Antioxidant Activities in the Hemolymph and Fat Body of Physiologically and Prematurely Aging Bees (Apis mellifera)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Obtaining 1-Day-Old Bees
2.2. Laboratory Analyses
2.2.1. Hemolymph and Fat Body Collection
2.2.2. Biochemical Analyses
2.3. Statistical Analyses
3. Results
3.1. Activities of Antioxidant Enzymes: CAT, GPx, GST, and SOD
3.2. Levels of Total Antioxidant Capacity (TAC)
4. Discussion
4.1. Antioxidant Activities in Naturally/Physiologically Aging Bees
4.2. Antioxidant Activities in Prematurely Aging Bees (Affected by V. destructor)
4.3. Antioxidant Activities in Different Tissues/Fat Body Locations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Menail, H.A.; Cormier, S.B.; Léger, A.; Robichaud, S.; Hebert-Chatelain, E.; Lamarre, S.G.; Pichaud, N. Age-Related Flexibility of Energetic Metabolism in the Honey Bee Apis mellifera. FASEB J. 2023, 37, e23222. [Google Scholar] [CrossRef] [PubMed]
- Weinstock, G.M.; Robinson, G.E.; Gibbs, R.A.; Worley, K.C.; Evans, J.D.; Maleszka, R.; Robertson, H.M.; Weaver, D.B.; Beye, M.; Bork, P.; et al. Insights into Social Insects from the Genome of the Honeybee Apis mellifera. Nature 2006, 443, 931–949. [Google Scholar]
- Wang, X.; Zhang, X.; Zhang, Z.; Lang, H.; Zheng, H. Honey Bee as a Model Organism to Study Gut Microbiota and Diseases. Drug Discov. Today Dis. Models 2018, 28, 35–42. [Google Scholar] [CrossRef]
- Zheng, H.; Steele, M.I.; Leonard, S.P.; Motta, E.V.S.; Moran, N.A. Honey Bees as Models for Gut Microbiota Research. Lab Animal 2018, 47, 317–325. [Google Scholar] [PubMed]
- Keller, L.; Jemielity, S. Social Insects as a Model to Study the Molecular Basis of Ageing. Exp. Gerontol. 2006, 41, 553–556. [Google Scholar]
- Eyer, M.; Dainat, B.; Neumann, P.; Dietemann, V. Social Regulation of Ageing by Young Workers in the Honey Bee, Apis mellifera. Exp. Gerontol. 2017, 87, 84–91. [Google Scholar]
- Ament, S.A.; Wang, Y.; Robinson, G.E. Nutritional Regulation of Division of Labor in Honey Bees: Toward a Systems Biology Perspective. Wiley Interdiscip. Rev. Syst. Biol. Med. 2010, 2, 566–576. [Google Scholar]
- Herb, B.R.; Wolschin, F.; Hansen, K.D.; Aryee, M.J.; Langmead, B.; Irizarry, R.; Amdam, G.V.; Feinberg, A.P. Reversible Switching between Epigenetic States in Honeybee Behavioral Subcastes. Nat. Neurosci. 2012, 15, 1371–1373. [Google Scholar]
- Dussaubat, C.; Maisonnasse, A.; Crauser, D.; Beslay, D.; Costagliola, G.; Soubeyrand, S.; Kretzchmar, A.; Le Conte, Y. Flight Behavior and Pheromone Changes Associated to Nosema ceranae Infection of Honey Bee Workers (Apis mellifera) in Field Conditions. J. Invertebr. Pathol. 2013, 113, 42–51. [Google Scholar] [CrossRef]
- Goblirsch, M.; Huang, Z.Y.; Spivak, M. Physiological and Behavioral Changes in Honey Bees (Apis mellifera) Induced by Nosema ceranae Infection. PLoS ONE 2013, 8, e58165. [Google Scholar]
- Natsopoulou, M.E.; McMahon, D.P.; Paxton, R.J. Parasites Modulate Within-Colony Activity and Accelerate the Temporal Polyethism Schedule of a Social Insect, the Honey Bee. Behav. Ecol. Sociobiol. 2016, 70, 1019–1031. [Google Scholar] [PubMed]
- Alaux, C.; Soubeyrand, S.; Prado, A.; Peruzzi, M.; Maisonnasse, A.; Vallon, J.; Hernandez, J.; Jourdan, P.; Le Conte, Y. Measuring Biological Age to Assess Colony Demographics in Honeybees. PLoS ONE 2018, 13, e0209192. [Google Scholar]
- Navarro, A.; Sánchez Del Pino, M.J.; Gómez, C.; Peralta, J.L.; Boveris, A. Behavioral Dysfunction, Brain Oxidative Stress, and Impaired Mitochondrial Electron Transfer in Aging Mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 282, R985–R992. [Google Scholar]
- Margotta, J.W.; Roberts, S.P.; Elekonich, M.M. Effects of Flight Activity and Age on Oxidative Damage in the Honey Bee, Apis mellifera. J. Exp. Biol. 2018, 221, jeb183228. [Google Scholar] [CrossRef]
- Wójcik, Ł.; Chęć, M.; Skowronek, P.; Grabowski, M.; Persona, K.; Strachecka, A. Do the Different Life History Strategies of Ants and Honeybees Determine Fat Body Morphology? Arthropod. Struct. Dev. 2022, 69, 101186. [Google Scholar]
- Arrese, E.L.; Soulages, J.L. Insect Fat Body: Energy, Metabolism, and Regulation. Annu. Rev. Entomol. 2010, 55, 207–225. [Google Scholar] [PubMed]
- Roma, G.C.; Bueno, O.C.; Camargo-Mathias, M.I. Morpho-Physiological Analysis of the Insect Fat Body: A Review. Micron 2010, 41, 395–401. [Google Scholar] [CrossRef]
- Strachecka, A.; Olszewski, K.; Kuszewska, K.; Chobotow, J.; Wójcik, Ł.; Paleolog, J.; Woyciechowski, M. Segmentation of the Subcuticular Fat Body in Apis mellifera Females with Different Reproductive Potentials. Sci. Rep. 2021, 11, 13887. [Google Scholar]
- Knoll, S.; Pinna, W.; Varcasia, A.; Scala, A.; Cappai, M.G. The Honey Bee (Apis mellifera L., 1758) and the Seasonal Adaptation of Productions. Highlights on Summer to Winter Transition and Back to Summer Metabolic Activity. A Review. Livest. Sci. 2020, 235, 104011. [Google Scholar]
- Brejcha, M.; Prušáková, D.; Sábová, M.; Peska, V.; Černý, J.; Kodrík, D.; Konopová, B.; Čapková Frydrychová, R. Seasonal Changes in Ultrastructure and Gene Expression in the Fat Body of Worker Honey Bees. J. Insect Physiol. 2023, 146, 104504. [Google Scholar]
- Keehnen, N.L.P.; Fors, L.; Järver, P.; Spetz, A.L.; Nylin, S.; Theopold, U.; Wheat, C.W. A Population Genomic Investigation of Immune Cell Diversity and Phagocytic Capacity in a Butterfly. Genes 2021, 12, 279. [Google Scholar] [CrossRef]
- Strachecka, A.; Kuszewska, K.; Olszewski, K.; Skowronek, P.; Grzybek, M.; Grabowski, M.; Paleolog, J.; Woyciechowski, M. Activities of Antioxidant and Proteolytic Systems and Biomarkers in the Fat Body and Hemolymph of Young Apis mellifera Females. Animals 2022, 12, 1121. [Google Scholar] [CrossRef] [PubMed]
- Ferrandon, D.; Imler, J.L.; Hetru, C.; Hoffmann, J.A. The Drosophila Systemic Immune Response: Sensing and Signalling during Bacterial and Fungal Infections. Nat. Rev. Immunol. 2007, 7, 862–874. [Google Scholar] [PubMed]
- Ramsey, S.D.; Ochoa, R.; Bauchan, G.; Gulbronson, C.; Mowery, J.D.; Cohen, A.; Lim, D.; Joklik, J.; Cicero, J.M.; Ellis, J.D.; et al. Varroa destructor Feeds Primarily on Honey Bee Fat Body Tissue and Not Hemolymph. Proc. Natl. Acad. Sci. USA 2019, 116, 1792–1801. [Google Scholar] [PubMed]
- Kurtdede, E.; Alperen, A.M.; Baran, B. Varroa destructor Infestation in Honey Bees in Ankara Region, and Antioxidant Properties of Produced Honey. J. Apic. Res. 2024, 63, 1013–1018. [Google Scholar]
- Gülmez, Y.; Kisa, D.; Can, I. Effects of Varroa destructor Anderson & Trueman Infestation on Antioxidant Enzymes of Adult Worker Honey Bee (Apis mellifera L.). Asian J. Chem. 2016, 28, 663–665. [Google Scholar]
- Li-Byarlay, H.; Huang, M.H.; Simone-Finstrom, M.; Strand, M.K.; Tarpy, D.R.; Rueppell, O. Honey Bee (Apis mellifera) Drones Survive Oxidative Stress Due to Increased Tolerance Instead of Avoidance or Repair of Oxidative Damage. Exp. Gerontol. 2016, 83, 15–21. [Google Scholar] [CrossRef]
- Ward, K.; Cleare, X.; Li-Byarlay, H. The Life Span and Levels of Oxidative Stress in Foragers Between Feral and Managed Honey Bee Colonies. J. Insect Sci. 2022, 22, 20–21. [Google Scholar]
- Badotra, P.; Kumar, N.R.; Harjai, K. Varroa Causes Oxidative Stress in Apis mellifera L. J. Glob. Biosci. 2013, 2, 199–201. [Google Scholar]
- Łoś, A.; Strachecka, A. Fast and Cost-Effective Biochemical Spectrophotometric Analysis of Solution of Insect “Blood” and Body Surface Elution. Sensors 2018, 18, 1494. [Google Scholar] [CrossRef]
- Bryś, M.S.; Staniec, B.; Strachecka, A. The Effect of Pollen Monodiets on Fat Body Morphology Parameters and Energy Substrate Levels in the Fat Body and Hemolymph of Apis mellifera L. Workers. Sci. Rep. 2024, 14, 15177. [Google Scholar]
- Weirich, G.; Collins, A.; Williams, V.; Weirich, G.F.; Collins, A.M.; Williams, V.P. Antioxidant Enzymes in the Honey Bee, Apis mellifera. Apidologie 2002, 33, 3–14. [Google Scholar]
- Bamidele, J.A.; Idowu, A.B.; Ademolu, K.O.; Osipitan, A.A.; Rahman, S.A. Seasonal Fluctuations of Antioxidant Enzymes and Biochemical Compositions of Apis mellifera adansonii L. from Three Ecological Zones of Nigeria. J. Basic Appl. Zool. 2023, 84, 11. [Google Scholar]
- Kramer, B.H.; Nehring, V.; Buttstedt, A.; Heinze, J.; Korb, J.; Libbrecht, R.; Meusemann, K.; Paxton, R.J.; Séguret, A.; Schaub, F.; et al. Oxidative Stress and Senescence in Social Insects: A Significant but Inconsistent Link? Philos. Trans. R. Soc. Lond. B 2021, 376, 20190732. [Google Scholar]
- Sagona, S.; Minieri, S.; Coppola, F.; Gatta, D.; Casini, L.; Palego, L.; Betti, L.; Giannaccini, G.; Felicioli, A. Effects of Chestnut Hydrolysable Tannin Enrichment in the Artificial Diet of Forager Bees, Apis mellifera. J. Apic. Res. 2024, 63, 500–506. [Google Scholar]
- Spremo, J.; Purać, J.; Čelić, T.; Đorđievski, S.; Pihler, I.; Kojić, D.; Vukašinović, E. Assessment of Oxidative Status, Detoxification Capacity and Immune Responsiveness in Honey Bees with Ageing. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2024, 298, 111735. [Google Scholar]
- Migdał, P.; Murawska, A.; Strachecka, A.; Bieńkowski, P.; Roman, A. Changes in the Honeybee Antioxidant System after 12 h of Exposure to Electromagnetic Field Frequency of 50 Hz and Variable Intensity. Insects 2020, 11, 713. [Google Scholar] [CrossRef]
- Bryś, M.S.; Olszewski, K.; Bartoń, M.; Strachecka, A. Changes in the Activities of Antioxidant Enzymes in the Fat Body and Hemolymph of Apis mellifera L. Due to Pollen Monodiets. Antioxidants 2025, 14, 69. [Google Scholar] [CrossRef]
- Sukkar, D.; Wagner, L.; Bonnefoy, A.; Falla-Angel, J.; Laval-Gilly, P. Imidacloprid and amitraz differentially alter antioxidant enzymes in honeybee (Apis mellifera) hemocytes when exposed to microbial pathogen-associated molecular patterns. Sci.e Total Environ. 2025, 969, 178868. [Google Scholar]
- Słowińska, M.; Nynca, J.; Wilde, J.; Bąk, B.; Siuda, M.; Ciereszko, A. Total Antioxidant Capacity of Honeybee Haemolymph in Relation to Age and Exposure to Pesticide, and Comparison to Antioxidant Capacity of Seminal Plasma. Apidologie 2016, 47, 227–236. [Google Scholar]
- Dostálková, S.; Kodrík, D.; Simone-Finstrom, M.; Petřivalský, M.; Danihlík, J. Fine-scale assessment of Chlorella syrup as a nutritional supplement for honey bee colonies. Front. Ecol. Evol. 2022, 10, 1028037. [Google Scholar]
- Santos, D.E.; Souza, A.d.O.; Tibério, G.J.; Alberici, L.C.; Hartfelder, K. Differential Expression of Antioxidant System Genes in Honey Bee (Apis mellifera L.) Caste Development Mitigates ROS-Mediated Oxidative Damage in Queen Larvae. Genet. Mol. Biol. 2020, 43, e20200173. [Google Scholar]
- Hsu, C.Y.; Hsieh, Y.S. Oxidative Stress Decreases in the Trophocytes and Fat Cells of Worker Honeybees during Aging. Biogerontology 2014, 15, 129–137. [Google Scholar] [PubMed]
- Page, R.E.; Peng, C.Y.S. Aging and Development in Social Insects with Emphasis on the Honey Bee, Apis mellifera L. Exp. Gerontol. 2001, 36, 695–711. [Google Scholar]
- Münch, D.; Amdam, G.V.; Wolschin, F. Ageing in a Eusocial Insect: Molecular and Physiological Characteristics of Life Span Plasticity in the Honey Bee. Funct. Ecol. 2008, 22, 407–421. [Google Scholar]
- Williams, J.B.; Roberts, S.P.; Elekonich, M.M. Age and Natural Metabolically-Intensive Behavior Affect Oxidative Stress and Antioxidant Mechanisms. Exp. Gerontol. 2008, 43, 538–549. [Google Scholar]
- Behrends, A.; Scheiner, R.; Baker, N.; Amdam, G.V. Cognitive Aging Is Linked to Social Role in Honey Bees (Apis mellifera). Exp. Gerontol. 2007, 42, 1146–1153. [Google Scholar]
- Strachecka, A.J.; Olszewski, K.; Paleolog, J. Curcumin Stimulates Biochemical Mechanisms of Apis mellifera Resistance and Extends the Apian Life-Span. J. Apic. Sci. 2015, 59, 129–141. [Google Scholar]
- Skowronek, P.; Wójcik, Ł.; Strachecka, A. Impressive Impact of Hemp Extract on Antioxidant System in Honey Bee (Apis mellifera) Organism. Antioxidants 2022, 11, 707. [Google Scholar] [CrossRef]
- Scofield, S.; Amdam, G.V. Fat Body Lipogenic Capacity in Honey Bee Workers Is Affected by Age, Social Role and Dietary Protein. J. Exp. Biol. 2024, 227, jeb247777. [Google Scholar]
- Liakopoulos, G.; Tani, E.; Vasilevskaya, N. Pollution of the Environment and Pollen: A Review. Stresses 2022, 2, 515–530. [Google Scholar] [CrossRef]
- Strachecka, A.; Olszewski, K.; Paleolog, J. Varroa Treatment with Bromfenvinphos Markedly Suppresses Honeybee Biochemical Defence Levels. Entomol. Exp. Appl. 2016, 160, 57–71. [Google Scholar] [CrossRef]
- Strachecka, A.; Olszewski, K.; Paleolog, J.; Borsuk, G.; Bajda, M.; Krauze, M.; Merska, M.; Chobotow, J. Coenzyme Q10 Treatments Influence the Lifespan and Key Biochemical Resistance Systems in the Honeybee, Apis mellifera. Arch. Insect Biochem. Physiol. 2014, 86, 165–179. [Google Scholar] [CrossRef]
- Lane, S.J.; Frankino, W.A.; Elekonich, M.M.; Roberts, S.P. The Effects of Age and Lifetime Flight Behavior on Flight Capacity in Drosophila melanogaster. J. Exp. Biol. 2014, 217, 1437–1443. [Google Scholar] [CrossRef] [PubMed]
- Münch, D.; Amdam, G.V. The Curious Case of Aging Plasticity in Honey Bees. FEBS Lett. 2010, 584, 2496–2503. [Google Scholar] [CrossRef]
- Morfin, N.; Goodwin, P.H.; Guzman-Novoa, E.; De Jong, D.; Muz, M.N.; Hristov, P. Varroa destructor and Its Impacts on Honey Bee Biology. Front. Bee Sci. 2023, 1, 1272937. [Google Scholar] [CrossRef]
- Łopieńska-Biernat, E.; Sokół, R.; Michalczyk, M.; Żółtowska, K.; Stryiński, R. Biochemical Status of Feral Honey Bees (Apis mellifera) Infested with Various Pathogens. J. Apic. Res. 2017, 56, 606–615. [Google Scholar] [CrossRef]
- Farjan, M.; Łopieńska-Biernat, E.; Lipiński, Z.; Dmitryjuk, M.; ZóŁtowska, K. Supplementing with Vitamin C the Diet of Honeybees (Apis mellifera carnica) Parasitized with Varroa destructor: Effects on Antioxidative Status. Parasitology 2014, 141, 770–776. [Google Scholar] [CrossRef]
- Lipiński, Z.; Żółtowska, K. Preliminary Evidence Associating Oxidative Stress in Honey Bee Drone Brood with Varroa destructor. J. Apic. Res. 2005, 44, 126–127. [Google Scholar] [CrossRef]
- Farjan, M.; Dmitryjuk, M.; Lipiński, Z.; Biernat-Łopieńska, E.; Żółtowska, K. Supplementation of the Honey Bee Diet with Vitamin C: The Effect on the Antioxidative System of Apis mellifera carnica Brood at Different Stages. J. Apic. Res. 2012, 51, 263–270. [Google Scholar] [CrossRef]
- Strachecka, A.; Krauze, M.; Olszewski, K.; Borsuk, G.; Paleolog, J.; Merska, M.; Chobotow, J.; Bajda, M.; Grzywnowicz, K. Unexpectedly Strong Effect of Caffeine on the Vitality of Western Honeybees (Apis mellifera). Biochemistry 2014, 79, 1192–1201. [Google Scholar] [CrossRef] [PubMed]
- Orčić, S.; Nikolić, T.; Purać, J.; Šikoparija, B.; Blagojević, D.P.; Vukašinović, E.; Plavša, N.; Stevanović, J.; Kojić, D. Seasonal Variation in the Activity of Selected Antioxidant Enzymes and Malondialdehyde Level in Worker Honey Bees. Entomol. Exp. Appl. 2017, 165, 120–128. [Google Scholar] [CrossRef]
- Hsieh, Y.S.; Hsu, C.Y. Honeybee Trophocytes and Fat Cells as Target Cells for Cellular Senescence Studies. Exp. Gerontol. 2011, 46, 233–240. [Google Scholar] [CrossRef]
- Lu, C.Y.; Chuang, Y.L.; Hsu, C.Y. Aging Results in a Decline in Cellular Energy Metabolism in the Trophocytes and Oenocytes of Worker Honeybees (Apis mellifera). Apidologie 2017, 48, 761–775. [Google Scholar]
- Huang, K.; Liu, Y.; Perrimon, N. Roles of Insect Oenocytes in Physiology and Their Relevance to Human Metabolic Diseases. Front. Insect Sci. 2022, 2, 859847. [Google Scholar]
Group | Age (Days) | CAT | GPx | GST | SOD | TAC |
---|---|---|---|---|---|---|
control | 1 | H = 106.88 p = 0.000 | H = 6.10 p = 0.106 | H = 100.31 p = 0.000 | H = 111.57 p = 0.000 | H = 73.56 p = 0.000 |
control | 14 | H = 109.64 p = 0.000 | H = 100.37 p = 0.000 | H = 111.58 p = 0.000 | H = 111.57 p = 0.000 | H = 108.24 p = 0.000 |
V. destructor | 14 | H = 111.58 p = 0.000 | H = 73.31 p = 0.000 | H = 111.15 p = 0.000 | H = 105.36 p = 0.000 | H = 111.57 p = 0.000 |
control | 21 | H = 112.44 p = 0.000 | H = 112.07 p = 0.000 | H = 112.22 p = 0.000 | H = 111.07 p = 0.000 | H = 112.02 p = 0.000 |
V. destructor | 21 | H = 110.33 p = 0.000 | H = 111.57 p = 0.000 | H = 97.80 p = 0.000 | H = 109.06 p = 0.000 | H = 104.98 p = 0.000 |
control | 28 | H = 110.64 p = 0.000 | H = 110.63 p = 0.000 | H = 110.63 p = 0.000 | H = 110.63 p = 0.000 | H = 110.63 p = 0.000 |
control | 35 | H = 111.59 p = 0.000 | H = 111.57 p = 0.000 | H = 111.27 p = 0.000 | H = 108.88 p = 0.000 | H = 107.51 p = 0.000 |
CAT | GPx | GST | SOD | TAC | |
---|---|---|---|---|---|
Hemolymph | H = 199.87 p = 0.000 | H = 195.18 p = 0.000 | H = 200.60 p = 0.000 | H = 195.63 p = 0.000 | H = 195.18 p = 0.000 |
Tergite 3 | H = 198.25 p = 0.000 | H = 190.90 p = 0.000 | H = 198.75 p = 0.000 | H = 195.06 p = 0.000 | H = 204.74 p = 0.000 |
Tergite 5 | H = 200.75 p = 0.000 | H = 192.13 p = 0.000 | H = 193.69 p = 0.000 | H = 195.12 p = 0.000 | H = 204.32 p = 0.000 |
Sternite | H = 200.31 p = 0.000 | H = 190.40 p = 0.000 | H = 202.57 p = 0.000 | H = 200.26 p = 0.000 | H = 202.79 p = 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kunat-Budzyńska, M.; Staniszewska, P.; Olszewski, K.; Strachecka, A. Antioxidant Activities in the Hemolymph and Fat Body of Physiologically and Prematurely Aging Bees (Apis mellifera). Antioxidants 2025, 14, 373. https://doi.org/10.3390/antiox14040373
Kunat-Budzyńska M, Staniszewska P, Olszewski K, Strachecka A. Antioxidant Activities in the Hemolymph and Fat Body of Physiologically and Prematurely Aging Bees (Apis mellifera). Antioxidants. 2025; 14(4):373. https://doi.org/10.3390/antiox14040373
Chicago/Turabian StyleKunat-Budzyńska, Magdalena, Patrycja Staniszewska, Krzysztof Olszewski, and Aneta Strachecka. 2025. "Antioxidant Activities in the Hemolymph and Fat Body of Physiologically and Prematurely Aging Bees (Apis mellifera)" Antioxidants 14, no. 4: 373. https://doi.org/10.3390/antiox14040373
APA StyleKunat-Budzyńska, M., Staniszewska, P., Olszewski, K., & Strachecka, A. (2025). Antioxidant Activities in the Hemolymph and Fat Body of Physiologically and Prematurely Aging Bees (Apis mellifera). Antioxidants, 14(4), 373. https://doi.org/10.3390/antiox14040373