj Prabhakaran, D.; Poulter, N. Management of hypertension and dyslipidemia for primary prevention of cardiovascular disease. In Cardiovascular, Respiratory, and Related Disorders, 3rd ed.; Prabhakaran, D., Anand, S., Gaziano, T.A., Eds.; The International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA, 2017; Chapter 22. [Google Scholar]
- Naderi, S.H.; Bestwick, J.P.; Wald, D.S. Adherence to drugs that prevent cardiovascular disease: Meta-analysis on 376,162 patients. Am. J. Med. 2012, 125, 882–887.e1. [Google Scholar] [CrossRef]
- Kim, J.; Kang, D.; Park, H.; Park, T.K.; Lee, J.M.; Yang, J.H.; Song, Y.B.; Choi, J.H.; Choi, S.H.; Gwon, H.C.; et al. Angiotensin receptor blockers versus angiotensin converting enzyme inhibitors in acute myocardial infarction without heart failure. Am. J. Med. 2024, 137, 1088–1096. [Google Scholar] [CrossRef]
- Harrison, A.; Rayamajhi, S.; Shaker, F.; Thais, S.; Moreno, M.; Hosseini, K. Comparative effectiveness of calcium-channel blockers, angiotensin-converting enzyme/angiotensin receptor blockers and diuretics on cardiovascular event likelihood in hypertensive African-American and non-Hispanic Caucasians: A retrospective study across HCA healthcare. Clin. Cardiol. 2025, 48, e70075. [Google Scholar]
- Diab, A.; Dastmalchi, L.N.; Gulati, M.; Michos, E.D. A healthy diet for cardiovascular disease prevention: Where are we now? Vasc. Health. Risk. Manag. 2023, 19, 237–253. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, I.; Wilairatana, P.; Saqib, F.; Nasir, B.; Wahid, M.; Latif, M.F.; Iqbal, A.; Naz, R.; Mubarak, M.S. Plant Polyphenols and Their Potential Benefits on Cardiovascular Health: A Review. Molecules 2023, 28, 6403. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Wang, H.; Fan, W.; Lv, J.; Niu, Q.; Zhu, R.; Zhang, Q. Effects of polyphenol-rich seed foods on lipid and inflammatory markers in patients with coronary heart disease: A systematic review. Front. Nutr. 2024, 11, 1493410. [Google Scholar] [CrossRef]
- Mazur, M.; Przytuła, A.; Szymańska, M.; Popiołek-Kalisz, J. Dietary strategies for cardiovascular disease risk factors prevention. Curr. Probl. Cardiol. 2024, 49, 102746. [Google Scholar] [CrossRef]
- Da Silva, I.O.; Crespo-Lopez, M.E.; Augusto-Oliveira, M.; Arrifano, G.d.P.; Ramos-Nunes, N.R.; Gomes, E.B.; da Silva, F.R.P.; de Sousa, A.A.; Leal, A.L.A.B.; Damasceno, H.C.; et al. What We Know about the Euterpe Genus and Neuroprotection: A Scoping Review. Nutrients 2023, 15, 3189. [Google Scholar] [CrossRef]
- Amorim, I.S.; Amorim, D.S.; Godoy, H.T.; Mariutti, L.R.B.; Chisté, R.C.; da Silva, R.P.; Bogusz, S.J.; Chim, J.F. Amazonian palm tree fruits: From nutritional value to diversity of new food products. Heliyon 2024, 10, e24054. [Google Scholar] [CrossRef]
- Ren, R.; Hashimoto, T.; Mizuno, M.; Takigawa, H.; Yoshida, M.; Azuma, T.; Kanazawa, K. The lipid peroxidation product, 9-oxononanoic acid, induces phospholipase A2 activity and thromboxane A2 production in human blood. J. Clin. Biochem. Nutr. 2013, 52, 228–233. [Google Scholar] [CrossRef]
- Kim, M.J.; Wang, H.S.; Lee, M.W. Anti-inflammatory effects of fermented bark of Acanthopanax sessiliflorus and Its Isolated Compounds on Lipopolysaccharide-Treated RAW 264.7 Macrophage Cells. Evid. Based. Complement. Alternat. Med. 2020, 2020, 6749425. [Google Scholar] [CrossRef]
- Hong, E.Y.; Kim, T.Y.; Hong, G.U.; Kang, H.; Lee, J.Y.; Park, J.Y.; Kim, S.C.; Kim, Y.H.; Chung, M.H.; Kwon, Y.I.; et al. Inhibitory effects of roseoside and icariside E4 isolated from a natural product mixture (No-AP) on the Expression of Angiotensin II Receptor 1 and Oxidative Stress in Angiotensin II-Stimulated H9C2 Cells. Molecules 2019, 24, 414. [Google Scholar] [CrossRef]
- Parveen, S.; Maurya, N.; Meena, A.; Luqman, S. Cinchonine: A Versatile Pharmacological Agent Derived from Natural Cinchona Alkaloids. Curr. Top. Med. Chem. 2024, 24, 343–363. [Google Scholar] [CrossRef]
- Feng, X.; Shang, J.; Gu, Z.; Gong, J.; Chen, Y.; Liu, Y. Azelaic Acid: Mechanisms of Action and Clinical Applications. Clin. Cosmet. Investig. Dermatol. 2024, 17, 2359–2371. [Google Scholar] [CrossRef] [PubMed]
- Mulabagal, V.; Calderón, A.I. Liquid chromatography/mass spectrometry-based fingerprinting analysis and mass profiling of Euterpe oleracea (açaí) dietary supplement raw materials. Food Chem. 2012, 134, 1156–1164. [Google Scholar] [CrossRef] [PubMed]
- Heck, K.L.; Yi, Y.; Thornton, D.; Zheng, J.; Calderón, A.I. A comparative metabolomics analysis of Açaí (Euterpe oleracea Mart.) Fruits, food powders, and botanical dietary supplements. Phytochem. Anal. 2025, 36, 394–408. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, W.; Soladoye, O.P. Towards innovative food processing of flavonoid compounds: Insights into stability and bioactivity. LWT 2021, 150, 111968. [Google Scholar] [CrossRef]
- Silva, A.P.S.; Camargo, A.C.; Lazarini, J.G.; Franchin, M.; Sardi, J.C.O.; Rosalen, P.L.; Alencar, S.M. Phenolic Profile and the Antioxidant, Anti-Inflammatory, and Antimicrobial Properties of Açaí (Euterpe oleracea) Meal: A Prospective Study. Foods 2022, 12, 86. [Google Scholar] [CrossRef]
- Costa, D.S.; Bragotto, A.P.A.; Carvalho, L.M.; Amado, L.L.; Lima, R.R.; Rogez, H. Analysis of polyphenols, anthocyanins and toxic elements in Açaí Juice (Euterpe oleracea Mart.): Quantification and in vivo assessment of the antioxidant capacity of clarified Açaí juice. Meas. Food 2024, 14, 100149. [Google Scholar] [CrossRef]
- Juan, C.A.; Pérez de la Lastra, J.M.; Plou, F.J.; Pérez-Lebeña, E. The Chemistry of Reactive Oxygen Species (ROS) has revealed their role in biological macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef]
- Palacin-Martinez, C.; Anel-Lopez, L.; Alvarez, M.; Neila-Montero, M.; Montes-Garrido, R.; Soriano-Úbeda, C.; de Paz, P.; Anel, L.; Riesco, M.F. The characterization of CellROX™ probes could be a crucial factor in ram sperm quality assessment. Front. Vet. Sci. 2024, 11, 1342808. [Google Scholar] [CrossRef]
- Currie, T.L.; Engler, M.M.; Olsen, C.H.; Krauthamer, V.; Scott, J.M.; Deuster, P.A.; Flagg, T.P. Effects of Berry Extracts on Oxidative Stress in Cultured Cardiomyocytes and Microglial Cells: A Potential Cardioprotective and Neuroprotective Mechanism. Molecules 2022, 27, 2789. [Google Scholar] [CrossRef]
- Quintieri, A.M.; Baldino, N.; Filice, E.; Seta, L.; Vitetti, A.; Tota, B.; De Cindio, B.; Cerra, M.C.; Angelone, T. Malvidin, a red wine polyphenol, modulates mammalian myocardial and coronary performance and protects the heart against ischemia/reperfusion injury. J. Nutr. Biochem. 2013, 24, 1221–1231. [Google Scholar] [CrossRef]
- Louis, X.L.; Thandapilly, S.J.; Kalt, W.; Vinqvist-Tymchuk, M.; Aloud, B.M.; Raj, P.; Yu, L.; Le, H.; Netticadan, T. Blueberry polyphenols prevent cardiomyocyte death by preventing calpain activation and oxidative stress. Food Funct. 2014, 5, 1785–1794. [Google Scholar] [CrossRef] [PubMed]
- Mattera, R.; Benvenuto, M.; Giganti, M.G.; Tresoldi, I.; Pluchinotta, F.R.; Bergante, S.; Tettamanti, G.; Masuelli, L.; Manzari, V.; Modesti, A.; et al. Effects of Polyphenols on Oxidative Stress-Mediated Injury in Cardiomyocytes. Nutrients 2017, 9, 523. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, E.B.; Soares, E.D.R.; Trindade, P.L.; de Bem, G.F.; Resende, A.C.; Passos, M.M.C.D.F.; Soulage, C.O.; Daleprane, J.B. Uremic toxin-induced inflammation and oxidative stress in human endothelial cells: Protective effect of polyphenol-rich extract from açaí. Exp. Physiol. 2020, 105, 542–551. [Google Scholar] [CrossRef]
- Vilhena, J.C.; Cunha, L.L.M.; Jorge, T.M.; Machado, M.L.; Soares, R.A.; Santos, I.B.; Bem, G.F.; Fernandes-Santos, C.; Ognibene, D.T.; Moura, R.S.; et al. Açaí Reverses Adverse Cardiovascular Remodeling in Renovascular Hypertension: A Comparative Effect with Enalapril. J. Cardiovasc. Pharmacol. 2021, 77, 673–684. [Google Scholar] [CrossRef]
- Mitra, S.; Tareq, A.M.; Das, R.; Emran, T.B.; Nainu, F.; Chakraborty, A.J.; Simal-Gandara, J. Polyphenols: A first evidence in the synergism and bioactivity. Food Rev. Int. 2022, 39, 4419–4441. [Google Scholar] [CrossRef]
- Sheweita, S.A.; El-Gabar, M.A.; Bastawy, M. Carbon tetrachloride changes the activity of cytochrome P450 system in the liver of male rats: Role of antioxidants. Toxicology 2001, 169, 83–92. [Google Scholar] [CrossRef]
- Unsal, V.; Cicek, M.; Sabancilar, İ. Toxicity of carbon tetrachloride, free radicals and role of antioxidants. Rev. Environ. Health 2021, 36, 279–295. [Google Scholar] [CrossRef]
- Szymonik-Lesiuk, S.; Czechowska, G.; Stryjecka-Zimmer, M.; Słomka, M.; Madro, A.; Celiński, K.; Wielosz, M. Catalase, superoxide dismutase, and glutathione peroxidase activities in various rat tissues after carbon tetrachloride toxicity. J. Hepatobiliary Pancreat. Surg. 2003, 10, 309–315. [Google Scholar] [CrossRef]
- Afzal, S.; Manap, A.S.A.; Attiq, A.; Albokhadaim, I.; Kandeel, M.; Alhojaily, S.M. From imbalance to impairment: The central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration. Front. Pharmacol. 2023, 14, 1269581. [Google Scholar] [CrossRef]
- Popović, D.; Kocić, G.; Katić, V.; Zarubica, A.; Janković Veličković, L.; Ničković, V.P.; Jović, A.; Veljković, A.; Petrović, V.; Rakić, V.; et al. Anthocyanins Protect Hepatocytes against CCl4-Induced Acute Liver Injury in Rats by Inhibiting Pro-inflammatory mediators, Polyamine Catabolism, Lipocalin-2, and Excessive Proliferation of Kupffer Cells. Antioxidants 2019, 8, 451. [Google Scholar] [CrossRef]
- Machado, F.S.; Marinho, J.P.; Abujamra, A.L.; Dani, C.; Quincozes-Santos, A.; Funchal, C. Carbon tetrachloride increases the pro-inflammatory cytokine levels in different brain areas of Wistar rats: The protective effect of Acai frozen pulp. Neurochem. Res. 2015, 40, 1976–1983. [Google Scholar] [CrossRef]
- Machado, F.S.; Kuo, J.; Wohlenberg, M.F.; Frusciante, M.R.; Freitas, M.; Oliveira, A.S.; Andrade, R.B.; Wannmacher, C.M.; Dani, C.; Funchal, C. Subchronic treatment with Aci-frozen pulp prevents oxidative brain damage in rats with acute liver failure. Metab. Brain. Dis. 2016, 31, 1427–1434. [Google Scholar] [CrossRef]
Phytocomponents Matched with GNPS Data Base | Cosine | MassDiff | RT (min) | Molecular Formula | SpecMz | Adduct | Classification |
---|---|---|---|---|---|---|---|
N,N,N-trimethyl-L-alanine-L-proline-betaine | 0.92 | 0.0000 | 1.0 | C11H20N2O3 | 229.1550 | M + H | Amino acid derivative |
Methylthioadenosine sulfoxide | 0.87 | 0.0010 | 1.0 | C11H15N5O4S | 314.0910 | M + H | Nucleotide derivative |
Tyrosine | 0.90 | 0.0000 | 1.0 | C9H11NO3 | 182.0810 | M + H | Amino acid |
Citric Acid | 0.84 | 0.0000 | 0.9 | C6H8O7 | 191.0186 | M − H | Food preservative |
4-(3,4-Dihydroxyphenyl)-5-(beta-D-glucopyranosyloxy)-7-hydroxy-2H-1-benzopyran-2-one | 0.82 | 0.0010 | 3.6 | C21H20O11 | 449.1090 | [M + H]+ | Coumarins |
Roseoside | 0.84 | 0.0020 | 4.4 | C19H30O8 | 387.2010 | M + H | Apocarotenoids |
Isoorientin | 0.91 | 0.0070 | 4.5 | C21H20O11 | 447.0930 | M − H | Flavonoids |
Dihydrokaempferol | 0.93 | 0.0000 | 4.9 | C15H12O6 | 289.0710 | M + H | Flavonoids |
Vitexin-2″-O-rhamnoside | 0.84 | 0.0050 | 5.0 | C27H30O14 | 579.1720 | M + H | Flavonoids |
Apigenin-8-C-glucoside | 0.86 | 0.0000 | 5.0 | C21H20O10 | 431.0980 | M − H | Flavonoids |
9-(2,3-dihydroxypropoxy)-9-oxononanoic acid | 0.92 | 0.0000 | 5.5 | C12H22O6 | 261.1340 | [M − H]− | Fatty acids and conjugates |
Acanthoside B | 0.82 | 0.0010 | 5.6 | C28H36O13 | 598.2510 | M + NH4 | Lignans |
Malvidin 3-O-galactoside | 0.96 | 0.0010 | 5.8 | C23H25O12 | 493.1350 | Cat | Flavonoids |
Peonidin 3-O-galactoside | 0.96 | 0.0010 | 5.8 | C22H23O11 | 463.1250 | Cat | Flavonoids |
Nonanedioate | 0.97 | 0.0000 | 5.8 | C9H14O4-2 | 187.0980 | [M − H]− | Fatty acids and conjugates |
Cinchonine | 0.81 | 0.0110 | 13.5 | C19H22N2O | 293.1770 | [M − H]− | Tryptophan alkaloids |
(E)-N-(4-acetamidobutyl)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enamide | 0.93 | 0.0553 | 14.0 | C16H22N2O4 | 635.3600 | [2M + Na]+ | Ornithine alkaloids |
Biochemical Parameters | Control (Corn Oil) | CCl4 (in Corn Oil) | CCl4 + APEA (7 Days) | CCl4 + C3G (7 Days) | CCl4 + C3R (7 Days) | CCl4 + APEA (21 Days) | CCl4 + C3G (21 Days) | CCl4 + C3R (21 Days) |
---|---|---|---|---|---|---|---|---|
ALT (U/L) | 158.0 ± 2.1 | 621.5 ± 32.7 * | 186.9 ± 3.33 * | 185.7 ± 7.08 * | 195.2 ± 9.54 * | 196.6 ± 8.01 *(**) | 295.8 ± 6.98 * | 293 ± 6.01 * |
AST (U/L) | 215.0 ± 2.3 | 764.3 ± 31.7 * | 210.2 ± 9.39 * | 210.7 ± 8.98 * | 200.9 ± 13.3 * | 200.3 ± 5.35 *(**) | 302.9 ± 8.54 * | 300 ± 8.79 * |
γ-GT (U/L) | 0.20 ± 0.12 | 14.9 ± 1.05 * | 0.10 ± 0.01 * | 0.27 ± 1.01 * | 0.29 ± 0.32 * | 0.13 ± 0.01 *(**) | 0.82 ± 0.06 * | 0.72 ± 0.12 * |
ALP (U/L) | 110.2 ± 1.2 | 299.5 ± 2.6 * | 100.4 ± 1.25 * | 100.5 ± 1.24 * | 115 ± 1.15 * | 109 ± 0.01 *(**) | 165 ± 1.02 * | 161 ± 1.43 * |
DB (mg/dL) | 0.30 ± 0.01 | 1.9 ± 0.2 * | 0.38 ± 0.01 * | 0.30 ± 0.05 * | 0.43 ± 0.05 * | 0.44 ± 0.01 * | 0.40 ± 0.05 * | 0.38 ± 0.12 * |
Urea (mg/dL) | 46.2 ± 1.71 | 92.9 ± 1.54 * | 45.7 ± 2.81 * | 40.5 ± 4.02 * | 45.2 ± 5.21 * | 44.8 ± 5.41 *(**) | 64.7 ± 3.81 * | 60.2 ± 1.62 * |
Creatinine (mg/dL) | 3.70 ± 0.64 | 8.2 ± 0.70 * | 3.2 ± 0.13 * | 3.1 ± 0.01 * | 3.1 ± 0.41 * | 3.1 ± 0.01 *(**) | 5.1 ± 0.05 * | 5.1 ± 0.05 * |
Oxidative Stress Parameters | TBARS/MDA (μmol/L) | GSH (μmol/L) | CAT (IU/mg Protein) | GPx (IU/mg Protein) | SOD (IU/mg Protein) |
---|---|---|---|---|---|
Control (corn oil) | 30.4 ± 3.1 * | 7.5 ± 0.27 * | 104.6 ± 1.8 * | 18.8 ± 0.5 * | 84.3 ± 3.7 * |
CCl4 (in corn oil) | 87.3 ± 1.3 | 3.4 ± 0.07 * | 73.2 ± 1.3 * | 4.1 ± 0.3 * | 11.3 ± 0.5 * |
CCl4 + APEA (7 days) | 40.4 ± 0.12 *(**) | 6.2 ± 0.05 *(**) | 99.1 ± 0.01 *(**) | 38.2 ± 2.51 * | 88.19 ± 1.32 * |
CCl4 + C3G (7 days) | 57.2 ± 1.2 * | 4.65 ± 0.6 * | 79.4 ± 1.25 * | 37.5 ± 1.64* | 81.5 ± 1.15 * |
CCl4 + C3R (7 days) | 58.3 ± 0.01 * | 4.97 ± 0.2 * | 80.3 ± 0.01 * | 38.3 ± 0.05* | 84.43 ± 0.05 * |
CCl4 + APEA (21 days) | 36.2 ± 1.35 *(**) | 7.9 ± 0.04 *(**) | 105.7 ± 1.21 *(**) | 35.5 ± 0.02* | 145.2 ± 3.11 *(**) |
CCl4 + C3G (21 days) | 50.8 ± 2.64 * | 4.9 ± 0.2 * | 77.2 ± 0.14 * | 38.1 ± 0.01* | 84.1 ± 1.41 * |
CCl4 + C3R (21 days) | 53.7 ± 1.64 * | 5.3 ± 0.7 * | 78.2 ± 0.33 * | 39.1 ± 0.01* | 88.1 ± 0.91 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luz, J.R.D.d.; Barbosa, E.A.; Sousa, R.M.d.; Oliveira, M.L.d.A.; Silva Dias, M.F.; Alves, I.R.; de Souza, G.C.; Ferreira, E.F.B.; Guzmán-Pincheira, C.; Almeida, M.d.G.; et al. Phytochemical Profiling of Processed Açaí Pulp (Euterpe oleracea) Through Mass Spectrometry and Its Protective Effects Against Oxidative Stress in Cardiomyocytes and Rats. Antioxidants 2025, 14, 642. https://doi.org/10.3390/antiox14060642
Luz JRDd, Barbosa EA, Sousa RMd, Oliveira MLdA, Silva Dias MF, Alves IR, de Souza GC, Ferreira EFB, Guzmán-Pincheira C, Almeida MdG, et al. Phytochemical Profiling of Processed Açaí Pulp (Euterpe oleracea) Through Mass Spectrometry and Its Protective Effects Against Oxidative Stress in Cardiomyocytes and Rats. Antioxidants. 2025; 14(6):642. https://doi.org/10.3390/antiox14060642
Chicago/Turabian StyleLuz, Jefferson Romáryo Duarte da, Eder Alves Barbosa, Rubiamara Mauricio de Sousa, Maria Lúcia de Azevedo Oliveira, Marcela Fabiani Silva Dias, Ingrid Reale Alves, Gisele Custódio de Souza, Elenilze Figueiredo Batista Ferreira, Carla Guzmán-Pincheira, Maria das Graças Almeida, and et al. 2025. "Phytochemical Profiling of Processed Açaí Pulp (Euterpe oleracea) Through Mass Spectrometry and Its Protective Effects Against Oxidative Stress in Cardiomyocytes and Rats" Antioxidants 14, no. 6: 642. https://doi.org/10.3390/antiox14060642
APA StyleLuz, J. R. D. d., Barbosa, E. A., Sousa, R. M. d., Oliveira, M. L. d. A., Silva Dias, M. F., Alves, I. R., de Souza, G. C., Ferreira, E. F. B., Guzmán-Pincheira, C., Almeida, M. d. G., & Araujo-Silva, G. (2025). Phytochemical Profiling of Processed Açaí Pulp (Euterpe oleracea) Through Mass Spectrometry and Its Protective Effects Against Oxidative Stress in Cardiomyocytes and Rats. Antioxidants, 14(6), 642. https://doi.org/10.3390/antiox14060642