A Comprehensive Review of the Antitumor Activity of Olive Compounds: The Case of Olive Oil, Pomace, and Leaf Extracts, Phenolic Alcohols, Secoiridoids, and Triterpenes
Abstract
1. Introduction
2. Methodology
3. Antitumor Activity of Olive Compounds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- World Health Organization. Cancer. Available online: https://www.who.int/health-topics/cancer#tab=tab_1 (accessed on 6 May 2024).
- van den Boogaard, W.M.C.; Komninos, D.S.J.; Vermeij, W.P. Chemotherapy Side-Effects: Not All DNA Damage Is Equal. Cancers 2022, 14, 627. [Google Scholar] [CrossRef]
- Torić, J.; Marković, A.K.; Brala, C.J.; Barbarić, M. Anticancer effects of olive oil polyphenols and their combinations with anticancer drugs. Acta Pharm. 2019, 69, 461–482. [Google Scholar] [CrossRef]
- Quero, J.; Ballesteros, L.F.; Ferreira-Santos, P.; Velderrain-Rodriguez, G.R.; Rocha, C.M.R.; Pereira, R.N.; Teixeira, J.A.; Martin-Belloso, O.; Osada, J.; Rodríguez-Yoldi, M.J. Unveiling the Antioxidant Therapeutic Functionality of Sustainable Olive Pomace Active Ingredients. Antioxidants 2022, 11, 828. [Google Scholar] [CrossRef]
- Ramos, P.; Santos, S.A.O.; Guerra, Â.R.; Guerreiro, O.; Felício, L.; Jerónimo, E.; Silvestre, A.J.D.; Neto, C.P.; Duarte, M. Valorization of olive mill residues: Antioxidant and breast cancer antiproliferative activities of hydroxytyrosol-rich extracts derived from olive oil by-products. Ind. Crops Prod. 2013, 46, 359–368. [Google Scholar] [CrossRef]
- Calabriso, N.; Massaro, M.; Scoditti, E.; D’Amore, S.; Gnoni, A.; Pellegrino, M.; Storelli, C.; De Caterina, R.; Palasciano, G.; Carluccio, M.A. Extra virgin olive oil rich in polyphenols modulates VEGF-induced angiogenic responses by preventing NADPH oxidase activity and expression. J. Nutr. Biochem. 2016, 28, 19–29. [Google Scholar] [CrossRef]
- Xie, P.; Cecchi, L.; Bellumori, M.; Balli, D.; Giovannelli, L.; Huang, L.; Mulinacci, N. Phenolic compounds and triterpenes in different olive tissues and olive oil by-products, and cytotoxicity on human colorectal cancer cells: The case of frantoio, moraiolo and leccino cultivars (Olea europaea L.). Foods 2021, 10, 2823. [Google Scholar] [CrossRef]
- International Olive Council. World Market of Olive Oil and Table Olives—Data from December 2024. Available online: https://www.internationaloliveoil.org/world-market-of-olive-oil-and-table-olives-data-from-december-2024/?utm_source=chatgpt.com (accessed on 7 January 2025).
- Ferreira, D.M.; Barreto-Peixoto, J.; Andrade, N.; Machado, S.; Silva, C.; Lobo, J.C.; Nunes, M.A.; Álvarez-Rivera, G.; Ibáñez, E.; Cifuentes, A.; et al. Comprehensive analysis of the phytochemical composition and antitumoral activity of an olive pomace extract obtained by mechanical pressing. Food Biosci. 2024, 61, 104759. [Google Scholar] [CrossRef]
- Ferreira, D.M.; de Oliveira, N.M.; Chéu, M.H.; Meireles, D.; Lopes, L.; Oliveira, M.B.; Machado, J. Updated Organic Composition and Potential Therapeutic Properties of Different Varieties of Olive Leaves from Olea europaea. Plants 2023, 12, 688. [Google Scholar] [CrossRef] [PubMed]
- Palmeri, R.; Siracusa, L.; Carrubba, M.; Parafati, L.; Proetto, I.; Pesce, F.; Fallico, B. Olive Leaves, a Promising Byproduct of Olive Oil Industry: Assessment of Metabolic Profiles and Antioxidant Capacity as a Function of Cultivar and Seasonal Change. Agronomy 2022, 12, 2007. [Google Scholar] [CrossRef]
- Natac. Revolutionising the Olive Industry: OLEAF4VALUE Unveils Market-Ready, Bio-Based Products from Olive Leaf Valorisation. Available online: https://natacgroup.com/news/revolutionising-the-olive-industry-oleaf4value-unveils-market-ready-bio-based-products-from-olive-leaf-valorisation/?utm_source=chatgpt.com (accessed on 7 January 2025).
- Nunes, M.A.; Palmeira, J.D.; Melo, D.; Machado, S.; Lobo, J.C.; Costa, A.S.G.; Alves, R.C.; Ferreira, H.; Oliveira, M.B.P.P. Chemical composition and antimicrobial activity of a new olive pomace functional ingredient. Pharmaceuticals 2021, 14, 913. [Google Scholar] [CrossRef]
- Romero-Márquez, J.M.; Navarro-Hortal, M.D.; Jiménez-Trigo, V.; Muñoz-Ollero, P.; Forbes-Hernández, T.Y.; Esteban-Muñoz, A.; Giampieri, F.; Delgado Noya, I.; Bullón, P.; Vera-Ramírez, L.; et al. An Olive-Derived Extract 20% Rich in Hydroxytyrosol Prevents β-Amyloid Aggregation and Oxidative Stress, Two Features of Alzheimer Disease, via SKN-1/NRF2 and HSP-16.2 in Caenorhabditis elegans. Antioxidants 2022, 11, 629. [Google Scholar] [CrossRef]
- Romero-Márquez, J.M.; Navarro-Hortal, M.D.; Jiménez-Trigo, V.; Vera-Ramírez, L.; Forbes-Hernández, T.J.; Esteban-Muñoz, A.; Giampieri, F.; Bullón, P.; Battino, M.; Sánchez-González, C.; et al. An oleuropein rich-olive (Olea europaea L.) leaf extract reduces β-amyloid and tau proteotoxicity through regulation of oxidative- and heat shock-stress responses in Caenorhabditis elegans. Food Chem. Toxicol. 2022, 162, 112914. [Google Scholar] [CrossRef]
- Alam, M.; Alam, S.; Shamsi, A.; Adnan, M.; Elasbali, A.M.; Al-Soud, W.A.; Alreshidi, M.; Hawsawi, Y.M.; Tippana, A.; Pasupuleti, V.R. Bax/Bcl-2 cascade is regulated by the EGFR pathway: Therapeutic targeting of non-small cell lung cancer. Front. Oncol. 2022, 12, 869672. [Google Scholar] [CrossRef]
- Wen, Y.; Zhu, Y.; Zhang, C.; Yang, X.; Gao, Y.; Li, M.; Yang, H.; Liu, T.; Tang, H. Chronic inflammation, cancer development and immunotherapy. Front. Pharmacol. 2022, 13, 1040163. [Google Scholar] [CrossRef]
- Teleanu, R.I.; Chircov, C.; Grumezescu, A.M.; Teleanu, D.M. Tumor Angiogenesis and Anti-Angiogenic Strategies for Cancer Treatment. J. Clin. Med. 2020, 9, 84. [Google Scholar] [CrossRef]
- Bulotta, S.; Corradino, R.; Celano, M.; Maiuolo, J.; D’Agostino, M.; Oliverio, M.; Procopio, A.; Filetti, S.; Russo, D. Antioxidant and antigrowth action of peracetylated oleuropein in thyroid cancer cells. J. Mol. Endocrinol. 2013, 51, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Zurita, F.J.; Pachón-Peña, G.; Lizárraga, D.; Rufino-Palomares, E.E.; Cascante, M.; Lupiáñez, J.A. The natural triterpene maslinic acid induces apoptosis in HT29 colon cancer cells by a JNK-p53-dependent mechanism. BMC Cancer 2011, 11, 154. [Google Scholar] [CrossRef]
- Arfin, S.; Jha, N.K.; Jha, S.K.; Kesari, K.K.; Ruokolainen, J.; Roychoudhury, S.; Rathi, B.; Kumar, D. Oxidative Stress in Cancer Cell Metabolism. Antioxidants 2021, 10, 642. [Google Scholar] [CrossRef]
- Sun, L.; Luo, C.; Liu, J. Hydroxytyrosol induces apoptosis in human colon cancer cells through ROS generation. Food Funct. 2014, 5, 1909–1914. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Ahn, K.S.; Shanmugam, M.K.; Wang, H.; Shen, H.; Arfuso, F.; Chinnathambi, A.; Alharbi, S.A.; Chang, Y.; Sethi, G. Oleuropein induces apoptosis via abrogating NF-κB activation cascade in estrogen receptor–negative breast cancer cells. J. Cell. Biochem. 2019, 120, 4504–4513. [Google Scholar] [CrossRef]
- Yan, C.M.; Chai, E.Q.; Cai, H.Y.; Miao, G.Y.; Ma, W. Oleuropein induces apoptosis via activation of caspases and suppression of phosphatidylinositol 3-kinase/protein kinase B pathway in HepG2 human hepatoma cell line. Mol. Med. Rep. 2015, 11, 4617–4624. [Google Scholar] [CrossRef] [PubMed]
- Cusimano, A.; Balasus, D.; Azzolina, A.; Augello, G.; Emma, M.R.; Di Sano, C.; Gramignoli, R.; Strom, S.C.; McCubrey, J.A.; Montalto, G. Oleocanthal exerts antitumor effects on human liver and colon cancer cells through ROS generation. Int. J. Oncol. 2017, 51, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Allouche, Y.; Warleta, F.; Campos, M.; Sánchez-Quesada, C.; Uceda, M.; Beltrán, G.; Gaforio, J.J. Antioxidant, Antiproliferative, and Pro-apoptotic Capacities of Pentacyclic Triterpenes Found in the Skin of Olives on MCF-7 Human Breast Cancer Cells and Their Effects on DNA Damage. J. Agric. Food Chem. 2011, 59, 121–130. [Google Scholar] [CrossRef]
- Albogami, S.; Hassan, A.M. Assessment of the Efficacy of Olive Leaf (Olea europaea L.) Extracts in the Treatment of Colorectal Cancer and Prostate Cancer Using In Vitro Cell Models. Molecules 2021, 26, 4069. [Google Scholar] [CrossRef]
- Menendez, J.A.; Vazquez-Martin, A.; Colomer, R.; Brunet, J.; Carrasco-Pancorbo, A.; Garcia-Villalba, R.; Fernandez-Gutierrez, A.; Segura-Carretero, A. Olive oil’s bitter principle reverses acquired autoresistance to trastuzumab (Herceptin™) in HER2-overexpressing breast cancer cells. BMC Cancer 2007, 7, 80. [Google Scholar] [CrossRef]
- Menendez, J.A.; Vazquez-Martin, A.; Garcia-Villalba, R.; Carrasco-Pancorbo, A.; Oliveras-Ferraros, C.; Fernandez-Gutierrez, A.; Segura-Carretero, A. tabAnti-HER2 (erbB-2) oncogene effects of phenolic compounds directly isolated from commercial Extra-Virgin Olive Oil (EVOO). BMC Cancer 2008, 8, 377. [Google Scholar] [CrossRef] [PubMed]
- Menendez, J.A.; Vazquez-Martin, A.; Oliveras-Ferraros, C.; Garcia-Villalba, R.; Carrasco-Pancorbo, A.; Fernandez-Gutierrez, A.; Segura-Carretero, A. Analyzing effects of extra-virgin olive oil polyphenols on breast cancer-associated fatty acid synthase protein expression using reverse-phase protein microarrays. Int. J. Mol. Med. 2008, 22, 433–439. [Google Scholar] [CrossRef]
- Fu, S.; Arráez-Roman, D.; Segura-Carretero, A.; Menéndez, J.A.; Menéndez-Gutiérrez, M.P.; Micol, V.; Fernández-Gutiérrez, A. Qualitative screening of phenolic compounds in olive leaf extracts by hyphenated liquid chromatography and preliminary evaluation of cytotoxic activity against human breast cancer cells. Anal. Bioanal. Chem. 2010, 397, 643–654. [Google Scholar] [CrossRef]
- Goulas, V.; Exarchou, V.; Troganis, A.N.; Psomiadou, E.; Fotsis, T.; Briasoulis, E.; Gerothanassis, I.P. Phytochemicals in olive-leaf extracts and their antiproliferative activity against cancer and endothelial cells. Mol. Nutr. Food Res. 2009, 53, 600–608. [Google Scholar] [CrossRef]
- Di Francesco, A.; Falconi, A.; Di Germanio, C.; Micioni Di Bonaventura, M.V.; Costa, A.; Caramuta, S.; Del Carlo, M.; Compagnone, D.; Dainese, E.; Cifani, C.; et al. Extravirgin olive oil up-regulates CB1 tumor suppressor gene in human colon cancer cells and in rat colon via epigenetic mechanisms. J. Nutr. Biochem. 2015, 26, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Polini, B.; Digiacomo, M.; Carpi, S.; Bertini, S.; Gado, F.; Saccomanni, G.; Macchia, M.; Nieri, P.; Manera, C.; Fogli, S. Oleocanthal and oleacein contribute to the In Vitro therapeutic potential of extra virgin oil-derived extracts in non-melanoma skin cancer. Toxicol. In Vitro 2018, 52, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Kimura, Y.; Sumiyoshi, M. Olive Leaf Extract and Its Main Component Oleuropein Prevent Chronic Ultraviolet B Radiation-Induced Skin Damage and Carcinogenesis in Hairless Mice. J. Nutr. 2009, 139, 2079–2086. [Google Scholar] [CrossRef] [PubMed]
- Kugić, A.; Dabelić, S.; Brala, C.J.; Dabelić, N.; Barbarić, M. Extra Virgin Olive Oil Secoiridoids Modulate the Metabolic Activity of Dacarbazine Pre-Treated and Treatment-Naive Melanoma Cells. Molecules 2022, 27, 3310. [Google Scholar] [CrossRef]
- Anter, J.; Fernández-Bedmar, Z.; Villatoro-Pulido, M.; Demyda-Peyras, S.; Moreno-Millán, M.; Alonso-Moraga, Á.; Muñoz-Serrano, A.; Luque de Castro, M.D. A pilot study on the DNA-protective, cytotoxic, and apoptosis-inducing properties of olive-leaf extracts. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2011, 723, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Anter, J.; Tasset, I.; Demyda-Peyrás, S.; Ranchal, I.; Moreno-Millán, M.; Romero-Jimenez, M.; Muntané, J.; Luque de Castro, M.D.; Muñoz-Serrano, A.; Alonso-Moraga, Á. Evaluation of potential antigenotoxic, cytotoxic and proapoptotic effects of the olive oil by-product “alperujo”, hydroxytyrosol, tyrosol and verbascoside. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2014, 772, 25–33. [Google Scholar] [CrossRef]
- De Stefanis, D.; Scimè, S.; Accomazzo, S.; Catti, A.; Occhipinti, A.; Bertea, C.M.; Costelli, P. Anti-Proliferative Effects of an Extra-Virgin Olive Oil Extract Enriched in Ligstroside Aglycone and Oleocanthal on Human Liver Cancer Cell Lines. Cancers 2019, 11, 1640. [Google Scholar] [CrossRef] [PubMed]
- Goldsmith, C.; Sakoff, J.; Stathopoulos, C.; Roach, P.; Scarlett, C. Cytotoxicity of Methanol and Aqueous Olive Pomace Extracts Towards Pancreatic Cancer Cells In Vitro. J. Nat. Prod. Cancer Chemo Prev. Agents 2018, 2, 1–6. Available online: https://www.unitedscientificgroup.org/journals/ets/articles/v1n1/jnpcpt-02-chloe-desiree-goldsmith.pdf (accessed on 22 December 2024).
- Papakonstantinou, A.; Koumarianou, P.; Diamantakos, P.; Melliou, E.; Magiatis, P.; Boleti, H. A Systematic Ex-Vivo Study of the Anti-Proliferative/Cytotoxic Bioactivity of Major Olive Secoiridoids’ Double Combinations and of Total Olive Oil Phenolic Extracts on Multiple Cell-Culture Based Cancer Models Highlights Synergistic Effects. Nutrients 2023, 15, 2538. [Google Scholar] [CrossRef]
- Sakavitsi, M.E.; Breynaert, A.; Nikou, T.; Lauwers, S.; Pieters, L.; Hermans, N.; Halabalaki, M. Availability and Metabolic Fate of Olive Phenolic Alcohols Hydroxytyrosol and Tyrosol in the Human GI Tract Simulated by the In Vitro GIDM-Colon Model. Metabolites 2022, 12, 391. [Google Scholar] [CrossRef]
- Calahorra, J.; Martínez-Lara, E.; De Dios, C.; Siles, E. Hypoxia modulates the antioxidant effect of hydroxytyrosol in MCF-7 breast cancer cells. PLoS ONE 2018, 13, e0203892. [Google Scholar] [CrossRef]
- Cruz-Lozano, M.; González-González, A.; Marchal, J.A.; Muñoz-Muela, E.; Molina, M.P.; Cara, F.E.; Brown, A.M.; García-Rivas, G.; Hernández-Brenes, C.; Lorente, J.A.; et al. Hydroxytyrosol inhibits cancer stem cells and the metastatic capacity of triple-negative breast cancer cell lines by the simultaneous targeting of epithelial-to-mesenchymal transition, Wnt/β-catenin and TGFβ signaling pathways. Eur. J. Nutr. 2019, 58, 3207–3219. [Google Scholar] [CrossRef] [PubMed]
- El-azem, N.; Pulido-Moran, M.; Ramirez-Tortosa, C.L.; Quiles, J.L.; Cara, F.E.; Sanchez-Rovira, P.; Granados-Principal, S.; Ramirez-Tortosa, M. Modulation by hydroxytyrosol of oxidative stress and antitumor activities of paclitaxel in breast cancer. Eur. J. Nutr. 2019, 58, 1203–1211. [Google Scholar] [CrossRef]
- Calahorra, J.; Martínez-Lara, E.; Granadino-Roldán, J.M.; Martí, J.M.; Cañuelo, A.; Blanco, S.; Oliver, F.J.; Siles, E. Crosstalk between hydroxytyrosol, a major olive oil phenol, and HIF-1 in MCF-7 breast cancer cells. Sci. Rep. 2020, 10, 6361. [Google Scholar] [CrossRef]
- Corona, G.; Deiana, M.; Incani, A.; Vauzour, D.; Dessì, M.A.; Spencer, J.P. Hydroxytyrosol inhibits the proliferation of human colon adenocarcinoma cells through inhibition of ERK1/2 and cyclin D1. Mol. Nutr. Food Res. 2009, 53, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Terzuoli, E.; Donnini, S.; Giachetti, A.; Iñiguez, M.A.; Fresno, M.; Melillo, G.; Ziche, M. Inhibition of hypoxia inducible factor-1alpha by dihydroxyphenylethanol, a product from olive oil, blocks microsomal prostaglandin-E synthase-1/vascular endothelial growth factor expression and reduces tumor angiogenesis. Clin. Cancer Res. 2010, 16, 4207–4216. [Google Scholar] [CrossRef]
- Terzuoli, E.; Giachetti, A.; Ziche, M.; Donnini, S. Hydroxytyrosol, a product from olive oil, reduces colon cancer growth by enhancing epidermal growth factor receptor degradation. Mol. Nutr. Food Res. 2016, 60, 519. [Google Scholar] [CrossRef]
- Terzuoli, E.; Nannelli, G.; Frosini, M.; Giachetti, A.; Ziche, M.; Donnini, S. Inhibition of cell cycle progression by the hydroxytyrosol-cetuximab combination yields enhanced chemotherapeutic efficacy in colon cancer cells. Oncotarget 2017, 8, 83207–83224. [Google Scholar] [CrossRef]
- Hormozi, M.; Salehi Marzijerani, A.; Baharvand, P. Effects of Hydroxytyrosol on Expression of Apoptotic Genes and Activity of Antioxidant Enzymes in LS180 Cells. Cancer Manag. Res. 2020, 12, 7913–7919. [Google Scholar] [CrossRef]
- Rosignoli, P.; Fuccelli, R.; Sepporta, M.V.; Fabiani, R. In Vitro chemopreventive activities of hydroxytyrosol: The main phenolic compound present in extra-virgin olive oil. Food Funct. 2016, 7, 301. [Google Scholar] [CrossRef] [PubMed]
- Zubair, H.; Bhardwaj, A.; Ahmad, A.; Srivastava, S.K.; Khan, M.A.; Patel, G.K.; Singh, S.; Singh, A.P. Hydroxytyrosol Induces Apoptosis and Cell Cycle Arrest and Suppresses Multiple Oncogenic Signaling Pathways in Prostate Cancer Cells. Nutr. Cancer 2017, 69, 932–942. [Google Scholar] [CrossRef] [PubMed]
- Tutino, V.; Caruso, M.G.; Messa, C.; Perri, E.; Notarnicola, M. Antiproliferative, antioxidant and anti-inflammatory effects of hydroxytyrosol on human hepatoma HepG2 and Hep3B cell lines. Anticancer Res. 2012, 32, 5371–5377. [Google Scholar]
- Zhao, B.; Ma, Y.; Xu, Z.; Wang, J.; Wang, F.; Wang, D.; Pan, S.; Wu, Y.; Pan, H.; Xu, D.; et al. Hydroxytyrosol, a natural molecule from olive oil, suppresses the growth of human hepatocellular carcinoma cells via inactivating AKT and nuclear factor-kappa B pathways. Cancer Lett. 2014, 347, 79–87. [Google Scholar] [CrossRef]
- Bongiorno, D.; Di Stefano, V.; Indelicato, S.; Avellone, G.; Ceraulo, L. Bio-phenols determination in olive oils: Recent mass spectrometry approaches. Mass Spectrom. Rev. 2023, 42, 1462–1502. [Google Scholar] [CrossRef]
- Karousi, P.; Kontos, C.K.; Papakotsi, P.; Kostakis, I.K.; Skaltsounis, A.-L.; Scorilas, A. Next-generation sequencing reveals altered gene expression and enriched pathways in triple-negative breast cancer cells treated with oleuropein and oleocanthal. Funct. Integr. Genom. 2023, 23, 299. [Google Scholar] [CrossRef] [PubMed]
- Abtin, M.; Alivand, M.R.; Khaniani, M.S.; Bastami, M.; Zaeifizadeh, M.; Derakhshan, S.M. Simultaneous downregulation of miR-21 and miR-155 through oleuropein for breast cancer prevention and therapy. J. Cell. Biochem. 2018, 119, 7151–7165. [Google Scholar] [CrossRef]
- Elamin, M.H.; Elmahi, A.B.; Daghestani, M.H.; Al-Olayan, E.M.; Al-Ajmi, R.A.; Alkhuriji, A.F.; Hamed, S.S.; Elkhadragy, M.F. Synergistic anti-breast-cancer effects of combined treatment with oleuropein and doxorubicin in vivo. Altern. Ther. Health Med. 2019, 25, 17–24. [Google Scholar]
- Przychodzen, P.; Kuban-Jankowska, A.; Wyszkowska, R.; Barone, G.; Bosco, G.L.; Celso, F.L.; Kamm, A.; Daca, A.; Kostrzewa, T.; Gorska-Ponikowska, M. PTP1B phosphatase as a novel target of oleuropein activity in MCF-7 breast cancer model. Toxicol. In Vitro 2019, 61, 104624. [Google Scholar] [CrossRef]
- Akl, M.R.; Ayoub, N.M.; Mohyeldin, M.M.; Busnena, B.A.; Foudah, A.I.; Liu, Y.-Y.; Sayed, K.A.E. Olive phenolics as c-Met inhibitors:(-)-Oleocanthal attenuates cell proliferation, invasiveness, and tumor growth in breast cancer models. PLoS ONE 2014, 9, e97622. [Google Scholar] [CrossRef] [PubMed]
- Ayoub, N.M.; Siddique, A.B.; Ebrahim, H.Y.; Mohyeldin, M.M.; El Sayed, K.A. The olive oil phenolic (-)-oleocanthal modulates estrogen receptor expression in luminal breast cancer in vitro and in vivo and synergizes with tamoxifen treatment. Eur. J. Pharmacol. 2017, 810, 100–111. [Google Scholar] [CrossRef]
- Diez-Bello, R.; Jardin, I.; Lopez, J.J.; El Haouari, M.; Ortega-Vidal, J.; Altarejos, J.; Salido, G.M.; Salido, S.; Rosado, J.A. (−)-Oleocanthal inhibits proliferation and migration by modulating Ca2+ entry through TRPC6 in breast cancer cells. BBA Mol. Cell Res. 2019, 1866, 474–485. [Google Scholar] [CrossRef]
- Siddique, A.B.; Ebrahim, H.Y.; Akl, M.R.; Ayoub, N.M.; Goda, A.A.; Mohyeldin, M.M.; Nagumalli, S.K.; Hananeh, W.M.; Liu, Y.-Y.; Meyer, S.A.; et al. (−)-Oleocanthal Combined with Lapatinib Treatment Synergized against HER-2 Positive Breast Cancer In Vitro and In Vivo. Nutrients 2019, 11, 412. [Google Scholar] [CrossRef]
- Siddique, A.B.; Ayoub, N.M.; Tajmim, A.; Meyer, S.A.; Hill, R.A.; El Sayed, K.A. (−)-Oleocanthal Prevents Breast Cancer Locoregional Recurrence After Primary Tumor Surgical Excision and Neoadjuvant Targeted Therapy in Orthotopic Nude Mouse Models. Cancers 2019, 11, 637. [Google Scholar] [CrossRef] [PubMed]
- Qusa, M.H.; Siddique, A.B.; Nazzal, S.; El Sayed, K.A. Novel olive oil phenolic (−)-oleocanthal (+)-xylitol-based solid dispersion formulations with potent oral anti-breast cancer activities. Int. J. Pharm. 2019, 569, 118596. [Google Scholar] [CrossRef]
- Siddique, A.B.; Ebrahim, H.; Mohyeldin, M.; Qusa, M.; Batarseh, Y.; Fayyad, A.; Tajmim, A.; Nazzal, S.; Kaddoumi, A.; El Sayed, K. Novel liquid-liquid extraction and self-emulsion methods for simplified isolation of extra-virgin olive oil phenolics with emphasis on (-)-oleocanthal and its oral anti-breast cancer activity. PLoS ONE 2019, 14, e0214798. [Google Scholar] [CrossRef]
- Elnagar, A.; Sylvester, P.; El Sayed, K. Oleocanthal as a c-Met inhibitor for the control of metastatic breast and prostate cancer. Planta Medica 2011, 77, 1013–1019. [Google Scholar] [CrossRef]
- Khanfar, M.A.; Bardaweel, S.K.; Akl, M.R.; El Sayed, K.A. Olive oil-derived oleocanthal as potent inhibitor of mammalian target of rapamycin: Biological evaluation and molecular modeling studies. Phytother. Res. 2015, 29, 1776–1782. [Google Scholar] [CrossRef]
- Goren, L.; Zhang, G.; Kaushik, S.; Breslin, P.A.; Du, Y.-C.N.; Foster, D.A. (-)-Oleocanthal and (-)-oleocanthal-rich olive oils induce lysosomal membrane permeabilization in cancer cells. PLoS ONE 2019, 14, e0216024. [Google Scholar] [CrossRef]
- Giner, E.; Recio, M.C.; Ríos, J.L.; Cerdá-Nicolás, J.M.; Giner, R.M. Chemopreventive effect of oleuropein in colitis-associated colorectal cancer in c57bl/6 mice. Mol. Nutr. Food Res. 2016, 60, 242–255. [Google Scholar] [CrossRef]
- Sepporta, M.V.; Fuccelli, R.; Rosignoli, P.; Ricci, G.; Servili, M.; Fabiani, R. Oleuropein Prevents Azoxymethane-Induced Colon Crypt Dysplasia and Leukocytes DNA Damage in A/J Mice. J. Med. Food 2016, 19, 983–989. [Google Scholar] [CrossRef]
- Khanal, P.; Oh, W.-K.; Yun, H.J.; Namgoong, G.M.; Ahn, S.-G.; Kwon, S.-M.; Choi, H.-K.; Choi, H.S. p-HPEA-EDA, a phenolic compound of virgin olive oil, activates AMP-activated protein kinase to inhibit carcinogenesis. Carcinogenesis 2011, 32, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Sherif, I.O.; Al-Gayyar, M.M.H. Oleuropein potentiates anti-tumor activity of cisplatin against HepG2 through affecting proNGF/NGF balance. Life Sci. 2018, 198, 87–93. [Google Scholar] [CrossRef]
- Pei, T.; Meng, Q.; Han, J.; Sun, H.; Li, L.; Song, R.; Sun, B.; Pan, S.; Liang, D.; Liu, L. (−)-Oleocanthal inhibits growth and metastasis by blocking activation of STAT3 in human hepatocellular carcinoma. Oncotarget 2016, 7, 43475. [Google Scholar] [CrossRef]
- Ruzzolini, J.; Peppicelli, S.; Andreucci, E.; Bianchini, F.; Scardigli, A.; Romani, A.; La Marca, G.; Nediani, C.; Calorini, L. Oleuropein, the Main Polyphenol of Olea europaea Leaf Extract, Has an Anti-Cancer Effect on Human BRAF Melanoma Cells and Potentiates the Cytotoxicity of Current Chemotherapies. Nutrients 2018, 10, 1950. [Google Scholar] [CrossRef] [PubMed]
- Fogli, S.; Arena, C.; Carpi, S.; Polini, B.; Bertini, S.; Digiacomo, M.; Gado, F.; Saba, A.; Saccomanni, G.; Breschi, M.C. Cytotoxic activity of oleocanthal isolated from virgin olive oil on human melanoma cells. Nutr. Cancer 2016, 68, 873–877. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Wang, J.; Peng, L. (-)-Oleocanthal exerts anti-melanoma activities and inhibits STAT3 signaling pathway. Oncol. Rep. 2017, 37, 483–491. [Google Scholar] [CrossRef]
- Wang, W.; Wu, J.; Zhang, Q.; Li, X.; Zhu, X.; Wang, Q.; Cao, S.; Du, L. Mitochondria-mediated apoptosis was induced by oleuropein in H1299 cells involving activation of p38 MAP kinase. J. Cell. Biochem. 2019, 120, 5480–5494. [Google Scholar] [CrossRef]
- Siddique, A.B.; Kilgore, P.C.S.R.; Tajmim, A.; Singh, S.S.; Meyer, S.A.; Jois, S.D.; Cvek, U.; Trutschl, M.; Sayed, K.A.E. (−)-Oleocanthal as a Dual c-MET-COX2 Inhibitor for the Control of Lung Cancer. Nutrients 2020, 12, 1749. [Google Scholar] [CrossRef]
- Seçme, M.; Eroğlu, C.; Dodurga, Y.; Bağcı, G. Investigation of anticancer mechanism of oleuropein via cell cycle and apoptotic pathways in SH-SY5Y neuroblastoma cells. Gene 2016, 585, 93–99. [Google Scholar] [CrossRef]
- Ünsal, Ü.Ü.; Mete, M.; Aydemir, I.; Duransoy, Y.K.; Umur, A.Ş.; Tuglu, M.I. Inhibiting effect of oleocanthal on neuroblastoma cancer cell proliferation in culture. Biotech. Histochem. 2020, 95, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Cirmi, S.; Celano, M.; Lombardo, G.E.; Maggisano, V.; Procopio, A.; Russo, D.; Navarra, M. Oleacein inhibits STAT3, activates the apoptotic machinery, and exerts anti-metastatic effects in the SH-SY5Y human neuroblastoma cells. Food Funct. 2020, 11, 3271–3279. [Google Scholar] [CrossRef] [PubMed]
- Rigacci, S.; Miceli, C.; Nediani, C.; Berti, A.; Cascella, R.; Pantano, D.; Nardiello, P.; Luccarini, I.; Casamenti, F.; Stefani, M. Oleuropein aglycone induces autophagy via the AMPK/mTOR signalling pathway: A mechanistic insight. Oncotarget 2015, 6, 35344. [Google Scholar] [CrossRef]
- Przychodzen, P.; Wyszkowska, R.; Gorzynik-Debicka, M.; Kostrzewa, T.; Kuban-Jankowska, A.; Gorska-Ponikowska, M. Anticancer potential of oleuropein, the polyphenol of olive oil, with 2-methoxyestradiol, separately or in combination, in human osteosarcoma cells. Anticancer Res. 2019, 39, 1243–1251. [Google Scholar] [CrossRef]
- Potočnjak, I.; Škoda, M.; Pernjak-Pugel, E.; Peršić, M.P.; Domitrović, R. Oral administration of oleuropein attenuates cisplatin-induced acute renal injury in mice through inhibition of ERK signaling. Mol. Nutr. Food Res. 2016, 60, 530–541. [Google Scholar] [CrossRef]
- Salvador, J.A.R.; Leal, A.S.; Alho, D.P.S.; Gonçalves, B.M.F.; Valdeira, A.S.; Mendes, V.I.S.; Jing, Y. Chapter 2—Highlights of Pentacyclic Triterpenoids in the Cancer Settings. In Studies in Natural Products Chemistry; Atta-ur, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 41, pp. 33–73. [Google Scholar]
- Rufino-Palomares, E.E.; Reyes-Zurita, F.J.; García-Salguero, L.; Mokhtari, K.; Medina, P.P.; Lupiáñez, J.A.; Peragón, J. Maslinic acid, a triterpenic anti-tumoural agent, interferes with cytoskeleton protein expression in HT29 human coloncancer cells. J. Proteom. 2013, 83, 15. [Google Scholar] [CrossRef]
- Sánchez-Tena, S.; Reyes-Zurita, F.J.; Díaz-Moralli, S.; Vinardell, M.P.; Reed, M.; García-García, F.; Dopazo, J.; Lupiáñez, J.A.; Günther, U.; Cascante, M. Maslinic acid-enriched diet decreases intestinal tumorigenesis in ApcMin/+ mice through transcriptomic and metabolomic reprogramming. PLoS ONE 2013, 8, e59392. [Google Scholar] [CrossRef]
- Wei, Q.; Zhang, B.; Li, P.; Wen, X.; Yang, J. Maslinic Acid Inhibits Colon Tumorigenesis by the AMPK–mTOR Signaling Pathway. J. Agric. Food Chem. 2019, 67, 4259–4272. [Google Scholar] [CrossRef]
- Juan, M.E.; Wenzel, U.; Daniel, H.; Planas, J. Erythrodiol, a natural triterpenoid from olives, has antiproliferative and apoptotic activity in HT-29 human adenocarcinoma cells. Mol. Nutr. Food Res. 2008, 52, 595–599. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Ding, D.; Zhang, X.; Shan, L.; Liu, Z. Maslinic acid induced apoptosis in bladder cancer cells through activating p38 MAPK signaling pathway. Mol. Cell. Biochem. 2014, 392, 281. [Google Scholar] [CrossRef]
- Thakor, P.; Song, W.; Subramanian, R.B.; Thakkar, V.R.; Vesey, D.A.; Gobe, G.C. Maslinic acid inhibits proliferation of renal cell carcinoma cell lines and suppresses angiogenesis of endothelial cells. J. Kidney Cancer VHL 2017, 4, 16. [Google Scholar] [CrossRef] [PubMed]
- Alowaiesh, B.F.; Alhaithloul, H.A.S.; Saad, A.M.; Hassanin, A.A. Green Biogenic of Silver Nanoparticles Using Polyphenolic Extract of Olive Leaf Wastes with Focus on Their Anticancer and Antimicrobial Activities. Plants 2023, 12, 1410. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Yu, H. Olive leaf extract green-formulated manganese nanoparticles: Characterization and antioxidant, cytotoxicity and anti-breast carcinoma properties. Inorg. Chem. Commun. 2024, 163, 112376. [Google Scholar] [CrossRef]
- Lu, H.-Y.; Zhu, J.-S.; Zhang, Z.; Shen, W.-J.; Jiang, S.; Long, Y.-F.; Wu, B.; Ding, T.; Huan, F.; Wang, S.-L. Hydroxytyrosol and Oleuropein Inhibit Migration and Invasion of MDA-MB-231 Triple-Negative Breast Cancer Cell via Induction of Autophagy. Anti Cancer Agents Med. Chem. 2019, 19, 1983–1990. [Google Scholar] [CrossRef]
- Lu, H.-Y.; Zhu, J.-S.; Xie, J.; Zhang, Z.; Zhu, J.; Jiang, S.; Shen, W.-J.; Wu, B.; Ding, T.; Wang, S.-L. Hydroxytyrosol and Oleuropein Inhibit Migration and Invasion via Induction of Autophagy in ER-Positive Breast Cancer Cell Lines (MCF7 and T47D). Nutr. Cancer 2021, 73, 350–360. [Google Scholar] [CrossRef]
- Busnena, B.A.; Foudah, A.I.; Melancon, T.; El Sayed, K.A. Olive secoiridoids and semisynthetic bioisostere analogues for the control of metastatic breast cancer. Bioorg. Med. Chem. 2013, 21, 2117–2127. [Google Scholar] [CrossRef]
- Cárdeno, A.; Sánchez-Hidalgo, M.; Rosillo, M.A.; Lastra, C.A.d.l. Oleuropein, a Secoiridoid Derived from Olive Tree, Inhibits the Proliferation of Human Colorectal Cancer Cell Through Downregulation of HIF-1α. Nutr. Cancer 2013, 65, 147–156. [Google Scholar] [CrossRef]
- Hazas, M.-C.L.d.l.; Piñol, C.; Macià, A.; Motilva, M.-J. Hydroxytyrosol and the Colonic Metabolites Derived from Virgin Olive Oil Intake Induce Cell Cycle Arrest and Apoptosis in Colon Cancer Cells. J. Agric. Food Chem. 2017, 65, 6467–6476. [Google Scholar] [CrossRef] [PubMed]
- Bernini, R.; Carastro, I.; Palmini, G.; Tanini, A.; Zonefrati, R.; Pinelli, P.; Brandi, M.L.; Romani, A. Lipophilization of Hydroxytyrosol-Enriched Fractions from Olea europaea L. Byproducts and Evaluation of the In Vitro Effects on a Model of Colorectal Cancer Cells. J. Agric. Food Chem. 2017, 65, 6506–6512. [Google Scholar] [CrossRef]
- Quintero-Fabián, S.; Arreola, R.; Becerril-Villanueva, E.; Torres-Romero, J.C.; Arana-Argáez, V.; Lara-Riegos, J.; Ramírez-Camacho, M.A.; Alvarez-Sánchez, M.E. Role of matrix metalloproteinases in angiogenesis and cancer. Front. Oncol. 2019, 9, 1370. [Google Scholar] [CrossRef]
- Goldsmith, C.D.; Bond, D.R.; Jankowski, H.; Weidenhofer, J.; Stathopoulos, C.E.; Roach, P.D.; Scarlett, C.J. The Olive Biophenols Oleuropein and Hydroxytyrosol Selectively Reduce Proliferation, Influence the Cell Cycle, and Induce Apoptosis in Pancreatic Cancer Cells. Int. J. Mol. Sci. 2018, 19, 1937. [Google Scholar] [CrossRef] [PubMed]
- Lamy, S.; Ben Saad, A.; Zgheib, A.; Annabi, B. Olive oil compounds inhibit the paracrine regulation of TNF-α-induced endothelial cell migration through reduced glioblastoma cell cyclooxygenase-2 expression. J. Nutr. Biochem. 2016, 27, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Banim, P.J.R.; Luben, R.; Khaw, K.-T.; Hart, A.R. Dietary oleic acid is inversely associated with pancreatic cancer—Data from food diaries in a cohort study. Pancreatology 2018, 18, 655–660. [Google Scholar] [CrossRef]
Comp. | Cancer | Effects | Study | Model | Dose | Ref. |
---|---|---|---|---|---|---|
Elenolic acid, HT, OL aglycone, TYR | Breast | Antiproliferative, apoptotic, OL aglycone synergy w/trastuzumab | In vitro | MCF-7, SKBR3, SKBR3/Tzb100 | 6.25–100 μM, 1–5 d | [28] |
Elenolic acid, HT, OL derivatives, TYR, etc. | Antiproliferative, apoptotic, cytotoxic | MCF-7, SKBR3 | 25–100 μM, 6 h–4 d | [29] | ||
FAS inhibition | 50 μM, 48 h | [30] | ||||
HT, HT glucoside, OL, OL derivatives, VER | Antiproliferative, HT synergy w/5-fluorouracil | MDA-MB-231 | Extracts (0.1–20 μg/mL), HT (162–2595 μM), 48 h | [5] | ||
OL, OL derivatives, oleanolic acid, etc. | Cytotoxic | JIMT-1, MCF-7, SKBR3 | 10–1000 μg/mL, 72 h | [31] | ||
HT, HT acetate, LUT, LUT derivatives, OL | Breast, bladder, endothelial | Antiproliferative | BBCE, MCF-7, T-24 | 0–50 μM, 2 d | [32] | |
EVOO’s compounds, HT | Colorectal | Antiproliferative | In vitro, in vivo | Caco-2, NCM460; Sprague Dawley rats | 50 μM, 24–48 h; 250 μL/300 g of EVOO: single intake at day 10 or daily for 10 d | [33] |
Apigenin, caffeic acid, HT, OL, quercetin, TYR, etc. | Antiproliferative, apoptotic, selective cytotoxicity, protective | In vitro | Caco-2 | 1.5 mg/mL, 72 h | [4] | |
Erythrodiol, HT, MA, OC, OL aglycone, oleacein, etc. | Cytotoxic | HCT-116 | 88.25–875.5 μg/mL, 72 h | [7] | ||
Gallic acid, catechin, caffeic acid, kaempferol, etc. | Colorectal, prostate | Cytotoxic, antimigratory, apoptotic | HT-29, PC3 | 198.6–535.3 μg/mL, 12–72 h | [27] | |
OOE’s compounds, HT, OC, oleacein, TYR | Skin | Antiproliferative, antimigratory, apoptotic | A431, HaCat | 1–200 μM, 72–144 h | [34] | |
OLE’s compounds, OL | Anticarcinogenic, anti-inflammatory | In vivo | Albino hairless mice | 10–1000 mg/kg, 2x/d, 30 wk, oral | [35] | |
EVOO’s compounds, OC, oleacein | Melanoma | Antiproliferative, selective cytotoxicity | In vitro | A375, A375M, HaCaT | 0.025–0.4% (v/v), 24–48 h | [36] |
OLE’s compounds, OL, LUT | Leukemia | Antigenotoxic, antimutagenic, apoptotic, cytotoxic, protective | In vitro, in vivo | HL60; D. melanogaster | 3.75–160 μL/mL, 2–640 μM, 72 h | [37] |
OPE’s compounds, HT, TYR, VER | Antigenotoxic, antimutagenic, apoptotic, antiproliferative, protective | 3.75–320 μL/mL, 6.25–480 μM, 72 h | [38] | |||
Elenolic acid, ligstroside aglycone, OC, OL aglycone | Liver | Antiproliferative, apoptotic, cytotoxic, autophagy activation | In vitro | Hep3B, HepG2, Huh7 | 4.81–9.62 μg/mL, 24–72 h | [39] |
OPE’s compounds | Breast, colon, glioblastoma, lung, neuroblastoma, ovarian, pancreatic, prostate, skin | Antiproliferative, selective cytotoxicity | MIA PaCa-2, HT-29, A2780, H460, A431, Du145, BE2-C, MCF-7, U-87, SJ-G2, SMA, MCF-10A, HPDE | 0–200 μg/mL, 72 h | [40] | |
OC, oleacein, ligstroside aglycone, OL aglycone, oleomissional | Breast, cervix, colon, gastric, liver, lung, melanoma, pancreas | Antiproliferative, selective cytotoxicity | MDA-MB-231, SK-BR-3, MCF-7, SK-MEL-28, A2058, HT-29, AGS, HepG2, PANC-1, H1299, Hela, HaCaT, MCF-10A | Half of the EC50, 72 h | [41] | |
Comselogoside, elenolic acid, HT, LUT, MA, VER, etc. | Breast, pancreatic, colorectal | Antiproliferative, cytotoxic, anti-angiogenic | MCF-7, AsPC-1, HT-29, Caco-2 | 100 mg/mL, 24 h | [9] |
Comp. | Cancer | Effects | Study | Model | Dose | Ref. |
---|---|---|---|---|---|---|
HT | Breast | Antiproliferative, cytotoxic | In vitro | MCF-7 | 5–600 μM, 16 h | [43] |
Anti-invasive, antimigratory, antiproliferative, antimetastatic | BT549, Hs578T, MDA-MB-231, SBE-HEK293, SUM159PT | 0.5–100 μM, 72 h | [44] | |||
Antiproliferative, antitumorigenic, protective, synergy w/paclitaxel | In vitro, in vivo | MCF-7, MDA-MB-231; Sprague Dawley rats | 10–100 μM, 72 h; 0.5–2 mg/kg/d, 6 wk, oral | [45] | ||
Antitumorigenic | In vitro, in silico | MCF-7 | 5–400 μM, 16 h | [46] | ||
Colorectal | Antiproliferative | In vitro | Caco-2 | HT (5–162.5 µM, 15 m-96 h) | [47] | |
Anti-angiogenic, anti-inflammatory, antitumorigenic | In vitro, in vivo | HT-29, WiDr; mice w/HT-29 xenograft | 50–100 μM, 3–48 h; 10 mg/kg/d, 14 d | [48] | ||
Apoptotic, selective cytotoxicity | In vitro | CRL1807, DLD1 | 50–200 μM, 24, 48 h | [22] | ||
HT, TYR | Selective cytotoxicity, antiproliferative, antitumorigenic | In vitro, in vivo | Caco-2, CCD-18Co, HT-29, WiDr; mice w/HT-29 xenograft | 1–300 μM, 2–48 h; 10 mg/kg/d, 14 d, intraperitoneal | [49] | |
HT | Antiproliferative, selective cytotoxicity, synergy w/cetuximab, activated autophagy | In vitro | Caco-2, CCD-18Co, HaCaT, HT-29, WiDr | 1–300 μM, 8–48 h | [50] | |
Apoptotic | LS180 | 50–150 μM, 24 h | [51] | |||
Breast, colorectal, prostate | Antiproliferative, protective | HCT, LNCAP, MCF-7, MDA, PBMC, PC3, SW480 | 10–100 μM, 0.5–24 h | [52] | ||
Prostate | Antiproliferative, apoptotic, selective cytotoxicity | C4-2, LNCaP, RWPE1, RWPE2 | 10–400 μM, 24–72 h | [53] | ||
Liver | Anti-inflammatory, antiproliferative | Hep3B, HepG2 | 30–200 μM, 48–72 h | [54] | ||
Anti-angiogenic, antiproliferative, apoptotic, selective cytotoxicity, antitumorigenic | In vitro, in vivo | Hep3B, HepG2, HL-7702, Huh-7, SK-HEP-1; HCC mice | 100–400 μM, 48–72 h; 10–20 mg/kg/d, 3 wk, intraperitoneal | [55] |
Comp. | Cancer | Effects | Study | Model | Dose | Ref. |
---|---|---|---|---|---|---|
OC, OL | Breast | Antiproliferative, apoptotic | In vitro | MDA-MB-231, MDA-MB-468 | OC: 250 μM, OL: 500 μM, 12–48 h | [57] |
OL | Antimigratory, antiproliferative, apoptotic, cytotoxic | MCF-7 | 150–2400 μg/mL, 24–72 h | [58] | ||
Antiproliferative, apoptotic, selective cytotoxicity, antitumorigenic, synergy w/doxorubicin | In vitro, in vivo | MCF-10A, MDA-MB-231; mice injected w/MDA-MB-231 | 50 mg/kg, 72 h; 50 mg/kg, 4 wk, 1X/wk, intraperitoneal | [59] | ||
Anti-invasive, antimigratory, apoptotic | In vitro | MCF-7, MDA-MB-231 | 12.5–100 μM, 24–72 h | [23] | ||
Antiproliferative, cytostatic | In vitro, in silico | MCF-7 | 0.98–250 μM, 24–48 h | [60] | ||
OC | Anti-invasive, antimigratory, antiproliferative, apoptotic, selective cytotoxicity | In vitro, in vivo | BT-474, MCF-7, MCF-10A, MDA-MB-231, mice w/MDA-MB-231 xenograft | 5–15 μM, 24–72 h; 5 mg/kg, 3X/wk, intraperitoneal | [61] | |
Antiproliferative, antitumorigenic, selective toxicity, synergy w/tamoxifen | In vitro, in vivo, in silico | BT-474, MCF-7, T-47D, mice w/BT-474 xenograft | 5–60 μM, 24–48 h; 5–10 mg/kg, 3X/wk, 43 d, intraperitoneal | [62] | ||
Antimigratory, antiproliferative, selective cytotoxicity | In vitro | MCF-7, MCF-10A, MDA-MB-231 | 10–20 μM, 24–72 h | [63] | ||
Anti-invasive, antimigratory, antiproliferative, selective cytotoxicity, antitumorigenic, synergy w/lapatinib | In vitro, in vivo | BT-474, MCF-12A, SKBR3, mice w/BT-474 xenograft | 5–80 μM, 24–48 h, 10 mg/kg, 3X/wk, intraperitoneal | [64] | ||
Antitumorigenic, selective toxicity | In vivo | Mice w/BT-474 or MDA-MB-231 xenograft | 10 mg/kg/d, 40 d, oral | [65] | ||
In vivo, in silico | Mice w/MDA-MB-231 xenograft | 10 mg/kg/d, 15–70 d, oral | [66] | |||
Antiproliferative, selective cytotoxicity, antitumorigenic | In vitro, in vivo | MDA-MB-231, MDA-MB-468, BT-474, MCF-7, MCF10A; Foxn1nu/Foxn1+ mice | 2.5–80 μM; 10 mg/kg, 7X/wk, 40 d, oral | [67] | ||
OC | Breast, prostate | Anti-angiogenic, anti-invasive, antimigratory, antiproliferative | In vitro, in silico | MCF-7, MDA-MB-231, PC-3 | 2–100 μM, 24 h | [68] |
Breast, cervical, colorectal | Antiproliferative | Caco-2, HeLa, MCF-7, MDA-MB-231, T47D | 0.1–50 μM, 24–72 h | [69] | ||
Breast, pancreas, prostate | Antiproliferative, selective cytotoxicity, antitumorigenic | In vitro, in vivo | BJ-hTert, MCF-7, MCF-10A, MDA-MB-231, HEK-293T, PC3, PNET mice | 1–100 μM, 1–24 h; 5 mg/kg/d, 5 wk, intraperitoneal | [70] | |
OL | Colorectal | Preventive against colitis | In vivo | C57BL/6 mice | 50–100 mg/kg, 63 d, oral | [71] |
Preventive against carcinogen (azoxymethane) | A/J mice w/azoxymethane-induced tumors | 125 mg/kg, 6 wk, 1X/wk, intraperitoneal | [72] | |||
p-HPEA-EDA | Apoptotic, antitumorigenic, inhibited colony formation | In vitro, in vivo | HCT-116, HT-29, JB6Cl41, SKBR3; chicken embryo chorioallantoic membrane | 0.1–10 μg/mL, 12–48 h; 50 μg/mL, 3 d | [73] | |
OL | Colorectal, liver | Antiproliferative, apoptotic | In vitro | HepG2, Huh7, RKO | 10–80 μM, 24 h | [24] |
OC | Antiproliferative, apoptotic, selective cytotoxicity | Hep3B, HepG2, HT-29, Huh7, PLC/PRF/5, SW480 | 0.78–100 μM, 24–72 h | [25] | ||
OL | Liver | Synergy w/cisplatin, cytotoxic | HepG2 | 100–400 μM, 24–48 h | [74] | |
OC | Anti-invasive, antimigratory, antiproliferative, apoptotic, selective cytotoxicity, antitumorigenic, antimetastatic | In vitro, in vivo | HCCLM3, HepG2, Huh-7, LO2; HCC mice | 10–80 μM, 24–72 h; 5–10 mg/kg/d, 5 wk, intraperitoneal | [75] | |
OL | Melanoma | Antiproliferative, apoptotic, cytotoxic, synergy w/dacarbazine and everolimus | In vitro | A375, M21, WM266–4 | 250–800 μM, 24–72 h | [76] |
OC | Antiproliferative, apoptotic, selective cytotoxicity | A375, 501Mel, HDFa | 0.01–50 μM, 72 h | [77] | ||
OC | Melanoma, lung | Anti-angiogenic, anti-invasive, antimigratory, antiproliferative, apoptotic, antitumorigenic, antimetastatic | In vitro, in vivo | A2058, A375, HaCaT, HUVEC; mice w/A375 xenograft; lung metastasis model | 5–60 μM, 24–48 h; 10 mg/kg/d, 3 wk, intraperitoneal; 15 mg/kg/d, 6 wk | [78] |
OL | Lung | Antiproliferative, apoptotic | In vitro | H1299 | 50–200 μM, 24 h | [79] |
OC | Antimigratory, antiproliferative, selective cytotoxicity, antitumorigenic, antimetastatic | In vitro, in vivo | A549, HMVEC, NCI-H322M; Foxn1nu/Foxn1+ mice injected w/A549 | 1–60 μM, 24–72 h; 10 mg/kg/d, 8 wk, oral | [80] | |
OL | Neuroblastoma | Anti-invasive, antimigratory, antiproliferative, apoptotic | In vitro | SH-SY5Y | 25–800 μM, 24–72 h | [81] |
OC | Apoptotic, selective cytotoxicity | BMDN, NB2a | 0.1–1000 μM, 24 h | [82] | ||
Oleacein | Antimigratory, antiproliferative, apoptotic, selective cytotoxicity | SH-SY5Y, WI-38 | 1–50 μM, 24–72 h | [83] | ||
OL aglycone | Autophagy induction | In vitro, in vivo | SH-SY5Y; TgCRND8 mice | 50 μM, 5 m-5 h; 50 mg/kg of diet, 8 wk, oral | [84] | |
OL | Osteosarcoma | Antimigratory, antiproliferative, autophagy induction, synergy w/2-methoxyestradiol | In vitro | 143B | 1–250 μM, 24–60 h | [85] |
OL | - | Protective effect against acute renal injury caused by cisplatin | In vivo | BALB/cN mice | 20 mg/kg, oral gavage | [86] |
OL, Ac-OL | Thyroid | Antiproliferative, selective cytotoxicity | In vitro | BCPAP, TAD-2, TPC-1 | 10–100 μM, 24–48 h | [19] |
Comp. | Cancer | Effects | Study | Model | Dose | Ref. |
---|---|---|---|---|---|---|
MA | Colorectal | Apoptotic, clastogenic, cytotoxic | In vitro | HT-29 | 61 μM, 12–72 h | [20] |
Antiproliferative, cytotoxic | 3.75–30 μM, 3–72 h | [88] | ||||
Antitumorigenic, chemopreventive, protective, apoptotic | In vivo | ApcMin/+ mice | 100 mg/kg of feed, 6 wk, oral | [89] | ||
Antimigratory, antiproliferative, apoptotic | In vitro, in vivo | HCT116, SW480; AOM/DSS mice; BALB/c mice w/HCT116 xenograft | 5–20 μM, 12–36 h; 10–30 mg/kg every 2 d, 17 d, oral gavage | [90] | ||
Erythrodiol | Antiproliferative, apoptotic | In vitro | HT-29 | 10–150 μM, 24–72 h | [91] | |
MA | Bladder | Apoptotic, selective cytotoxicity, antitumorigenic | In vitro, in vivo | 253J, L-02, MRC-5, RT4, T24, TCCSUP, PBC-1, PBC-2; BALB/c mice xenograft model | 1–1000 μM, 48–96 h; 5–20 mg/kg every other day, intraperitoneal | [92] |
Kidney | Anti-angiogenic, antiproliferative, selective cytotoxicity | In vitro | ACHN, Caki-1, HUVEC, PTEC, SN12K1 | 47.11–97.04 μM, 24 h | [93] | |
Erythrodiol, MA, oleanolic acid, uvaol | Breast, lymphoma | Antiproliferative, apoptotic, cytotoxic | MCF-7, MDA-MB-231, U937 | 12.5–100 μM, 24–120 h | [26] |
Comp. | Cancer | Effects | Study | Model | Dose | Ref. |
---|---|---|---|---|---|---|
OC, ligstroside aglycone, TYR derivatives | Breast | Anti-invasive, antimigratory, antiproliferative, selective cytotoxicity | In vitro, in silico | MDA-MB-231, MCF-10A | 10–100 μM, 24–48 h | [98] |
HT, OL | Anti-invasive, antimigratory, antiproliferative | In vitro | MDA-MB-231 | 0–150 μM, 24–48 h | [96] | |
MCF-7, T47D | [97] | |||||
Colorectal | Antiproliferative, apoptotic | HT-29 | 200–800 μM, 24–72 h | [99] | ||
HT, HT butanoate, octanoate and oleate | Antiproliferative | HCT8-β8n | 5–50 μM, 20–80 h | [101] | ||
HT, catechol, PA, PP, HPP, DHPP | Antiproliferative, apoptotic, cytotoxic | Caco-2, HT-29 | 100–200 μM, 8–48 h | [100] | ||
HT, TYR, OL, oleic acid | Glioblastoma | Anti-angiogenic, anti-inflammatory, antimigratory | HBMEC, U-87 | 100 μM, 24 h | [104] | |
HT, OL | Pancreatic | Antiproliferative, apoptotic, selective cytotoxicity | ASPC-1, BxPC-3, CFPAC-1, HPDE, MIA PaCa-2 | 0–300 μM, 24–48 h | [103] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melo Ferreira, D.; Oliveira, M.B.P.P.; Alves, R.C. A Comprehensive Review of the Antitumor Activity of Olive Compounds: The Case of Olive Oil, Pomace, and Leaf Extracts, Phenolic Alcohols, Secoiridoids, and Triterpenes. Antioxidants 2025, 14, 237. https://doi.org/10.3390/antiox14020237
Melo Ferreira D, Oliveira MBPP, Alves RC. A Comprehensive Review of the Antitumor Activity of Olive Compounds: The Case of Olive Oil, Pomace, and Leaf Extracts, Phenolic Alcohols, Secoiridoids, and Triterpenes. Antioxidants. 2025; 14(2):237. https://doi.org/10.3390/antiox14020237
Chicago/Turabian StyleMelo Ferreira, Diana, Maria Beatriz P. P. Oliveira, and Rita Carneiro Alves. 2025. "A Comprehensive Review of the Antitumor Activity of Olive Compounds: The Case of Olive Oil, Pomace, and Leaf Extracts, Phenolic Alcohols, Secoiridoids, and Triterpenes" Antioxidants 14, no. 2: 237. https://doi.org/10.3390/antiox14020237
APA StyleMelo Ferreira, D., Oliveira, M. B. P. P., & Alves, R. C. (2025). A Comprehensive Review of the Antitumor Activity of Olive Compounds: The Case of Olive Oil, Pomace, and Leaf Extracts, Phenolic Alcohols, Secoiridoids, and Triterpenes. Antioxidants, 14(2), 237. https://doi.org/10.3390/antiox14020237