The Natural Disinfectant Role of Essential Oils in Improving Radical Scavenging Activity and Total Phenolic Compounds in Fresh Vegetables
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples Used
2.2. Disinfection Treatments Used
- Disinfection treatment A: 200 mL of water + 0.04 mL of essential oil + 10 g vegetable.
- Disinfection treatment B: 200 mL of water + 0.08 mL of essential oil +10 g vegetable.
- Disinfection treatment C: 200 mL of water + 1.2 mL of essential oil +10 g vegetable.
- Disinfection treatment D: 200 mL of water + 0.08 mL bleach solution +10 g vegetable.
- Disinfection treatment E: 200 mL of water + 0.2 mL bleach solution + 10 g vegetable.
2.3. Microbiological Analysis Methods
2.4. Radical Scavenging Activity (RSA)
2.5. Total Phenolic Compounds (TPC)
2.6. Statistical Analysis
3. Results and Discussion
3.1. Microbial Counts According to the Disinfection Treatment Used
3.2. Radical Scavenging Activity (RSA) in Petiolated Vegetables and Sessile Vegetables
3.3. Total Phenolic Compounds (TPCs) in Leafy Vegetables and Sessile Vegetables
3.4. Relationship Between Radical Scavenging Activity, Microbial Load, and Total Phenolic Content
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nishida, C.; Uauy, R.; Kumanyika, S.; Shetty, P. The Joint WHO/FAO Expert Consultation on Diet, Nutrition and the Prevention of Chronic Diseases: Process, Product and Policy Implications. Public Health Nutr. 2004, 7, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Gehlich, K.H.; Beller, J.; Lange-Asschenfeldt, B.; Köcher, W.; Meinke, M.C.; Lademann, J. Consumption of Fruits and Vegetables: Improved Physical Health, Mental Health, Physical Functioning and Cognitive Health in Older Adults from 11 European Countries. Aging Ment. Health 2020, 24, 634–641. [Google Scholar] [CrossRef]
- Augustsson, A.; Lundgren, M.; Qvarforth, A.; Hough, R.; Engström, E.; Paulukat, C.; Rodushkin, I. Managing Health Risks in Urban Agriculture: The Effect of Vegetable Washing for Reducing Exposure to Metal Contaminants. Sci. Total Environ. 2023, 863, 160996. [Google Scholar] [CrossRef]
- Jolly, Y.N.; Islam, A.; Akbar, S. Transfer of Metals from Soil to Vegetables and Possible Health Risk Assessment. SpringerPlus 2013, 2, 385. [Google Scholar] [CrossRef]
- Abuzed Sadee, B.; Jameel Ali, R. Determination of Heavy Metals in Edible Vegetables and a Human Health Risk Assessment. Environ. Nanotechnol. Monit. Manag. 2023, 19, 100761. [Google Scholar] [CrossRef]
- Bryan, F.L. Factors That Contribute to Outbreaks of Foodborne Disease. J. Food Prot. 1978, 41, 816–827. [Google Scholar] [CrossRef]
- Rico, D.; Martín-Diana, A.B.; Barat, J.M.; Barry-Ryan, C. Extending and Measuring the Quality of Fresh-Cut Fruit and Vegetables: A Review. Trends Food Sci. Technol. 2007, 18, 373–386. [Google Scholar] [CrossRef]
- Carstens, C.K.; Salazar, J.K.; Darkoh, C. Multistate Outbreaks of Foodborne Illness in the United States Associated with Fresh Produce from 2010 to 2017. Front. Microbiol. 2019, 10, 2667. [Google Scholar] [CrossRef]
- Vegetables and Pulses Data—Vegetables and Pulses Yearbook Tables. Available online: https://ers.usda.gov/data-products/vegetables-and-pulses-data/vegetables-and-pulses-yearbook-tables (accessed on 28 October 2025).
- European Food Safety Authority (EFSA). The European Union One Health 2023 Zoonoses Report. EFSA J. 2024, 22, 9106. [Google Scholar] [PubMed]
- García Galdeano, J.M. Efecto en el Crecimiento de Patógenos de Transmisión Alimentaria, y su Relación con el Contenido en Minerales Esenciales, de Condimentos y Verduras de la Dieta Mediterránea. Ph.D. Thesis, Universidad de Granada, Granada, Spain, 2022. [Google Scholar]
- Olaimat, A.N.; Holley, R.A. Factors Influencing the Microbial Safety of Fresh Produce: A Review. Food Microbiol. 2012, 32, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, D.Z.; Parisi, M.A.; Dawson, P.L.; Northcutt, J.K. Surface Decontamination of Fresh, Whole Peaches (Prunus persica) Using Sodium Hypochlorite or Acidified Electrolyzed Water Solutions. Int. J. Fruit Sci. 2021, 21, 1–11. [Google Scholar] [CrossRef]
- Bhilwadikar, T.; Pounraj, S.; Manivannan, S.; Rastogi, N.K.; Negi, P.S. Decontamination of Microorganisms and Pesticides from Fresh Fruits and Vegetables: A Comprehensive Review from Common Household Processes to Modern Techniques. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1003–1038. [Google Scholar] [CrossRef] [PubMed]
- Esmael, A.; Al-Hindi, R.R.; Albiheyri, R.S.; Alharbi, M.G.; Filimban, A.A.R.; Alseghayer, M.S.; Almaneea, A.M.; Alhadlaq, M.A.; Ayubu, J.; Teklemariam, A.D. Fresh Produce as a Potential Vector and Reservoir for Human Bacterial Pathogens: Revealing the Ambiguity of Interaction and Transmission. Microorganisms 2023, 11, 753. [Google Scholar] [CrossRef]
- Ölmez, H.; Kretzschmar, U. Potential Alternative Disinfection Methods for Organic Fresh-Cut Industry for Minimizing Water Consumption and Environmental Impact. LWT–Food Sci. Technol. 2009, 42, 686–693. [Google Scholar] [CrossRef]
- Martínez, L.; Bastida, P.; Castillo, J.; Ros, G.; Nieto, G. Green Alternatives to Synthetic Antioxidants, Antimicrobials, Nitrates, and Nitrites in Clean Label Spanish Chorizo. Antioxidants 2019, 8, 184. [Google Scholar] [CrossRef]
- Falleh, H.; Ben Jemaa, M.; Saada, M.; Ksouri, R. Essential Oils: A Promising Eco-Friendly Food Preservative. Food Chem. 2020, 330, 127268. [Google Scholar] [CrossRef] [PubMed]
- Galgano, M.; Capozza, P.; Pellegrini, F.; Cordisco, M.; Sposato, A.; Sblano, S.; Camero, M.; Lanave, G.; Fracchiolla, G.; Corrente, M.; et al. Antimicrobial Activity of Essential Oils Evaluated In Vitro against Escherichia coli and Staphylococcus aureus. Antibiotics 2022, 11, 979. [Google Scholar] [CrossRef] [PubMed]
- Serafini, M. The Role of Antioxidants in Disease Prevention. Medicine 2006, 34, 533–535. [Google Scholar] [CrossRef]
- Papas, A.M. Diet and Antioxidant Status. Food Chem. Toxicol. 1999, 37, 999–1007. [Google Scholar] [CrossRef] [PubMed]
- Vegetables as Sources of Antioxidants. Available online: https://www.researchgate.net/publication/236215658_Vegetables_as_Sources_of_Antioxidants (accessed on 28 October 2025).
- Sartori Tamburlin, I.; Roux, E.; Feuillée, M.; Labbé, J.; Aussaguès, Y.; El Fadle, F.E.; Fraboul, F.; Bouvier, G. Toxicological Safety Assessment of Essential Oils Used as Food Supplements to Establish Safe Oral Recommended Doses. Food Chem. Toxicol. 2021, 157, 112603. [Google Scholar] [CrossRef] [PubMed]
- EFSA FEEDAP Panel (EFSA Panel on Additives and Products or Substances Used in Animal Feed). Safety and Efficacy of an Essential Oil from Origanum vulgare subsp. hirtum (Link) letsw. var. Vulkan when Used as a Sensory Additive in Feed for All Animal Species. EFSA J. 2017, 15, e05095. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/5095 (accessed on 28 October 2025).
- Mesures que cal Tenir en Compte per al Rentat de Fruita i Hortalisses que es Consumeixen Crues: L’ús de L’hipoclorit de Sodi. Scientia. Available online: https://scientiasalut.gencat.cat/handle/11351/3956 (accessed on 28 October 2025).
- ISO 4833:2003; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Microorganisms—Colony-Count Technique at 30 °C. International Organization for Standardization (ISO): Geneva, Switzerland, 2003. Available online: https://www.iso.org/standard/34524.html (accessed on 28 October 2025).
- ISO 21527-2:2008; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds—Part 2: Colony Count Technique in Products with Water Activity ≤ 0.95. International Organization for Standardization (ISO): Geneva, Switzerland, 2008. Available online: https://www.iso.org/standard/38276.html (accessed on 28 October 2025).
- ISO 11290-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria monocytogenes and Listeria spp.—Part 1: Detection Method. International Organization for Standardization (ISO): Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/60313.html (accessed on 28 October 2025).
- Mensor, L.L.; Menezes, F.S.; Leitão, G.G.; Reis, A.S.; dos Santos, T.C.; Coube, C.S.; Leitão, S.G. Screening of Brazilian Plant Extracts for Antioxidant Activity by the Use of DPPH Free Radical Method. Phytother. Res. 2001, 15, 127–130. [Google Scholar] [CrossRef] [PubMed]
- Samaniego Sánchez, C.; Troncoso González, A.M.; García-Parrilla, M.C.; Quesada Granados, J.J.; López García de la Serrana, H.; López Martínez, M.C. Different Radical Scavenging Tests in Virgin Olive Oil and Their Relation to the Total Phenol Content. Anal. Chim. Acta 2007, 593, 103–107. [Google Scholar] [CrossRef]
- Lavelli, V. Comparison of the Antioxidant Activities of Extra Virgin Olive Oils. J. Agric. Food Chem. 2002, 50, 7704–7708. [Google Scholar] [CrossRef]
- ISO 14502-1:2005; Determination of Substances Characteristic of Green and Black Tea—Part 1: Content of Total Polyphenols in Tea—Colorimetric Method Using Folin–Ciocalteu Reagent. International Organization for Standardization (ISO): Geneva, Switzerland, 2005. Available online: https://www.iso.org/standard/31356.html (accessed on 28 October 2025).
- Soković, M.; Glamočlija, J.; Marin, P.D.; Brkić, D.; van Griensven, L.J.L.D. Antibacterial Effects of the Essential Oils of Commonly Consumed Medicinal Herbs Using an In Vitro Model. Molecules 2010, 15, 7532–7546. [Google Scholar] [CrossRef]
- Marchese, A.; Orhan, I.E.; Daglia, M.; Barbieri, R.; Di Lorenzo, A.; Nabavi, S.F.; Gortzi, O.; Izadi, M.; Nabavi, S.M. Antibacterial and Antifungal Activities of Thymol: A Brief Review of the Literature. Food Chem. 2016, 210, 402–414. [Google Scholar] [CrossRef] [PubMed]
- Hudz, N.; Kobylinska, L.; Pokajewicz, K.; Horčinová Sedláčková, V.; Fedin, R.; Voloshyn, M.; Myskiv, I.; Brindza, J.; Wieczorek, P.P.; Lipok, J. Mentha piperita: Essential Oil and Extracts, Their Biological Activities, and Perspectives on the Development of New Medicinal and Cosmetic Products. Molecules 2023, 28, 7444. [Google Scholar] [CrossRef]
- Sharma, N.; Sheikh, Z.N.; Alamri, S.; Singh, B.; Kesawat, M.S.; Guleria, S. Chemical Composition, Antibacterial and Combinatorial Effects of the Essential Oils from Cymbopogon spp. and Mentha arvensis with Conventional Antibiotics. Agronomy 2023, 13, 1091. [Google Scholar] [CrossRef]
- Bibow, A.; Oleszek, W. Essential Oils as Potential Natural Antioxidants, Antimicrobial, and Antifungal Agents in Active Food Packaging. Antibiotics 2024, 13, 1168. [Google Scholar] [CrossRef]
- Yang, S.K.; Tan, N.P.; Chong, C.W.; Abushelaibi, A.; Lim, S.H.E.; Lai, K.S. The Missing Piece: Recent Approaches Investigating the Antimicrobial Mode of Action of Essential Oils. Evol. Bioinform. Online 2021, 17, 1176934320938391. [Google Scholar] [CrossRef]
- Warriner, K.; Huber, A.; Namvar, A.; Fan, W.; Dunfield, K. Recent advances in the microbial safety of fresh fruits and vegetables. Adv. Food Nutr. Res. 2009, 57, 155–208. [Google Scholar]
- Mendel, F.; Henika, P.R.; Mandrell, R.E. Bactericidal Activities of Plant Essential Oils and Some of Their Isolated Constitu-ents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J. Food Prot. 2002, 65, 1545–1560. [Google Scholar]
- Alimohammadi, M.; Farajvand, N.; Kyani, A.; Kazemi Moghaddam, V.; Hadei, M. Effect of Different Household Decontamination Procedures on Antioxidant Activity and Microbial Load of Vegetables. Int. Arch. Health Sci. 2016, 3, 195–200. [Google Scholar]
- Mittler, R. ROS Are Good. Trends Plant Sci. 2017, 22, 11–19. [Google Scholar] [CrossRef]
- Gil, M.I.; López-Gálvez, F.; Andújar, S.; Moreno, M.; Allende, A. Disinfection By-Products Generated by Sodium Hypochlorite and Electrochemical Disinfection in Different Wash Waters and Fresh-Cut Products and Their Reduction by Activated Carbon. Food Control 2019, 100, 46–52. [Google Scholar] [CrossRef]
- Rodriguez-Garcia, I.; Cruz-Valenzuela, M.R.; Silva-Espinoza, B.A.; Gonzalez-Aguilar, G.A.; Moctezuma, E.; Gutierrez-Pacheco, M.M.; Tapia-Rodriguez, M.R.; A Ortega-Ramirez, L.; Ayala-Zavala, J.F. Oregano (Lippia graveolens) Essential Oil Added within Pectin Edible Coatings Prevents Fungal Decay and Increases the Antioxidant Capacity of Treated Tomatoes. J. Sci. Food Agric. 2016, 96, 3772–3778. [Google Scholar] [CrossRef]
- Posada-Izquierdo, G.; Del Rosal, S.; Valero, A.; Zurera, G.; Sant’Ana, A.S.; Alvarenga, V.O.; Pérez-Rodríguez, F. Assessing the Growth of Escherichia coli O157:H7 and Salmonella in Spinach, Lettuce, Parsley and Chard Extracts at Different Storage Temperatures. J. Appl. Microbiol. 2016, 120, 1701–1710. [Google Scholar] [CrossRef]
- Melgarejo-Floresa, B.G.; Ortega-Ramíreza, L.A.; Silva-Espinozaa, B.A.; González-Aguilara, G.A.; Mirandab, M.R.A.; Ayala-Zavala, J.F. Antifungal protection and antioxidant enhancement of table grapes treated with emulsions, vapors, and coatings of cinnamon leaf oil. Postharvest Biol. Technol. 2013, 86, 321–328. [Google Scholar] [CrossRef]
- Almajano, M.P.; Gordon, M.H. Synergistic effect of BSA on antioxidant activities in model food emulsions. J. Am. Oil Chem. Soc. 2004, 81, 275–280. [Google Scholar] [CrossRef]






| Thyme Essential Oil | ||||
|---|---|---|---|---|
| Decontamination Treatment | Mesophilic Microorganisms | Psychrophilic Microorganisms | Moulds and Yeasts | L. monocytogenes |
| Treatment A | 37.40 a | 75.40 a | 72.20 a | 82.00 a |
| Treatment B | 81.40 b | 96.00 b | 91.70 b | 96.55 b |
| Treatment C | 91.30 c | 96.70 b | 93.90 b | 100.00 c |
| Peppermint Essential Oil | ||||
| Decontamination Treatment | Mesophilic Microorganisms | Psychrophilic Microorganisms | Moulds and Yeasts | L. monocytogenes |
| Treatment A | 28.70 a | 96.30 b | 77.40 a | 94.60 b |
| Treatment B | 91.30 c | 98.30 c | 98.50 c | 97.70 b |
| Treatment C | 92.80 c | 98.60 c | 99.70 c | 100.00 c |
| Bleach Solution | ||||
| Decontamination Treatment | Mesophilic Microorganisms | Psychrophilic Microorganisms | Moulds and Yeasts | L. monocytogenes |
| Treatment D | 90.80 c | 98.50 c | 96.20 c | 100.00 c |
| Treatment E | 96.90 d | 98.90 c | 97.80 c | 100.00 c |
| Thyme Essential Oil | ||||
|---|---|---|---|---|
| Decontamination Treatment | Mesophilic Microorganisms | Psychrophilic Microorganisms | Moulds and Yeasts | L. monocytogenes |
| Treatment A | 38.60 a | 81.00 a | 13.10 a | 37.90 a |
| Treatment B | 67.10 b | 82.80 a | 81.60 b | 100.00 b |
| Treatment C | 74.30 b | 88.70 a | 83.70 b | 100.00 b |
| Peppermint Essential Oil | ||||
| Decontamination Treatment | Mesophilic Microorganisms | Psychrophilic Microorganisms | Moulds and Yeasts | L. monocytogenes |
| Treatment A | 63.00 b | 79.70 b | 59.10 a | 37.90 a |
| Treatment B | 70.70 b | 85.30 a | 95.20 c | 100.00 b |
| Treatment C | 92.00 c | 91.60 c | 97.20 c | 100.00 b |
| Bleach Solutions | ||||
| Decontamination Treatment | Mesophilic Microorganisms | Psychrophilic Microorganisms | Moulds and Yeasts | L. monocytogenes |
| Treatment D | 23.60 a | 98.30 c | 89.40 b | 100.00 b |
| Treatment E | 58.60 b | 98.70 c | 95.50 c | 100.00 b |
| Romaine lettuce (Sessile Vegetable) | |||||
|---|---|---|---|---|---|
| Mesophiles | Psychrophiles | Moulds and Yeasts | Listeria | TPC | |
| Thyme Oil | −0.4159 a | −0.4608 a | −0.7336 a | −0.9886 a | 0.8615 a |
| Peppermint Oil | −0.6590 a | −0.5252 a | −0.7741 a | −0.8717 a | 0.7667 a |
| Bleach sol. | 0.2332 | 0.6070 a | 0.6875 a | 0.8074 a | 0.4531 a |
| Baby Spinach (Petiolate Vegetable) | |||||
| Mesophiles | Psychrophiles | Moulds and Yeasts | Listeria | TPC | |
| Thyme Oil | −0.5201 a | −0.5877 a | −0.6290 a | −0.5541 a | 0.8068 a |
| Peppermint Oil | −0.3656 a | −0.4987 a | −0.6611 a | −0.5983 a | 0.5531 a |
| Bleach sol. | 0.4259 a | 0.3846 a | 0.5052 a | 0.5782 a | 0.7046 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hafsa, B.A.; Javier, Q.-G.J.; Ahmad, A.; Marina, V.-M. The Natural Disinfectant Role of Essential Oils in Improving Radical Scavenging Activity and Total Phenolic Compounds in Fresh Vegetables. Antioxidants 2025, 14, 1458. https://doi.org/10.3390/antiox14121458
Hafsa BA, Javier Q-GJ, Ahmad A, Marina V-M. The Natural Disinfectant Role of Essential Oils in Improving Radical Scavenging Activity and Total Phenolic Compounds in Fresh Vegetables. Antioxidants. 2025; 14(12):1458. https://doi.org/10.3390/antiox14121458
Chicago/Turabian StyleHafsa, Ben Allal, Quesada-Granados José Javier, Agil Ahmad, and Villalón-Mir Marina. 2025. "The Natural Disinfectant Role of Essential Oils in Improving Radical Scavenging Activity and Total Phenolic Compounds in Fresh Vegetables" Antioxidants 14, no. 12: 1458. https://doi.org/10.3390/antiox14121458
APA StyleHafsa, B. A., Javier, Q.-G. J., Ahmad, A., & Marina, V.-M. (2025). The Natural Disinfectant Role of Essential Oils in Improving Radical Scavenging Activity and Total Phenolic Compounds in Fresh Vegetables. Antioxidants, 14(12), 1458. https://doi.org/10.3390/antiox14121458

