The Potential Role of Oxidative Stress in Modulating Airway Defensive Reflexes
Abstract
:1. Introduction
2. Neuronal Mechanisms Underlying Respiration and Airway Protective Reflexes
3. Functional Characteristics of Upper Airway Muscles Involved in Airway Reflexes
4. The Role of Oxidative Stress in the Development and Deterioration of Airway Reflexes
5. Possible Contributions of Antioxidants to Maintenance of Upper Airway Defensive Reflexes
6. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AEN | anterior ethmoidal nerve |
ALS | amyotrophic lateral sclerosis |
BötC | Bötzinger complex |
CNS | central nervous system |
COPD | chronic obstructive pulmonary disease |
CPG | central pattern generator |
cVRG | caudal ventral respiratory group |
DSG | dorsal swallowing group |
E-AUG | augmenting expiratory neuron |
E-DEC | decrementing expiratory neuron |
E-M | expiratory motoneuron |
GPN | glossopharyngeal nerve |
H2S | hydrogen sulfide |
I-AUG | augmenting inspiratory neuron |
I-DEC | decrementing inspiratory neuron |
I-E | Inspiratory–expiratory neuron |
I-M | inspiratory motoneuron |
MN | cranial motoneuron |
NaHS | sodium hydrosulfide |
NO | nitric oxide |
NTS | nucleus tractus solitarius |
PBN/KF | parabrachial/Kölliker–Fuse nuclei |
P-cell | pump neuron |
PiCo | post-inspiratory complex |
pre-BötC | pre-Bötzinger complex |
pre-I/I | pre-inspiratory/inspiratory neuron |
RAR | rapidly adapting receptor |
RLN | recurrent laryngeal nerve |
ROS | reactive oxygen species |
RTN/pFRG | retrotrapezoid nucleus/parafacial respiratory group |
rVRG | rostral ventral respiratory group |
SAR | slowly adapting receptor |
SLN | superior laryngeal nerve |
TRP | transient receptor potential |
TRPV1 | transient receptor potential vanilloid 1 |
VN | vagus nerve |
VSG | ventral swallowing group |
References
- Doty, R.W.; Bosma, J.F. An electromyographic analysis of reflex deglutition. J. Neurophysiol. 1956, 19, 44–60. [Google Scholar] [CrossRef]
- Jean, A.A. Brain stem control of swallowing: Neuronal network and cellular mechanisms. Physiol. Rev. 2001, 81, 929–969. [Google Scholar] [CrossRef]
- Han, T.R.; Paik, N.J.; Park, J.W. Quantifying swallowing function after stroke: A functional dysphagia scale based on videofluoroscopic studies. Arch. Phys. Med. Rehabil. 2001, 82, 677–682. [Google Scholar] [CrossRef]
- Doty, R.W.; Richmond, W.H.; Storey, A.T. Effect of medullary lesions on coordination of deglutition. Exp. Neurol. 1967, 17, 91–106. [Google Scholar] [CrossRef]
- Tsujimura, T.; Tsuji, K.; Ariyasinghe, S.; Fukuhara, T.; Yamada, A.; Hayashi, H.; Nakamura, Y.; Iwata, K.; Inoue, M. Differential involvement of two cortical masticatory areas in modulation of the swallowing reflex in rats. Neurosci. Lett. 2012, 528, 159–164. [Google Scholar] [CrossRef]
- Martin, R.E.; Kemppainen, P.; Masuda, Y.; Yao, D.; Murray, G.M.; Sessle, B.J. Features of cortically evoked swallowing in the awake primate (Macaca fascicularis). J. Neurophysiol. 1999, 82, 1529–1541. [Google Scholar] [CrossRef]
- Umezaki, T.; Shiba, K.; Zheng, Y.; Miller, A.D. Upper airway motor outputs during vomiting versus swallowing in the decerebrate cat. Brain Res. 1998, 781, 25–36. [Google Scholar] [CrossRef]
- Thexton, A.J.; Crompton, A.W.; German, R.Z. Electromyographic activity during the reflex pharyngeal swallow in the pig: Doty and Bosma (1956) revisited. J. Appl. Physiol. 2007, 102, 587–600. [Google Scholar] [CrossRef]
- Umezaki, T.; Shiba, K.; Sugiyama, Y. Intracellular activity of pharyngeal motoneurons during breathing, swallowing, and coughing. J. Neurophysiol. 2020, 124, 750–762. [Google Scholar] [CrossRef]
- Korpáš, J.; Tomori, Z. Cough. In Cough and Other Respiratory Reflexes; Karger, S., Ed.; Progress in Respiratory Research; S. Karger: Basel, Switzerland, 1979; pp. 15–188. [Google Scholar]
- Chung, K.F.; Pavord, I.D. Prevalence, pathogenesis, and causes of chronic cough. Lancet 2008, 371, 1364–1374. [Google Scholar] [CrossRef]
- Krouse, J.H.; Veling, M.C.; Ryan, M.W.; Pillsbury, H.C., 3rd; Krouse, H.J.; Joe, S.; Heller, A.J.; Han, J.K.; Fineman, S.M.; Brown, R.W. Executive summary: Asthma and the unified airway. Otolaryngol. Head Neck Surg. 2007, 136, 699–706. [Google Scholar] [CrossRef]
- Driessen, A.K.; McGovern, A.E.; Narula, M.; Yang, S.K.; Keller, J.A.; Farrell, M.J.; Mazzone, S.B. Central mechanisms of airway sensation and cough hypersensitivity. Pulm. Pharmacol. Ther. 2017, 47, 9–15. [Google Scholar] [CrossRef]
- Greiner, A.N.; Hellings, P.W.; Rotiroti, G.; Scadding, G.K. Allergic rhinitis. Lancet 2011, 378, 2112–2122. [Google Scholar] [CrossRef]
- Ezure, K. Synaptic connections between medullary respiratory neurons and considerations on the genesis of respiratory rhythm. Prog. Neurobiol. 1990, 35, 429–450. [Google Scholar] [CrossRef]
- Shannon, R.; Baekey, D.M.; Morris, K.F.; Lindsey, B.G. Ventrolateral medullary respiratory network and a model of cough motor pattern generation. J. Appl. Physiol. 1998, 84, 2020–2035. [Google Scholar] [CrossRef]
- Li, F.; Jiang, H.; Shen, X.; Yang, W.; Guo, C.; Wang, Z.; Xiao, M.; Cui, L.; Luo, W.; Kim, B.S.; et al. Sneezing reflex is mediated by a peptidergic pathway from nose to brainstem. Cell 2021, 184, 3762–3773.e3710. [Google Scholar] [CrossRef]
- Feldman, J.L.; Del Negro, C.A. Looking for inspiration: New perspectives on respiratory rhythm. Nat. Rev. Neurosci. 2006, 7, 232–242. [Google Scholar] [CrossRef]
- Ezure, K.; Otake, K.; Lipski, J.; She, R.B.W. Efferent projections of pulmonary rapidly adapting receptor relay neurons in the cat. Brain Res. 1991, 564, 268–278. [Google Scholar] [CrossRef]
- Mazzone, S.B.; Mori, N.; Canning, B.J. Synergistic interactions between airway afferent nerve subtypes regulating the cough reflex in guinea-pigs. J. Physiol. 2005, 569, 559–573. [Google Scholar] [CrossRef]
- Sant’Ambrogio, G.; Widdicombe, J. Reflexes from airway rapidly adapting receptors. Respir. Physiol. 2001, 125, 33–45. [Google Scholar] [CrossRef]
- Ezure, K.; Tanaka, I.; Saito, Y.; Otake, K. Axonal projections of pulmonary slowly adapting receptor relay neurons in the rat. J. Comp. Neurol. 2002, 446, 81–94. [Google Scholar] [CrossRef]
- Gross, R.D.; Atwood, C.W., Jr.; Ross, S.B.; Olszewski, J.W.; Eichhorn, K.A. The coordination of breathing and swallowing in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2009, 179, 559–565. [Google Scholar] [CrossRef]
- Palmer, J.B.; Rudin, N.J.; Lara, G.; Crompton, A.W. Coordination of mastication and swallowing. Dysphagia 1992, 7, 187–200. [Google Scholar] [CrossRef]
- Huff, A.; Karlen-Amarante, M.; Oliveira, L.M.; Ramirez, J.M. Role of the postinspiratory complex in regulating swallow-breathing coordination and other laryngeal behaviors. eLife 2023, 12, e86103. [Google Scholar] [CrossRef]
- Huff, A.; Day, T.A.; English, M.; Reed, M.D.; Zouboules, S.; Saran, G.; Leacy, J.K.; Mann, C.; Peltonen, J.D.B.; O’Halloran, K.D.; et al. Swallow-breathing coordination during incremental ascent to altitude. Respir. Physiol. Neurobiol. 2019, 265, 121–126. [Google Scholar] [CrossRef]
- Meyrand, P.; Simmers, J.; Moulins, M. Construction of a pattern-generating circuit with neurons of different networks. Nature 1991, 351, 60–63. [Google Scholar] [CrossRef]
- Bianchi, A.L.; Denavit-Saubie, M.; Champagnat, J. Central control of breathing in mammals: Neuronal circuitry, membrane properties, and neurotransmitters. Physiol. Rev. 1995, 75, 1–45. [Google Scholar] [CrossRef]
- Dhingra, R.R.; Dick, T.E.; Furuya, W.I.; Galán, R.F.; Dutschmann, M. Volumetric mapping of the functional neuroanatomy of the respiratory network in the perfused brainstem preparation of rats. J. Physiol. 2020, 598, 2061–2079. [Google Scholar] [CrossRef]
- Anderson, T.M.; Garcia, A.J.; Baertsch, N.A.; Pollak, J.; Bloom, J.C.; Wei, A.D.; Rai, K.G.; Ramirez, J.-M.M. A novel excitatory network for the control of breathing. Nature 2016, 536, 76–80. [Google Scholar] [CrossRef]
- Umezaki, T.; Matsuse, T.; Shin, T. Medullary swallowing-related neurons in the anesthetized cat. Neuroreport 1998, 9, 1793–1798. [Google Scholar] [CrossRef]
- Saito, Y.; Ezure, K.; Tanaka, I. Swallowing-related activities of respiratory and non-respiratory neurons in the nucleus of solitary tract in the rat. J. Physiol. 2002, 540, 1047–1060. [Google Scholar] [CrossRef]
- Kinoshita, S.; Sugiyama, Y.; Hashimoto, K.; Fuse, S.; Mukudai, S.; Umezaki, T.; Dutschmann, M.; Hirano, S. Influences of GABAergic inhibition in the dorsal medulla on contralateral swallowing neurons in rats. Laryngoscope 2021, 131, 2187–2198. [Google Scholar] [CrossRef]
- Shannon, R.; Baekey, D.M.; Morris, K.F.; Nuding, S.C.; Segers, L.S.; Lindsey, B.G. Production of reflex cough by brainstem respiratory networks. Pulm. Pharmacol. Ther. 2004, 17, 369–376. [Google Scholar] [CrossRef]
- Sugiyama, Y.; Shiba, K.; Mukudai, S.; Umezaki, T.; Hisa, Y. Activity of respiratory neurons in the rostral medulla during vocalization, swallowing, and coughing in guinea pigs. Neurosci. Res. 2014, 80, 17–31. [Google Scholar] [CrossRef]
- Nonaka, S.; Unno, T.; Ohta, Y.; Mori, S. Sneeze-evoking region within the brainstem. Brain Res. 1990, 511, 265–270. [Google Scholar] [CrossRef]
- Batsel, H.L.; Lines, A.J. Neural mechanisms of sneeze. Am. J. Physiol. 1975, 229, 770–776. [Google Scholar] [CrossRef]
- Sugiyama, Y.; Shiba, K.; Mukudai, S.; Umezaki, T.; Sakaguchi, H.; Hisa, Y. Role of the retrotrapezoid nucleus/parafacial respiratory group in coughing and swallowing in guinea pigs. J. Neurophysiol. 2015, 114, 1792–1805. [Google Scholar] [CrossRef]
- Huff, A.; Karlen-Amarante, M.; Pitts, T.; Ramirez, J.M. Optogenetic stimulation of pre–Bötzinger complex reveals novel circuit interactions in swallowing–breathing coordination. Proc. Natl. Acad. Sci. USA 2022, 119, e2121095119. [Google Scholar] [CrossRef]
- Bianchi, A.L.; Gestreau, C. The brainstem respiratory network: An overview of a half century of research. Respir. Physiol. Neurobiol. 2009, 168, 4–12. [Google Scholar] [CrossRef]
- Dutschmann, M.; Herbert, H. The Kölliker-Fuse nucleus gates the postinspiratory phase of the respiratory cycle to control inspiratory off-switch and upper airway resistance in rat. Eur. J. Neurosci. 2006, 24, 1071–1084. [Google Scholar] [CrossRef]
- Pitts, T.; Huff, A.; Reed, M.; Iceman, K.; Mellen, N. Evidence of intermediate reticular formation involvement in swallow pattern generation, recorded optically in the neonate rat sagittally sectioned hindbrain. J. Neurophysiol. 2021, 125, 993–1005. [Google Scholar] [CrossRef]
- Pitts, T.; Poliacek, I.; Rose, M.J.; Reed, M.D.; Condrey, J.A.; Tsai, H.-W.W.; Zhou, G.; Davenport, P.W.; Bolser, D.C. Neurons in the dorsomedial medulla contribute to swallow pattern generation: Evidence of inspiratory activity during swallow. PLoS ONE 2018, 13, e0199903. [Google Scholar] [CrossRef] [PubMed]
- Morillo, A.M.; Nunezabades, P.A.; Gaytan, S.P.; Pasaro, R. Brain stem projections by axonal collaterals to the rostral and caudal ventral respiratory group in the rat. Brain Res. Bull. 1995, 37, 205–211. [Google Scholar] [CrossRef]
- Gestreau, C.; Bianchi, A.L.; Grélot, L. Differential brainstem fos-like immunoreactivity after laryngeal-induced coughing and its reduction by codeine. J. Neurosci. 1997, 17, 9340–9352. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.P.; Bandler, R.; Davis, P.J. Brain stem integration of vocalization: Role of the nucleus retroambigualis. J. Neurophysiol. 1995, 74, 2500–2512. [Google Scholar] [CrossRef]
- Smith, J.C.; Ellenberger, H.H.; Ballanyi, K.; Richter, D.W.; Feldman, J.L. Pre-Bötzinger complex: A brainstem region that may generate respiratory rhythm in mammals. Science 1991, 254, 726–729. [Google Scholar] [CrossRef] [PubMed]
- Dutschmann, M.; Mörschel, M.; Rybak, I.A.; Dick, T.E. Learning to breathe: Control of the inspiratory-expiratory phase transition shifts from sensory- to central-dominated during postnatal development in rats. J. Physiol. 2009, 587, 4931–4948. [Google Scholar] [CrossRef]
- Hashimoto, K.; Sugiyama, Y.; Fuse, S.; Umezaki, T.; Oku, Y.; Dutschmann, M.; Hirano, S. Activity of swallowing-related neurons in the medulla in the perfused brainstem preparation in rats. Laryngoscope 2019, 129, E72–E79. [Google Scholar] [CrossRef]
- Sugiyama, Y.; Shiba, K.; Nakazawa, K.; Suzuki, T.; Umezaki, T.; Ezure, K.; Abo, N.; Yoshihara, T.; Hisa, Y. Axonal projections of medullary swallowing neurons in guinea pigs. J. Comp. Neurol. 2011, 519, 2193–2211. [Google Scholar] [CrossRef]
- Altschuler, S.M.; Bao, X.M.; Bieger, D.; Hopkins, D.A.; Miselis, R.R. Viscerotopic Representation of the Upper Alimentary Tract in the Rat: Sensory Ganglia and Nuclei of the Solitary and Spinal Trigeminal Tracts. J. Comp. Neurol. 1989, 283, 248–268. [Google Scholar] [CrossRef]
- Hayakawa, T.; Zheng, J.Q.; Yajima, Y. Direct synaptic projections to esophageal motoneurons in the nucleus ambiguus from the nucleus of the solitary tract of the rat. J. Comp. Neurol. 1997, 381, 18–30. [Google Scholar] [CrossRef]
- Jean, A. Control of the central swallowing program by inputs from the peripheral receptors. A review. J. Auton. Nerv. Syst. 1984, 10, 225–233. [Google Scholar] [CrossRef]
- Bongianni, F.; Corda, M.; Fontana, G.; Pantaleo, T. Influences of superior laryngeal afferent stimulation on expiratory activity in cats. J. Appl. Physiol. 1988, 65, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Jodkowski, J.S.; Berger, A.J. Influences from laryngeal afferents on expiratory bulbospinal neurons and motoneurons. J. Appl. Physiol. 1988, 64, 1337–1345. [Google Scholar] [CrossRef] [PubMed]
- Horton, K.K.; Segers, L.S.; Nuding, S.C.; O’Connor, R.; Alencar, P.A.; Davenport, P.W.; Bolser, D.C.; Pitts, T.; Lindsey, B.G.; Morris, K.F.; et al. Central respiration and mechanical ventilation in the gating of swallow with breathing. Front. Physiol. 2018, 9, 785. [Google Scholar] [CrossRef]
- Shaker, R.; Li, Q.; Ren, J.; Townsend, W.F.; Dodds, W.J.; Martin, B.J.; Kern, M.K.; Rynders, A.; Townsend, F.; Martin, J.; et al. Coordination of deglutition and phases of respiration: Effect of aging, tachypnea, bolus volume, and chronic obstructive pulmonary disease. Am. J. Physiol. Gastrointest. Liver Physiol. 1992, 263, 750–755. [Google Scholar] [CrossRef] [PubMed]
- Bieger, D.; Hockman, C.H. Suprabulbar modulation of reflex swallowing. Exp. Neurol. 1976, 52, 311–324. [Google Scholar] [CrossRef]
- Martin, R.E.; Murray, G.M.; Kemppainen, P.; Masuda, Y.; Sessle, B.J. Functional properties of neurons in the primate tongue primary motor cortex during swallowing. J. Neurophysiol. 1997, 78, 1516–1530. [Google Scholar] [CrossRef]
- Hamdy, S.; Aziz, Q.; Rothwell, J.C.; Hobson, A.; Thompson, D.G. Sensorimotor modulation of human cortical swallowing pathways. J. Physiol. 1998, 506, 857–866. [Google Scholar] [CrossRef]
- Schaller, B.; Jacobs, A.H.; Graf, R. Hemispheric dominance for the cortical control of swallowing in humans: A contribution to better understand cortical organization? Eur. J. Radiol. 2004, 51, 290–291. [Google Scholar] [CrossRef]
- Martino, R.; Foley, N.; Bhogal, S.; Diamant, N.; Speechley, M.; Teasell, R. Dysphagia after stroke: Incidence, diagnosis, and pulmonary complications. Stroke 2005, 36, 2756–2763. [Google Scholar] [CrossRef]
- Takemura, A.; Sugiyama, Y.; Yamamoto, R.; Kinoshita, S.; Kaneko, M.; Fuse, S.; Hashimoto, K.; Mukudai, S.; Umezaki, T.; Dutschmann, M.; et al. Effect of pharmacological inhibition of the pontine respiratory group on swallowing interneurons in the dorsal medulla oblongata. Brain Res. 2022, 1797, 148101. [Google Scholar] [CrossRef] [PubMed]
- Pauloski, B.R.; Rademaker, A.W.; Logemann, J.A.; Lazarus, C.L.; Newman, L.; Hamner, A.; MacCracken, E.; Gaziano, J.; Stachowiak, L. Swallow function and perception of dysphagia in patients with head and neck cancer. Head Neck 2002, 24, 555–565. [Google Scholar] [CrossRef]
- Schröder, J.B.; Marian, T.; Muhle, P.; Claus, I.; Thomas, C.; Ruck, T.; Wiendl, H.; Warnecke, T.; Suntrup-Krueger, S.; Meuth, S.; et al. Intubation, tracheostomy, and decannulation in patients with Guillain–Barré–syndrome—Does dysphagia matter? Muscle Nerve 2019, 59, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Ertekin, C.; Seçil, Y.; Yüceyar, N.; Aydoǧdu, I. Orophaxryngeal dysphagia in polymyositis/dermatomyositis. Clin. Neurol. Neurosurg. 2004, 107, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Shiba, K.; Satoh, I.; Kobayashi, N.; Hayashi, F. Multifunctional laryngeal motoneurons: An intracellular study in the cat. J. Neurosci. 1999, 19, 2717–2727. [Google Scholar] [CrossRef]
- Shiba, K.; Nakazawa, K.; Ono, K.; Umezaki, T. Multifunctional laryngeal premotor neurons: Their activities during breathing, coughing, sneezing, and swallowing. J. Neurosci. 2007, 27, 5156–5162. [Google Scholar] [CrossRef]
- Shannon, R.; Baekey, D.M.; Morris, K.F.; Li, Z.; Lindsey, B.G. Functional connectivity among ventrolateral medullary respiratory neurones and responses during fictive cough in the cat. J. Physiol. 2000, 525 Pt 1, 207–224. [Google Scholar] [CrossRef]
- Haji, A.; Ohi, Y.; Kimura, S. Cough-related neurons in the nucleus tractus solitarius of decerebrate cats. Neuroscience 2012, 218, 100–109. [Google Scholar] [CrossRef]
- Xu, F.; Frazier, D.T.; Zhang, Z.; Baekey, D.M.; Shannon, R. Cerebellar modulation of cough motor pattern in cats. J. Appl. Physiol. 1997, 83, 391–397. [Google Scholar] [CrossRef]
- Jakuš, J.; Poliacek, I.; Halasova, E.; Murin, P.; Knocikova, J.; Tomori, Z.; Bolser, D.C. Brainstem circuitry of tracheal-bronchial cough: C-fos study in anesthetized cats. Respir. Physiol. Neurobiol. 2008, 160, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Fink, J.N. Localization of the “sneeze center”. Neurology 2001, 56, 138. [Google Scholar]
- Satoh, I.; Shiba, K.; Kobayashi, N.; Nakajima, Y.; Konno, A. Upper airway motor outputs during sneezing and coughing in decerebrate cats. Neurosci. Res. 1998, 32, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Batsel, H.L.; Lines, A.J. Discharge of respiratory neurons in sneezes resulting from ethmoidal nerve stimulation. Exp. Neurol. 1978, 58, 410–424. [Google Scholar] [CrossRef]
- Masmoudi, K.; Larnicol, N.; Wallois, F.; Gros, F. Changes in Fos-like immunoreactivity evoked by maturation of the sneeze reflex triggered by nasal air puff stimulation in kittens. Brain Res. 1997, 757, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Numasawa, T.; Shiba, K.; Nakazawa, K.; Umezaki, T. Membrane potential changes in vocal cord tensor motoneurons during breathing, vocalization, coughing and swallowing in decerebrate cats. Neurosci. Res. 2004, 49, 315–324. [Google Scholar] [CrossRef]
- Wallois, F.; Bodineau, L.; Macron, J.M.; Marlot, D.; Duron, B. Role of respiratory and non-respiratory neurones in the region of the NTS in the elaboration of the sneeze reflex in cat. Brain Res. 1997, 768, 71–85. [Google Scholar] [CrossRef]
- Altschuler, S.M.; Bao, X.M.; Miselis, R.R. Dendritic architecture of nucleus ambiguus motoneurons projecting to the upper alimentary tract in the rat. J. Comp. Neurol. 1991, 309, 402–414. [Google Scholar] [CrossRef]
- Rothstein, R.J.; Narce, S.L.; DeBerry Borowiecki, B.; Blanks, R.H.I.; DeBerry-Borowiecki, B.; Blanks, R.H.I. Respiratory-related activity of upper airway muscles in anesthetized rabbit. J. Appl. Physiol. 1983, 55, 1830–1836. [Google Scholar] [CrossRef]
- van Lunteren, E.; Dick, T.E. Heterogeneity within geniohyoid motor unit subpopulations in firing patterns during breathing. Respir. Physiol. 2000, 124, 23–33. [Google Scholar] [CrossRef]
- Van der Touw, T.; O’Neill, N.; Brancatisano, A.; Amis, T.; Wheatley, J.; Engel, L.A. Respiratory-related activity of soft palate muscles: Augmentation by negative upper airway pressure. J. Appl. Physiol. 1994, 76, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Roda, F.; Gestreau, C.; Bianchi, A.L. Discharge patterns of hypoglossal motoneurons during fictive breathing, coughing, and swallowing. J. Neurophysiol. 2002, 87, 1703–1711. [Google Scholar] [CrossRef] [PubMed]
- Kuna, S.T. Respiratory-related activation and mechanical effects of the pharyngeal constrictor muscles. Respir. Physiol. 2000, 119, 155–161. [Google Scholar] [CrossRef]
- Zoungrana, O.R.; Amri, M.; Car, A.; Roman, C. Intracellular activity of motoneurons of the rostral nucleus ambiguus during swallowing in sheep. J. Neurophysiol. 1997, 77, 909–922. [Google Scholar] [CrossRef]
- Fujishima, I.; Fujiu-Kurachi, M.; Arai, H.; Hyodo, M.; Kagaya, H.; Maeda, K.; Mori, T.; Nishioka, S.; Oshima, F.; Ogawa, S.; et al. Sarcopenia and dysphagia: Position paper by four professional organizations. Geriatr. Gerontol. Int. 2019, 19, 91–97. [Google Scholar] [CrossRef]
- Suzuki, T.; Nakazawa, K.; Shiba, K. Swallow-related inhibition in laryngeal motoneurons. Neurosci. Res. 2010, 67, 327–333. [Google Scholar] [CrossRef] [PubMed]
- You, F.; Harakawa, Y.; Yoshikawa, T.; Inufusa, H. Why does the antioxidant complex Twendee X® prevent dementia? Int. J. Mol. Sci. 2023, 24, 13018. [Google Scholar] [CrossRef]
- Modi, H.R.; Musyaju, S.; Ratcliffe, M.; Shear, D.A.; Scultetus, A.H.; Pandya, J.D. Mitochondria-Targeted Antioxidant Therapeutics for Traumatic Brain Injury. Antioxidants 2024, 13, 303. [Google Scholar] [CrossRef]
- Apostolova, N.; Victor, V.M. Molecular strategies for targeting antioxidants to mitochondria: Therapeutic implications. Antioxid. Redox Signal. 2015, 22, 686–729. [Google Scholar] [CrossRef]
- Barnes, P.J. Reactive oxygen species and airway inflammation. Free Radic. Biol. Med. 1990, 9, 235–243. [Google Scholar] [CrossRef]
- Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 2014, 20, 1126–1167. [Google Scholar] [CrossRef] [PubMed]
- Epe, B.; Ballmaier, D.; Roussyn, I.; Briviba, K.; Sies, H. DNA damage by peroxynitrite characterized with DNA repair enzymes. Nucleic Acids Res. 1996, 24, 4105–4110. [Google Scholar] [CrossRef] [PubMed]
- Cooke, M.S.; Evans, M.D.; Dizdaroglu, M.; Lunec, J. Oxidative DNA damage: Mechanisms, mutation, and disease. FASEB J. 2003, 17, 1195–1214. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Holmes, E.H.; Greene, T.G.; Liu, P.K. Oxidative DNA damage precedes DNA fragmentation after experimental stroke in rat brain. FASEB J. 2000, 14, 955–967. [Google Scholar] [CrossRef]
- You, F.; Harakawa, Y.; Yoshikawa, T.; Inufusa, H. Potential of an antioxidant combination Twendee X® to treat depressive disorders. Arch. Depress Anxiety 2023, 9, 68–71. [Google Scholar] [CrossRef]
- Hu, L.F.; Lu, M.; Tiong, C.X.; Dawe, G.S.; Hu, G.; Bian, J.S. Neuroprotective effects of hydrogen sulfide on Parkinson’s disease rat models. Aging Cell 2010, 9, 135–146. [Google Scholar] [CrossRef]
- Kusaki, M.; Ohta, Y.; Inufusa, H.; Yamashita, T.; Morihara, R.; Nakano, Y.; Liu, X.; Shang, J.; Tian, F.; Fukui, Y.; et al. Neuroprotective effects of a novel antioxidant mixture Twendee X in mouse stroke model. J. Stroke Cerebrovasc. Dis. 2017, 26, 1191–1196. [Google Scholar] [CrossRef]
- Chan, P.H. Role of oxidants in ischemic brain damage. Stroke 1996, 27, 1124–1129. [Google Scholar] [CrossRef]
- Aydogdu, I.; Ertekin, C.; Tarlaci, S.; Turman, B.; Kiylioglu, N.; Secil, Y. Dysphagia in lateral medullary infarction (Wallenberg’s syndrome): An acute disconnection syndrome in premotor neurons related to swallowing activity? Stroke 2001, 32, 2081–2087. [Google Scholar] [CrossRef]
- Vacchiano, V.; Bonan, L.; Liguori, R.; Rizzo, G. Primary lateral sclerosis: An overview. J. Clin. Med. 2024, 13, 578. [Google Scholar] [CrossRef]
- Kim, H.; Chung, C.S.; Lee, K.H.; Robbins, J. Aspiration subsequent to a pure medullary infarction: Lesion sites, clinical variables, and outcome. Arch. Neurol. 2000, 57, 478–483. [Google Scholar] [CrossRef]
- Yin, J.; Tu, C.; Zhao, J.; Ou, D.; Chen, G.; Liu, Y.; Xiao, X. Exogenous hydrogen sulfide protects against global cerebral ischemia/reperfusion injury via its anti-oxidative, anti-inflammatory and anti-apoptotic effects in rats. Brain Res. 2013, 1491, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Ohkubo, T.; Asano, Y.; Hattori, K.; Shimazu, T.; Yamazato, M.; Nagoya, H.; Kato, Y.; Araki, N. Nitric oxide production during cerebral ischemia and reperfusion in eNOS- and nNOS-knockout mice. Curr. Neurovascular Res. 2010, 7, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Kahlert, S.; Zündorf, G.; Reiser, G. Glutamate-mediated influx of extracellular Ca2+ is coupled with reactive oxygen species generation in cultured hippocampal neurons but not in astrocytes. J. Neurosci. Res. 2005, 79, 262–271. [Google Scholar] [CrossRef]
- Scarian, E.; Viola, C.; Dragoni, F.; Di Gerlando, R.; Rizzo, B.; Diamanti, L.; Gagliardi, S.; Bordoni, M.; Pansarasa, O. New insights into oxidative stress and inflammatory response in neurodegenerative diseases. Int. J. Mol. Sci. 2024, 25, 2698. [Google Scholar] [CrossRef]
- Masoud, S.T.; Vecchio, L.M.; Bergeron, Y.; Hossain, M.M.; Nguyen, L.T.; Bermejo, M.K.; Kile, B.; Sotnikova, T.D.; Siesser, W.B.; Gainetdinov, R.R.; et al. Increased expression of the dopamine transporter leads to loss of dopamine neurons, oxidative stress and l-DOPA reversible motor deficits. Neurobiol. Dis. 2015, 74, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Müftüoglu, M.; Elibol, B.; Dalmızrak, Ö.; Ercan, A.; Kulaksız, G.; Ögüs, H.; Dalkara, T.; Özer, N. Mitochondrial complex I and IV activities in leukocytes from patients with parkin mutations. Mov. Disord. 2004, 19, 544–548. [Google Scholar] [CrossRef]
- Gao, H.-M.; Liu, B.; Hong, J.-S. Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons. J. Neurosci. 2003, 23, 6181–6187. [Google Scholar] [CrossRef]
- Lind, L.A.; Andel, E.M.; McCall, A.L.; Dhindsa, J.S.; Johnson, K.A.; Stricklin, O.E.; Mueller, C.; ElMallah, M.K.; Lever, T.E.; Nichols, N.L. Intralingual administration of AAVrh10-miR(SOD1) improves respiratory but not swallowing function in a superoxide dismutase-1 mouse model of amyotrophic lateral sclerosis. Hum. Gene Ther. 2020, 31, 828–838. [Google Scholar] [CrossRef]
- Genin, E.C.; Abou-Ali, M.; Paquis-Flucklinger, V. Mitochondria, a key target in amyotrophic lateral sclerosis pathogenesis. Genes 2023, 14, 1981. [Google Scholar] [CrossRef]
- Burbulla, L.F.; Song, P.; Mazzulli, J.R.; Zampese, E.; Wong, Y.C.; Jeon, S.; Santos, D.P.; Blanz, J.; Obermaier, C.D.; Strojny, C.; et al. Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease. Science 2017, 357, 1255–1261. [Google Scholar] [CrossRef] [PubMed]
- Musgrove, R.E.; Helwig, M.; Bae, E.J.; Aboutalebi, H.; Lee, S.J.; Ulusoy, A.; Di Monte, D.A. Oxidative stress in vagal neurons promotes parkinsonian pathology and intercellular alpha-synuclein transfer. J. Clin. Investig. 2019, 129, 3738–3753. [Google Scholar] [CrossRef]
- Sulzer, D. Multiple hit hypotheses for dopamine neuron loss in Parkinson’s disease. Trends Neurosci. 2007, 30, 244–250. [Google Scholar] [CrossRef]
- Homem, S.G.; Moreira, E.A.M.; da Silva, A.F.; Barni, G.C.; da Rosa, J.S.; Oliveira, D.L.; Tomio, C.; de Freitas, M.B.; Portari, G.V.; Furkim, A.M.; et al. Relationship between oropharyngeal dysphagia, nutritional status, antioxidant vitamins and the inflammatory response in adults and elderly: A cross-sectional study. Clin. Nutr. ESPEN 2020, 38, 211–217. [Google Scholar] [CrossRef]
- van Lunteren, E.; Vafaie, H.; Salomone, R.J. Comparative effects of aging on pharyngeal and diaphragm muscles. Respir. Physiol. 1995, 99, 113–125. [Google Scholar] [CrossRef]
- Hirano, S.; Inufusa, H.; You, F. The effect of oxidative stress on the human voice. Int. J. Mol. Sci. 2024, 25, 2604. [Google Scholar] [CrossRef] [PubMed]
- Hirano, S.; Sugiyama, Y.; Kaneko, M.; Mukudai, S.; Fuse, S.; Hashimoto, K. Intracordal Injection of Basic Fibroblast Growth Factor in 100 Cases of Vocal Fold Atrophy and Scar. Laryngoscope 2021, 131, 2059–2064. [Google Scholar] [CrossRef] [PubMed]
- Foley, N.C.; Martin, R.E.; Salter, K.L.; Teasell, R.W. A review of the relationship between dysphagia and malnutrition following stroke. J. Rehabil. Med. 2009, 41, 707–713. [Google Scholar] [CrossRef]
- Sura, L.; Madhavan, A.; Carnaby, G.; Crary, M.A. Dysphagia in the elderly: Management and nutritional considerations. Clin. Interv. Aging 2012, 7, 287–298. [Google Scholar]
- Sies, H.; Stahl, W.; Sevanian, A. Nutritional, Dietary and Postprandial Oxidative Stress. J. Nutr. 2005, 135, 969–972. [Google Scholar] [CrossRef]
- Sato, H.; Takado, Y.; Toyoda, S.; Tsukamoto-Yasui, M.; Minatohara, K.; Takuwa, H.; Urushihata, T.; Takahashi, M.; Shimojo, M.; Ono, M.; et al. Neurodegenerative processes accelerated by protein malnutrition and decelerated by essential amino acids in a tauopathy mouse model. Sci. Adv. 2021, 7, eabd5046. [Google Scholar] [CrossRef] [PubMed]
- Joseph, D. The fundamental neurobiological mechanism of oxidative stress-related 4E-BP2 protein deamidation. Int. J. Mol. Sci. 2024, 25, 12268. [Google Scholar] [CrossRef]
- Bulut, F.; Tetiker, A.T.; Çelikkol, A.; Yılmaz, A.; Ballica, B. Low antioxidant enzyme levels and oxidative stress in laryngopharyngeal reflux (LPR) patients. J. Voice 2023, 37, 924–931. [Google Scholar] [CrossRef]
- Qadeer, M.A.; Phillips, C.O.; Lopez, A.R.; Steward, D.L.; Noordzij, J.P.; Wo, J.M.; Suurna, M.; Havas, T.; Howden, C.W.; Vaezi, M.F. Proton pump inhibitor therapy for suspected GERD-related chronic laryngitis: A meta-analysis of randomized controlled trials. Am. J. Gastroenterol. 2006, 101, 2646–2654. [Google Scholar] [CrossRef]
- Aviv, J.E.; Liu, H.; Parides, M.; Kaplan, S.T.; Close, L.G. Laryngopharyngeal sensory deficits in patients with laryngopharyngeal reflux and dysphagia. Ann. Otol. Rhinol. Laryngol. 2000, 109, 1000–1006. [Google Scholar] [CrossRef] [PubMed]
- Rantanen, T.K.; Räsänen, J.V.; Sihvo, E.I.T.; Ahotupa, M.O.; Färkkilä, M.A.; Salo, J.A. The impact of antireflux surgery on oxidative stress of esophageal mucosa caused by gastroesophageal reflux disease: 4-yr follow-up study. Am. J. Gastroenterol. 2006, 101, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Erbil, Y.; Türkoglu, U.; Barbaros, U.; Balik, E.; Olgac, V.; Kaya, H.; Cimşit, B. Oxidative damage in an experimentally induced gastric and gastroduodenal reflux model. Surg. Innov. 2005, 12, 219–225. [Google Scholar] [CrossRef]
- Montuschi, P.; Corradi, M.; Ciabattoni, G.; Nightingale, J.; Kharitonov, S.A.; Barnes, P.J. Increased 8-isoprostane, a marker of oxidative stress, in exhaled condensate of asthma patients. Am. J. Respir. Crit. Care Med. 1999, 160, 216–220. [Google Scholar] [CrossRef]
- Matés, J.M.; Pérez-Gómez, C.; Blanca, M. Chemical and biological activity of free radical ‘scavengers’ in allergic diseases. Clin. Chim. Acta 2000, 296, 1–15. [Google Scholar] [CrossRef]
- MacNee, W. Oxidative stress and lung inflammation in airways disease. Eur. J. Pharmacol. 2001, 429, 195–207. [Google Scholar] [CrossRef]
- Bowler, R.P.; Crapo, J.D. Oxidative stress in allergic respiratory diseases. J. Allergy Clin. Immunol. 2002, 110, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Boldogh, I.; Bacsi, A.; Choudhury, B.K.; Dharajiya, N.; Alam, R.; Hazra, T.K.; Mitra, S.; Goldblum, R.M.; Sur, S. ROS generated by pollen NADPH oxidase provide a signal that augments antigen-induced allergic airway inflammation. J. Clin. Investig. 2005, 115, 2169–2179. [Google Scholar] [CrossRef] [PubMed]
- Talati, M.; Meyrick, B.; Peebles, R.S.; Davies, S.S.; Dworski, R.; Mernaugh, R.; Mitchell, D.; Boothby, M.; Roberts, L.J.; Sheller, J.R. Oxidant stress modulates murine allergic airway responses. Free Radic. Biol. Med. 2006, 40, 1210–1219. [Google Scholar] [CrossRef] [PubMed]
- Dut, R.; Dizdar, E.A.; Birben, E.; Sackesen, C.; Soyer, O.U.; Besler, T.; Kalayci, O. Oxidative stress and its determinants in the airways of children with asthma. Allergy 2008, 63, 1605–1609. [Google Scholar] [CrossRef]
- Bakkeheim, E.; Mowinckel, P.; Carlsen, K.H.; Burney, P.; Lødrup Carlsen, K.C. Altered oxidative state in schoolchildren with asthma and allergic rhinitis. Pediatr. Allergy Immunol. 2011, 22, 178–185. [Google Scholar] [CrossRef]
- Bartoli, M.L.; Novelli, F.; Costa, F.; Malagrino, L.; Melosini, L.; Bacci, E.; Cianchetti, S.; Dente, F.L.; Di Franco, A.; Vagaggini, B.; et al. Malondialdehyde in exhaled breath condensate as a marker of oxidative stress in different pulmonary diseases. Mediat. Inflamm. 2011, 2011, 891752. [Google Scholar] [CrossRef]
- Peden, D.B. The role of oxidative stress and innate immunity in O3 and endotoxin-induced human allergic airway disease. Immunol. Rev. 2011, 242, 91–105. [Google Scholar] [CrossRef]
- Bansal, G.; Wong, C.-M.; Liu, L.; Suzuki, Y.J. Oxidant signaling for interleukin-13 gene expression in lung smooth muscle cells. Free Radic. Biol. Med. 2012, 52, 1552–1559. [Google Scholar] [CrossRef]
- Boukhenouna, S.; Wilson, M.A.; Bahmed, K.; Kosmider, B. Reactive oxygen species in chronic obstructive pulmonary disease. Oxid. Med. Cell Longev. 2018, 2018, 5730395. [Google Scholar] [CrossRef]
- Chamitava, L.; Cazzoletti, L.; Ferrari, M.; Garcia-Larsen, V.; Jalil, A.; Degan, P.; Fois, A.G.; Zinellu, E.; Fois, S.S.; Fratta Pasini, A.M.; et al. Biomarkers of oxidative stress and inflammation in chronic airway diseases. Int. J. Mol. Sci. 2020, 21, 4339. [Google Scholar] [CrossRef]
- Albano, G.D.; Gagliardo, R.P.; Montalbano, A.M.; Profita, M. Overview of the mechanisms of oxidative stress: Impact in inflammation of the airway diseases. Antioxidants 2022, 11, 2237. [Google Scholar] [CrossRef]
- Dharajiya, N.; Choudhury, B.K.; Bacsi, A.; Boldogh, I.; Alam, R.; Sur, S. Inhibiting pollen reduced nicotinamide adenine dinucleotide phosphate oxidase–induced signal by intrapulmonary administration of antioxidants blocks allergic airway inflammation. J. Allergy Clin. Immunol. 2007, 119, 646–653. [Google Scholar] [CrossRef]
- Sienra-Monge, J.J.; Ramirez-Aguilar, M.; Moreno-Macias, H.; Reyes-Ruiz, N.I.; Delrío-Navarro, B.E.; Ruiz-Navarro, M.X.; Hatch, G.; Crissman, K.; Slade, R.; Devlin, R.B.; et al. Antioxidant supplementation and nasal inflammatory responses among young asthmatics exposed to high levels of ozone. Clin. Exp. Immunol. 2004, 138, 317–322. [Google Scholar] [CrossRef]
- Lei, F.; Wang, W.; Fu, Y.; Wang, J.; Zheng, Y. Oxidative stress in retrotrapezoid nucleus/parafacial respiratory group and impairment of central chemoreception in rat offspring exposed to maternal cigarette smoke. Reprod. Toxicol. 2021, 100, 35–41. [Google Scholar] [CrossRef]
- Tao, M.; Liu, Q.; Miyazaki, Y.; Canning, B.J. Nicotinic receptor dependent regulation of cough and other airway defensive reflexes. Pulm. Pharmacol. Ther. 2019, 58, 101810. [Google Scholar] [CrossRef] [PubMed]
- Soto-Otero, R.; Méndez-Álvarez, E.; Hermida-Ameijeiras, Á.; Muñoz-Patiño, A.M.; Labandeira-Garcia, J.L. Autoxidation and Neurotoxicity of 6-Hydroxydopamine in the Presence of Some Antioxidants. J. Neurochem. 2000, 74, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Workman, D.G.; Tsatsanis, A.; Lewis, F.W.; Boyle, J.P.; Mousadoust, M.; Hettiarachchi, N.T.; Hunter, M.; Peers, C.S.; Tétard, D.; Duce, J.A. Protection from neurodegeneration in the 6-hydroxydopamine (6-OHDA) model of Parkinson’s with novel 1-hydroxypyridin-2-one metal chelators†. Metallomics 2015, 7, 867–876. [Google Scholar] [CrossRef] [PubMed]
- Alam, Z.I.; Jenner, A.; Daniel, S.E.; Lees, A.J.; Cairns, N.; Marsden, C.D.; Jenner, P.; Halliwell, B. Oxidative DNA damage in the parkinsonian brain: An apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J. Neurochem. 1997, 69, 1196–1203. [Google Scholar] [CrossRef]
- Taylor-Clark, T.E. Oxidative stress as activators of sensory nerves for cough. Pulm. Pharmacol. Ther. 2015, 35, 94–99. [Google Scholar] [CrossRef]
- Baby, S.M.; Tanner, L.H.; Discala, J.F.; Gruber, R.B.; Hsieh, Y.H.; Lewis, S.J. Systemic administration of Tempol, a superoxide dismutase mimetic, augments upper airway muscle activity in obese zucker rats. Front. Pharmacol. 2022, 13, 814032. [Google Scholar] [CrossRef]
- Lavie, L.; Lavie, P. Molecular mechanisms of cardiovascular disease in OSAHS: The oxidative stress link. Eur. Respir. J. 2009, 33, 1467–1484. [Google Scholar] [CrossRef] [PubMed]
- Eisele, H.-J.; Markart, P.; Schulz, R. Obstructive sleep apnea, oxidative stress, and cardiovascular disease: Evidence from human studies. Oxidative Med. Cell. Longev. 2015, 2015, 608438. [Google Scholar] [CrossRef]
- Christou, K.; Moulas, A.N.; Pastaka, C.; Gourgoulianis, K.I. Antioxidant capacity in obstructive sleep apnea patients. Sleep Med. 2003, 4, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Kheirandish-Gozal, L.; Bhattacharjee, R.; Bandla, H.P.; Gozal, D. Antiinflammatory therapy outcomes for mild OSA in children. Chest 2014, 146, 88–95. [Google Scholar] [CrossRef]
- Chaudhuri, G.; Hildner, C.D.; Brady, S.; Hutchins, B.; Aliga, N.; Abadilla, E. Cardiovascular effects of the supraglottic and super-supraglottic swallowing maneuvers in stroke patients with dysphagia. Dysphagia 2002, 17, 19–23. [Google Scholar] [CrossRef]
- Ferraris, V.A.; Ferraris, S.P.; Moritz, D.M.; Welch, S. Oropharyngeal dysphagia after cardiac operations. Ann. Thorac. Surg. 2001, 71, 1792–1796. [Google Scholar] [CrossRef] [PubMed]
- Cvejic, L.; Harding, R.; Churchward, T.; Turton, A.; Finlay, P.; Massey, D.; Bardin, P.G.; Guy, P. Laryngeal penetration and aspiration in individuals with stable COPD. Respirology 2011, 16, 269–275. [Google Scholar] [CrossRef]
- Yamashita, T.; Shoge, M.; Oda, E.; Yamamoto, Y.; Giddings, J.C.; Kashiwagi, S.; Suematsu, M.; Yamamoto, J. The free-radical scavenger, edaravone, augments NO release from vascular cells and platelets after laser-induced, acute endothelial injury in vivo. Platelets 2006, 17, 201–206. [Google Scholar] [CrossRef]
- Abe, K.; Kimura, H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci. 1996, 16, 1066–1071. [Google Scholar] [CrossRef]
- Zhang, P.; Li, F.; Wiegman, C.H.; Zhang, M.; Hong, Y.; Gong, J.; Chang, Y.; Zhang, J.; Adcock, I.; Chung, K.F.; et al. Inhibitory effect of hydrogen sulfide on ozone-induced airway inflammation, oxidative stress, and bronchial hyperresponsiveness. Am. J. Respir. Cell Mol. Biol. 2015, 52, 129–137. [Google Scholar] [CrossRef]
- Li, H.; Chen, L.; Hou, X.; Zhou, H.; Zheng, Y. Hydrogen sulfide attenuates hypoxia-induced respiratory suppression in anesthetized adult rats. Respir. Physiol. Neurobiol. 2016, 220, 1–9. [Google Scholar] [CrossRef]
- Yan, X.; Lei, F.; Hu, Y.; Nie, L.; Jia, Q.; Zhou, H.; Zhao, F.; Zheng, Y. Hydrogen sulfide protects neonatal rat medulla oblongata against prenatal cigarette smoke exposure via anti-oxidative and anti-inflammatory effects. Environ. Toxicol. Pharmacol. 2018, 57, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Skelly, J.R.; Bradford, A.; Jones, J.F.; O’Halloran, K.D. Superoxide scavengers improve rat pharyngeal dilator muscle performance. Am. J. Respir. Cell Mol. Biol. 2010, 42, 725–731. [Google Scholar] [CrossRef]
- Celik, M.; Tuncer, A.; Soyer, O.U.; Saçkesen, C.; Tanju Besler, H.; Kalayci, O. Oxidative stress in the airways of children with asthma and allergic rhinitis. Pediatr. Allergy Immunol. 2012, 23, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Wei Choo, C.Y.; Yeh, K.-W.; Huang, J.-L.; Su, K.-W.; Tsai, M.-H.; Hua, M.-C.; Liao, S.-L.; Lai, S.-H.; Chen, L.-C.; Chiu, C.-Y. Oxidative stress is associated with atopic indices in relation to childhood rhinitis and asthma. J. Microbiol. Immunol. Infect. 2021, 54, 466–473. [Google Scholar] [CrossRef] [PubMed]
- Cordiano, R.; Di Gioacchino, M.; Mangifesta, R.; Panzera, C.; Gangemi, S.; Minciullo, P.L. Malondialdehyde as a potential oxidative stress marker for allergy-oriented diseases: An update. Molecules 2023, 28, 5979. [Google Scholar] [CrossRef]
- Koike, Y.; Hisada, T.; Utsugi, M.; Ishizuka, T.; Shimizu, Y.; Ono, A.; Murata, Y.; Hamuro, J.; Mori, M.; Dobashi, K. Glutathione redox regulates airway hyperresponsiveness and airway inflammation in mice. Am. J. Respir. Cell Mol. Biol. 2007, 37, 322–329. [Google Scholar] [CrossRef]
- Moreno-Macias, H.; Romieu, I. Effects of antioxidant supplements and nutrients on patients with asthma and allergies. J. Allergy Clin. Immunol. 2014, 133, 1237–1244. [Google Scholar] [CrossRef]
- Jiang, J.; Mehrabi Nasab, E.; Athari, S.M.; Athari, S.S. Effects of vitamin E and selenium on allergic rhinitis and asthma pathophysiology. Respir. Physiol. Neurobiol. 2021, 286, 103614. [Google Scholar] [CrossRef]
- Morcillo, E.J.; Estrela, J.; Cortijo, J. Oxidative stress and pulmonary inflammation: Pharmacological intervention with antioxidants. Pharmacol. Res. 1999, 40, 393–404. [Google Scholar] [CrossRef]
- Romieu, I.; Castro-Giner, F.; Kunzli, N.; Sunyer, J. Air pollution, oxidative stress and dietary supplementation: A review. Eur. Respir. J. 2008, 31, 179–196. [Google Scholar] [CrossRef] [PubMed]
- Litonjua, A.A.; Rifas-Shiman, S.L.; Ly, N.P.; Tantisira, K.G.; Rich-Edwards, J.W.; Camargo, C.A.; Weiss, S.T.; Gillman, M.W.; Gold, D.R. Maternal antioxidant intake in pregnancy and wheezing illnesses in children at 2 y of age1. Am. J. Clin. Nutr. 2006, 84, 903–911. [Google Scholar] [CrossRef]
- Velázquez, B.B.M.; Jáuregui-Renaud, K.; Arias, A.d.C.B.; Ayala, J.C.; Martínez, M.D.M.; Navarrete, R.C.; Rosalia, I.S.V.; Salazar, M.d.R.C.; Serrano, H.A.C.; Mondragón, A.O.; et al. Vitamin E effects on nasal symptoms and serum specific IgE levels in patients with perennial allergic rhinitis. Ann. Allergy Asthma Immunol. 2006, 96, 45–50. [Google Scholar] [CrossRef]
- Allan, K.; Kelly, F.J.; Devereux, G. Antioxidants and allergic disease: A case of too little or too much? Clin. Exp. Allergy 2010, 40, 370–380. [Google Scholar] [CrossRef]
- Murr, C.; Schroecksnadel, K.; Winkler, C.; Ledochowski, M.; Fuchs, D. Antioxidants may increase the probability of developing allergic diseases and asthma. Med. Hypotheses 2005, 64, 973–977. [Google Scholar] [CrossRef]
- Raghu, G.; Berk, M.; Campochiaro, P.A.; Jaeschke, H.; Marenzi, G.; Richeldi, L.; Wen, F.-Q.; Nicoletti, F.; Calverley, P.M.A. The multifaceted therapeutic role of N-Acetylcysteine (NAC) in disorders characterized by oxidative stress. Curr. Neuropharmacol. 2021, 19, 1202–1224. [Google Scholar] [CrossRef] [PubMed]
- Mokhtari, V.; Afsharian, P.; Shahhoseini, M.; Kalantar, S.M.; Moini, A. A Review on Various Uses of N-Acetyl Cysteine. Cell J. 2017, 19, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Tardiolo, G.; Bramanti, P.; Mazzon, E. Overview on the effects of N-Acetylcysteine in neurodegenerative diseases. Molecules 2018, 23, 3305. [Google Scholar] [CrossRef]
- Payman, D.; Amin, A.; Maziar Motiee, L.; Mohammad Reza Samavati, F.; Mona, H.; Masoud Sharifian, R. The effect of N-acetyl cysteine on laryngopharyngeal reflux. Acta Medica Iran 1970, 51, 757–764. [Google Scholar]
- Moretti, M.; Marchioni, C.F. An overview of erdosteine antioxidant activity in experimental research. Pharmacol. Res. 2007, 55, 249–254. [Google Scholar] [CrossRef]
- Ege, E.; Ilhan, A.; Gurel, A.; Akyol, O.; Ozen, S. Erdosteine ameliorates neurological outcome and oxidative stress due to ischemia/reperfusion injury in rabbit spinal cord. Eur. J. Vasc. Endovasc. Surg. 2004, 28, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Ozerol, E.; Bilgic, S.; Iraz, M.; Cigli, A.; Ilhan, A.; Akyol, O. The protective effect of erdosteine on short-term global brain ischemia/reperfusion injury in rats. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2009, 33, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Fraňová, S.; Kazimierová, I.; Pappová, L.; Molitorisová, M.; Jošková, M.; Šutovská, M. The effect of erdosteine on airway defence mechanisms and inflammatory cytokines in the settings of allergic inflammation. Pulm. Pharmacol. Ther. 2019, 54, 60–67. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sato, Y.; Sugiyama, Y.; Ishida, T.; Inufusa, H.; You, F.; Joseph, D.; Hirano, S. The Potential Role of Oxidative Stress in Modulating Airway Defensive Reflexes. Antioxidants 2025, 14, 568. https://doi.org/10.3390/antiox14050568
Sato Y, Sugiyama Y, Ishida T, Inufusa H, You F, Joseph D, Hirano S. The Potential Role of Oxidative Stress in Modulating Airway Defensive Reflexes. Antioxidants. 2025; 14(5):568. https://doi.org/10.3390/antiox14050568
Chicago/Turabian StyleSato, Yuki, Yoichiro Sugiyama, Tomoya Ishida, Haruhiko Inufusa, Fukka You, Davis Joseph, and Shigeru Hirano. 2025. "The Potential Role of Oxidative Stress in Modulating Airway Defensive Reflexes" Antioxidants 14, no. 5: 568. https://doi.org/10.3390/antiox14050568
APA StyleSato, Y., Sugiyama, Y., Ishida, T., Inufusa, H., You, F., Joseph, D., & Hirano, S. (2025). The Potential Role of Oxidative Stress in Modulating Airway Defensive Reflexes. Antioxidants, 14(5), 568. https://doi.org/10.3390/antiox14050568