Oxidative Stress-Related Metabolomic Alterations in Pregnancy: Evidence from Exposure to Air Pollution, Metals/Metalloid, and Tobacco Smoke
Abstract
1. Introduction
2. A Short Overview of Oxidative Stress in Normal (Healthy) Pregnancy
3. Metabolic Pathways in Redox Regulation During Pregnancy
4. Environmental Pollutants and Their Effects on Metabolomic Profiles and Pathways During Pregnancy
4.1. Metal/Metalloid Exposure
4.1.1. Cadmium
4.1.2. Lead
4.1.3. Arsenic
4.1.4. Metallomics—Effects of Metal Mixtures on the Metabolome
4.2. Air Pollution
4.3. Exposure to Tobacco Smoke and E-Cigarette Vapor
5. Environmental Exposures and Metabolomic Disruptions in Maternal and Offspring Health
6. Strengths, Current Gaps and Challenges
7. Opportunities and Future Directions
8. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| Asn | Asparagine |
| Asp | Aspartic acid |
| BEAR Cohort | Biomarkers of Exposure to Arsenic |
| CALINE4 | The California Line Source Dispersion Model, version 4 |
| EWAS | Environment, and Social stressors |
| FIA-MS/MS | Flow injection analysis coupled with tandem mass spectrometry |
| GDM | Gestational diabetes mellitus |
| Gln | Glutamine |
| Glu | Glutamic acid |
| HMDB | Human Metabolome Database |
| iAs | Inorganic arsenic |
| INSPIRE Cohort | Infant Susceptibility to Pulmonary Infections and Asthma following Respiratory Syncytial Virus (RSV) Exposure |
| KEGG | Kyoto Encyclopedia of Genes and Genomes |
| LC-HRMS | Liquid Chromatography—High Resolution Mass Spectrometry |
| LINA Study | Lifestyle and Environmental Factors and their Influence on Newborn Allergy Risk |
| LPA | Lysophosphatidic acid |
| LPC | Lysophosphatidylcholine |
| LPG | Lysophosphatidylglycerol |
| Lyso.PC. | Acyl-lysophosphatidylcholines |
| Lyso.PC.e | Alkyl-lysophosphatidylcholines |
| MADRES study | The Maternal and Developmental Risks from Environmental and Social Stressors |
| MIMA | Meet-in-metabolite-analysis |
| MITM | Meet-in-the-middle approach |
| MSE | Mass Spectrometry with Elevated Energy, untargeted fragmentation of all ions using alternating collision energies for wide metabolite coverage |
| MS/MS | Tandem mass spectrometry with targeted fragmentation of selected molecules to help identify compounds |
| MWAS | Metabolome-wide association approach |
| NIST | National Institute of Standards and Technology |
| PCaa | Diacyl-phosphatidylcholine |
| PCae | Acyl-alkyl-phosphatidylcholine |
| PHIME Cohort | Public Health Impact of long-term, low-level Mixed Element exposure in susceptible population strata |
| PRAMS | Tennessee Pregnancy Risk Assessment Monitoring System |
| PROGRESS Cohort | Programming Research in Obesity, Growth, Environment and Social Stressors |
| Pro | Proline |
| PROTECT Cohort | Puerto Rico Testsite for Exploring Contamination Threats |
| PTB | Pre-term birth |
| SM | Sphingomyelins |
| TAP data | Tracking Air Pollution in China (a combined geographic–statistical model utilizing satellite remote sensing data) |
| tAs | Total arsenic |
Appendix A
| Metabolomic Features: |
| Distinct metabolic signals or peaks detected by analytical platforms (e.g., mass spectrometry), representing putative metabolites that may be identified or unknown. |
| Targeted Metabolomics: |
| Quantitative analysis of a predefined set of known metabolites with high sensitivity, focused on specific biochemi-cal pathways or hypotheses. |
| Untargeted Metabolomics: |
| Global, unbiased profiling aiming to detect as many metabolites as possible, enabling discovery of novel metabolic changes and pathways. |
| Pathway Enrichment Analysis: |
| Statistical methods that identify biochemical pathways significantly impacted based on altered metabolite profiles, linking molecular changes to biological functions. |
| Mummichog-based Metabolic Pathway Analysis: |
| A computational strategy enabling pathway-level interpretation from untargeted metabolomic data without re-quiring full metabolite identification, facilitating rapid biological insights. |
| Metabolome-wide association study (MWAS) approach: |
| Systemic, high-throughput analysis that assesses associations between a broad spectrum of metabolite profiles and phenotypes, exposures, or disease outcomes, enabling unbiased identification of metabolic biomarkers or pathways linked to health and disease risk. |
| Meet-in-metabolite-analysis (MIMA): |
| A strategy used to reconstitute the adverse outcome pathways (AOPs) by identifying metabolomic linkages be-tween environmental exposures and associated health outcomes or diseases. |
| Meet-in-the-middle approach (MITM): |
| A research method that identifies biological markers linking environmental exposure to disease by finding meta-bolic changes associated with both the exposure and the health outcome. |
| Exposome-wide association study (EWAS): |
| A research approach that systematically screens a large number of environmental exposures to identify which are statistically linked to specific health outcome, similar to how genome-wide association studies identify genetic as-sociations. |
References
- Talebi, S.; Kianifar, H.R.; Mehdizadeh, A. Nutritional requirements in pregnancy and lactation. Clin. Nutr. ESPEN 2024, 64, 400–410. [Google Scholar] [CrossRef]
- Clarke, G.S.; Gatford, K.L.; Young, R.L.; Grattan, D.R.; Ladyman, S.R.; Page, A.J. Maternal adaptations to food intake across pregnancy: Central and peripheral mechanisms. Obesity 2021, 29, 1813–1824. [Google Scholar] [CrossRef]
- Morrison, J.L.; Regnault, T.R. Nutrition in pregnancy: Optimising maternal diet and fetal adaptations to altered nutrient supply. Nutrients 2016, 8, 342. [Google Scholar] [CrossRef] [PubMed]
- Tain, Y.L.; Hsu, C.N. Amino acids during pregnancy and offspring cardiovascular-kidney-metabolic health. Nutrients 2024, 16, 1263. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Aponte-Mellado, A.; Premkumar, B.J.; Shaman, A.; Gupta, S. The effects of oxidative stress on female reproduction: A review. Reprod. Biol. Endocrinol. 2012, 10, 49. [Google Scholar] [CrossRef] [PubMed]
- Myatt, L.; Cui, X. Oxidative stress in the placenta. Histochem. Cell Biol. 2004, 122, 369–382. [Google Scholar] [CrossRef]
- Vornic, I.; Buciu, V.; Furau, C.G.; Gaje, P.N.; Ceausu, R.A.; Dumitru, C.S.; Barb, A.C.; Novacescu, D.; Cumpanas, A.A.; Latcu, S.C.; et al. Oxidative stress and placental pathogenesis: A contemporary overview of potential biomarkers and emerging therapeutics. Int. J. Mol. Sci. 2024, 25, 12195. [Google Scholar] [CrossRef]
- Wu, F.; Tian, F.J.; Lin, Y.; Xu, W.M. Oxidative stress: Placenta function and dysfunction. Am. J. Reprod. Immunol. 2016, 76, 258–271. [Google Scholar] [CrossRef]
- Ruano, C.S.M.; Miralles, F.; Méhats, C.; Vaiman, D. The impact of oxidative stress of environmental origin on the onset of placental diseases. Antioxidants 2022, 11, 106. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, P.; Ramiro-Cortijo, D.; Reyes-Hernández, C.G.; López de Pablo, A.L.; González, M.C.; Arribas, S.M. Implication of oxidative stress in fetal programming of cardiovascular disease. Front. Physiol. 2018, 9, 602. [Google Scholar] [CrossRef]
- Ferguson, K.K.; O’Neill, M.S.; Meeker, J.D. Environmental contaminant exposures and preterm birth: A comprehensive review. J. Toxicol. Environ. Health B Crit. Rev. 2013, 16, 69–113. [Google Scholar] [CrossRef] [PubMed]
- Mallozzi, M.; Bordi, G.; Garo, C.; Caserta, D. The effect of maternal exposure to endocrine disrupting chemicals on fetal and neonatal development: A review on the major concerns. Birth Defects Res. Part C Embryo Today 2016, 108, 224–242. [Google Scholar] [CrossRef] [PubMed]
- Street, M.E.; Bernasconi, S. Endocrine-disrupting chemicals in human fetal growth. Int. J. Mol. Sci. 2020, 21, 1430. [Google Scholar] [CrossRef] [PubMed]
- Zejnullahu, V.A.; Zejnullahu, V.A.; Kosumi, E. The role of oxidative stress in patients with recurrent pregnancy loss: A review. Reprod. Health 2021, 18, 207. [Google Scholar] [CrossRef]
- Grzeszczak, K.; Łanocha-Arendarczyk, N.; Malinowski, W.; Ziętek, P.; Kosik-Bogacka, D. Oxidative stress in pregnancy. Biomolecules 2023, 13, 1768. [Google Scholar] [CrossRef]
- Brooker, I.A.; Fisher, J.J.; Sutherland, J.M.; Pringle, K.G. Understanding the impact of placental oxidative and nitrative stress in pregnancies complicated by fetal growth restriction. Placenta 2024, 158, 318–328. [Google Scholar] [CrossRef]
- Perera, F.; Herbstman, J. Prenatal environmental exposures, epigenetics, and disease. Reprod. Toxicol. 2011, 31, 363–373. [Google Scholar] [CrossRef]
- Thompson, L.P.; Al-Hasan, Y. Impact of oxidative stress in fetal programming. J. Pregnancy 2012, 2012, 582748. [Google Scholar] [CrossRef]
- Singh, S.; Goel, I.; Tripathi, S.; Ahirwar, A.; Kumar, M.; Rana, A.; Dhar, R.; Karmakar, S. Effect of environmental air pollutants on placental function and pregnancy outcomes: A molecular insight. Environ. Sci. Pollut. Res. Int. 2024, 31, 59819–59851. [Google Scholar] [CrossRef]
- Sun, C.; Shen, J.; Fang, R.; Huang, H.; Lai, Y.; Hu, Y.; Zheng, J. The impact of environmental and dietary exposure on gestational diabetes mellitus: A comprehensive review emphasizing the role of oxidative stress. Front. Endocrinol. 2025, 16, 1393883. [Google Scholar] [CrossRef]
- Chavan-Gautam, P.; Rani, A.; Freeman, D.J. Distribution of fatty acids and lipids during pregnancy. Adv. Clin. Chem. 2018, 84, 209–239. [Google Scholar] [CrossRef]
- Duttaroy, A.K.; Basak, S. Maternal fatty acid metabolism in pregnancy and its consequences in the feto-placental development. Front. Physiol. 2022, 12, 787848. [Google Scholar] [CrossRef]
- Dai, Y.; Huo, X.; Cheng, Z.; Faas, M.M.; Xu, X. Early-life exposure to widespread environmental toxicants and maternal-fetal health risk: A focus on metabolomic biomarkers. Sci. Total Environ. 2020, 739, 139626. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Qiu, C.; Hao, J.; Liao, J.; Lurmann, F.; Pavlovic, N.; Habre, R.; Jones, D.P.; Bastain, T.M.; Breton, C.V.; et al. Maternal metabolomics linking prenatal exposure to fine particulate matter and birth weight: A cross-sectional analysis of the MADRES cohort. Environ. Health 2025, 24, 14. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Xie, P.; Cao, G.; Ran, J.; Xu, S.; Xia, W.; Cai, Z. Metabolic signatures of prenatal exposure to ‘cocktails’ of benzotriazoles and benzothiazoles and its health implications. J. Hazard. Mater. 2024, 473, 134717. [Google Scholar] [CrossRef] [PubMed]
- Orešič, M.; McGlinchey, A.; Wheelock, C.E.; Hyötyläinen, T. Metabolic signatures of the exposome—Quantifying the impact of exposure to environmental chemicals on human health. Metabolites 2020, 10, 454. [Google Scholar] [CrossRef]
- Inoue, K.; Yan, Q.; Arah, O.A.; Paul, K.; Walker, D.I.; Jones, D.P.; Ritz, B. Air pollution and adverse pregnancy and birth outcomes: Mediation analysis using metabolomic profiles. Curr. Environ. Health Rep. 2020, 7, 231–242. [Google Scholar] [CrossRef]
- Liu, J.; Litt, L.; Segal, M.R.; Kelly, M.J.; Pelton, J.G.; Kim, M. Metabolomics of oxidative stress in recent studies of endogenous and exogenously administered intermediate metabolites. Int. J. Mol. Sci. 2011, 12, 6469–6501. [Google Scholar] [CrossRef]
- Hajnajafi, K.; Iqbal, M.A. Mass-spectrometry based metabolomics: An overview of workflows, strategies, data analysis and applications. Proteome Sci. 2025, 23, 5. [Google Scholar] [CrossRef]
- Andrisic, L.; Dudzik, D.; Barbas, C.; Milkovic, L.; Grune, T.; Zarkovic, N. Short overview on metabolomics approach to study pathophysiology of oxidative stress in cancer. Redox Biol. 2018, 14, 47–58. [Google Scholar] [CrossRef]
- DeFreitas, M.J.; Katsoufis, C.P.; Benny, M.; Young, K.; Kulandavelu, S.; Ahn, H.; Sfakianaki, A.; Abitbol, C.L. Educational review: The impact of perinatal oxidative stress on the developing kidney. Front. Pediatr. 2022, 10, 853722. [Google Scholar] [CrossRef] [PubMed]
- Hussain, T.; Murtaza, G.; Metwally, E.; Kalhoro, D.H.; Kalhoro, M.S.; Rahu, B.A.; Sahito, R.G.A.; Yin, Y.; Yang, H.; Chughtai, M.I.; et al. The role of oxidative stress and antioxidant balance in pregnancy. Mediat. Inflamm. 2021, 2021, 9962860. [Google Scholar] [CrossRef] [PubMed]
- Mendes, S.; Timóteo-Ferreira, F.; Almeida, H.; Silva, E. New insights into the process of placentation and the role of oxidative uterine microenvironment. Oxid. Med. Cell. Longev. 2019, 2019, 9174521. [Google Scholar] [CrossRef] [PubMed]
- Fisher, J.J.; Bartho, L.A.; Perkins, A.V.; Holland, O.J. Placental mitochondria and reactive oxygen species in the physiology and pathophysiology of pregnancy. Clin. Exp. Pharmacol. Physiol. 2020, 47, 176–184. [Google Scholar] [CrossRef]
- Yüksel, S.; Yiğit, A.A. Malondialdehyde and nitric oxide levels and catalase, superoxide dismutase, and glutathione peroxidase levels in maternal blood during different trimesters of pregnancy and in the cord blood of newborns. Turk. J. Med. Sci. 2015, 45, 454–459. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Guo, Y.; Yang, Y.; Du, Z.; Fan, Y.; Zhao, Y.; Yuan, S. Oxidative stress on vessels at the maternal-fetal interface for female reproductive system disorders: Update. Front. Endocrinol. 2023, 14, 1118121. [Google Scholar] [CrossRef]
- Hadden, D.R.; McLaughlin, C. Normal and abnormal maternal metabolism during pregnancy. Semin. Fetal Neonatal Med. 2009, 14, 66–71. [Google Scholar] [CrossRef]
- Parrettini, S.; Caroli, A.; Torlone, E. Nutrition and metabolic adaptations in physiological and complicated pregnancy: Focus on obesity and gestational diabetes. Front. Endocrinol. 2020, 11, 611929. [Google Scholar] [CrossRef]
- Lain, K.Y.; Catalano, P.M. Metabolic changes in pregnancy. Clin. Obstet. Gynecol. 2007, 50, 938–948. [Google Scholar] [CrossRef]
- Butte, N.F. Carbohydrate and lipid metabolism in pregnancy: Normal compared with gestational diabetes mellitus. Am. J. Clin. Nutr. 2000, 71 (Suppl. 5), 1256S–1261S. [Google Scholar] [CrossRef]
- Li, S.; Zhu, J.; Zhao, Y.; An, P.; Zhao, H.; Xiong, Y. Metabolic disorder of nutrients—An emerging field in the pathogenesis of preeclampsia. Front. Nutr. 2025, 12, 1560610. [Google Scholar] [CrossRef]
- Wild, R.; Feingold, K.R. Effect of pregnancy on lipid metabolism and lipoprotein levels. In Endotext [Internet]; Feingold, K.R., Ahmed, S.F., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK498654/ (accessed on 9 October 2025). [PubMed]
- Cao, X.Y.; Li, M.Y.; Shao, C.X.; Shi, J.L.; Zhang, T.; Xie, F.; Peng, T.; Li, M.Q. Fatty acid metabolism disruptions: A subtle yet critical factor in adverse pregnancy outcomes. Int. J. Biol. Sci. 2024, 20, 6018–6037. [Google Scholar] [CrossRef]
- Dominko, K.; Đikić, D. Glutathionylation: A regulatory role of glutathione in physiological processes. Arh. Hig. Rada Toksikol. 2018, 69, 1–24. [Google Scholar] [CrossRef]
- Pizent, A.; Lazarus, M.; Kovačić, J.; Tariba Lovaković, B.; Brčić Karačonji, I.; Živković Semren, T.; Sekovanić, A.; Orct, T.; Branović-Čakanić, K.; Brajenović, N.; et al. Cigarette smoking during pregnancy: Effects on antioxidant enzymes, metallothionein and trace elements in mother-newborn pairs. Biomolecules 2020, 10, 892. [Google Scholar] [CrossRef] [PubMed]
- Haidar, Z.; Fatema, K.; Shoily, S.S.; Sajib, A.A. Disease-associated metabolic pathways affected by heavy metals and metalloid. Toxicol. Rep. 2023, 10, 554–570. [Google Scholar] [CrossRef] [PubMed]
- Pizent, A.; Tariba, B.; Živković, T. Reproductive toxicity of metals in men. Arh. Hig. Rada Toksikol. 2012, 63 (Suppl. 1), 35–46. [Google Scholar] [CrossRef] [PubMed]
- Gundacker, C.; Hengstschläger, M. The role of the placenta in fetal exposure to heavy metals. Wien. Med. Wochenschr. 2012, 162, 201–206. [Google Scholar] [CrossRef]
- Rísová, V. The pathway of lead through the mother’s body to the child. Interdiscip. Toxicol. 2019, 12, 1–6. [Google Scholar] [CrossRef]
- Dack, K.; Fell, M.; Taylor, C.M.; Havdahl, A.; Lewis, S.J. Prenatal mercury exposure and neurodevelopment up to the age of 5 years: A systematicrReview. Int. J. Environ. Res. Public Health 2022, 19, 1976. [Google Scholar] [CrossRef]
- Rychlik, K.A.; Illingworth, E.J.; Sillé, F.C.M. Arsenic and the placenta: A review with emphasis on the immune system. Placenta 2025, 160, 73–81. [Google Scholar] [CrossRef]
- Kim, S.S.; Meeker, J.D.; Keil, A.P.; Aung, M.T.; Bommarito, P.A.; Cantonwine, D.E.; McElrath, T.F.; Ferguson, K.K. Exposure to 17 trace metals in pregnancy and associations with urinary oxidative stress biomarkers. Environ. Res. 2019, 179 Pt B, 108854. [Google Scholar] [CrossRef]
- Piasek, M.; Škrgatić, L.; Sulimanec, A.; Orct, T.; Sekovanić, A.; Kovačić, J.; Katić, A.; Branović Čakanić, K.; Pizent, A.; Brajenović, N.; et al. Effects of maternal cigarette smoking on trace element levels and steroidogenesis in the maternal-placental-fetal unit. Toxics 2023, 11, 714. [Google Scholar] [CrossRef] [PubMed]
- Fragou, D.; Fragou, A.; Kouidou, S.; Njau, S.; Kovatsi, L. Epigenetic mechanisms in metal toxicity. Toxicol. Mech. Methods 2011, 21, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Kurita, H.; Ohuchi, K.; Inden, M. Effects of environmental non-essential toxic heavy metals on epigenetics during development. Toxics 2025, 13, 167. [Google Scholar] [CrossRef] [PubMed]
- Dettwiler, M.; Flynn, A.C.; Rigutto-Farebrother, J. Effects of non-essential “toxic” trace elements on pregnancy outcomes: A narrative overview of recent literature syntheses. Int. J. Environ. Res. Public Health 2023, 20, 5536. [Google Scholar] [CrossRef]
- Issah, I.; Duah, M.S.; Arko-Mensah, J.; Bawua, S.A.; Agyekum, T.P.; Fobil, J.N. Exposure to metal mixtures and adverse pregnancy and birth outcomes: A systematic review. Sci. Total Environ. 2024, 908, 168380. [Google Scholar] [CrossRef]
- Li, H.; Huang, K.; Jin, S.; Peng, Y.; Liu, W.; Wang, M.; Zhang, H.; Zhang, B.; Xia, W.; Li, Y.; et al. Environmental cadmium exposure induces alterations in the urinary metabolic profile of pregnant women. Int. J. Hyg. Environ. Health 2019, 222, 556–562. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, L.; Liu, J.; Wu, M.; Li, C.; Yang, J.; Wang, L. Environmental concentrations of cadmium and zinc and associating metabolomics profile alternations in urine of pregnant women in the first trimester: A prospective cohort study in Taiyuan, North China. Ecotoxicol. Environ. Saf. 2023, 267, 115611. [Google Scholar] [CrossRef]
- Niedzwiecki, M.M.; Eggers, S.; Joshi, A.; Dolios, G.; Cantoral, A.; Lamadrid-Figueroa, H.; Amarasiriwardena, C.; Téllez-Rojo, M.M.; Wright, R.O.; Petrick, L. Lead exposure and serum metabolite profiles in pregnant women in Mexico City. Environ. Health 2021, 20, 125. [Google Scholar] [CrossRef]
- Li, H.; Wang, M.; Liang, Q.; Jin, S.; Sun, X.; Jiang, Y.; Pan, X.; Zhou, Y.; Peng, Y.; Zhang, B.; et al. Urinary metabolomics revealed arsenic exposure related to metabolic alterations in general Chinese pregnant women. J. Chromatogr. A 2017, 1479, 145–152. [Google Scholar] [CrossRef]
- Zhang, Q.; Tian, M.; Zhang, X.; Zhang, X.; Yang, X.; Lu, Y.Y.; Li, S.; Liu, L.; Li, J.; Hassanian-Moghaddam, H.; et al. Metabolic biomarkers linking urinary arsenic species to gestational diabetes mellitus: A cross-sectional study in Chinese pregnant women. Sci. Total Environ. 2023, 892, 164761. [Google Scholar] [CrossRef]
- Shen, S.; Li, X.F.; Cullen, W.R.; Weinfeld, M.; Le, X.C. Arsenic binding to proteins. Chem. Rev. 2013, 113, 7769–7792. [Google Scholar] [CrossRef]
- Saxena, R.; Bozack, A.K.; Gamble, M.V. Nutritional influences on one-carbon metabolism: Effects on arsenic methylation and toxicity. Annu. Rev. Nutr. 2018, 38, 401–429. [Google Scholar] [CrossRef] [PubMed]
- Laine, J.E.; Bailey, K.A.; Olshan, A.F.; Smeester, L.; Drobná, Z.; Stýblo, M.; Douillet, C.; García-Vargas, G.; Rubio-Andrade, M.; Pathmasiri, W.; et al. Neonatal metabolomic profiles related to prenatal arsenic exposure. Environ. Sci. Technol. 2017, 51, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Telišman, S. Interactions of essential and/or toxic metals and metalloid regarding interindividual differences in susceptibility to various toxicants and chronic diseases in man. Arh. Hig. Rada Toksikol. 1995, 46, 459–476. [Google Scholar] [PubMed]
- Shih, Y.H.; Chen, H.Y.; Christensen, K.; Handler, A.; Turyk, M.E.; Argos, M. Prenatal exposure to multiple metals and birth outcomes: An observational study within the National Children’s Study cohort. Environ. Int. 2021, 147, 106373. [Google Scholar] [CrossRef]
- Zhang, M.; Buckley, J.P.; Liang, L.; Hong, X.; Wang, G.; Wang, M.C.; Wills-Karp, M.; Wang, X.; Mueller, N.T. A metabolome-wide association study of in utero metal and trace element exposures with cord blood metabolome profile: Findings from the Boston Birth Cohort. Environ. Int. 2022, 158, 106976. [Google Scholar] [CrossRef]
- Derosa, G.; Maffioli, P.; Sahebkar, A. Piperine and its role in chronic diseases. Adv. Exp. Med. Biol. 2016, 928, 173–184. [Google Scholar] [CrossRef]
- Houston, M.C. Role of mercury toxicity in hypertension, cardiovascular disease, and stroke. J. Clin. Hypertens. 2011, 13, 621–627. [Google Scholar] [CrossRef]
- Amin, A.; Saadatakhtar, M.; Mohajerian, A.; Marashi, S.M.; Zamanifard, S.; Keshavarzian, A.; Molaee, P.; Keshmiri, M.S.; Nikdoust, F. Mercury-mediated cardiovascular toxicity: Mechanisms and remedies. Cardiovasc. Toxicol. 2025, 25, 507–522. [Google Scholar] [CrossRef]
- Kim, C.; Ashrap, P.; Watkins, D.J.; Mukherjee, B.; Rosario-Pabón, Z.Y.; Vélez-Vega, C.M.; Alshawabkeh, A.N.; Cordero, J.F.; Meeker, J.D. Maternal metals/metalloid blood levels are associated with lipidomic profiles among pregnant women in Puerto Rico. Front. Public Health 2022, 9, 754706. [Google Scholar] [CrossRef]
- Zhao, S.; Yang, X.; Xu, Q.; Li, H.; Su, Y.; Xu, Q.; Li, Q.; Xia, Y.; Shen, R. Association of maternal metals exposure, metabolites and birth outcomes in newborns: A prospective cohort study. Environ. Int. 2023, 179, 108183. [Google Scholar] [CrossRef]
- Xie, Y.; Xiao, H.; Zheng, D.; Mahai, G.; Li, Y.; Xia, W.; Xu, S.; Zhou, A. Associations of prenatal metal exposure with child neurodevelopment and mediation by perturbation of metabolic pathways. Nat. Commun. 2025, 16, 2089. [Google Scholar] [CrossRef]
- Anesti, O.; Papaioannou, N.; Gabriel, C.; Karakoltzidis, A.; Dzhedzheia, V.; Petridis, I.; Stratidakis, A.; Dickinson, M.; Horvat, M.; Snoj Tratnik, J.; et al. An exposome connectivity paradigm for the mechanistic assessment of the effects of prenatal and early life exposure to metals on neurodevelopment. Front. Public Health 2023, 10, 871218. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Xia, W.; Liu, H.; Liu, F.; Li, H.; Chang, H.; Sun, J.; Liu, W.; Sun, X.; Jiang, Y.; et al. Urinary metabolomics reveals novel interactions between metal exposure and amino acid metabolic stress during pregnancy. Toxicol. Res. 2018, 7, 1164–1172. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Xu, B.; Guan, Y.; Chen, T.; Huang, R.; Zhang, T.; Sun, R.; Xie, K.; Chen, M. A metabolomic study on the association of exposure to heavy metals in the first trimester with primary tooth eruption. Sci. Total Environ. 2020, 723, 138107. [Google Scholar] [CrossRef] [PubMed]
- Aust, A.E.; Ball, J.C.; Hu, A.A.; Lighty, J.S.; Smith, K.R.; Straccia, A.M.; Veranth, J.M.; Young, W.C. Particle characteristics responsible for effects on human lung epithelial cells. Res. Rep. Health Eff. Inst. 2002, 110, 1–65. [Google Scholar]
- Mukherjee, A.; Agrawal, M. A global perspective of fine particulate matter pollution and its health effects. Rev. Environ. Contam. Toxicol. 2018, 244, 5–51. [Google Scholar] [CrossRef]
- Farahani, V.J.; Altuwayjiri, A.; Pirhadi, M.; Verma, V.; Ruprecht, A.A.; Diapouli, E.; Eleftheriadis, K.; Sioutas, C. The oxidative potential of particulate matter (PM) in different regions around the world and its relation to air pollution sources. Environ. Sci. Atmos. 2022, 2, 1076–1086. [Google Scholar] [CrossRef]
- Zheng, L.; Zhou, J.; Zhu, L.; Xu, X.; Luo, S.; Xie, X.; Li, H.; Lin, S.; Luo, J.; Wu, S. Associations of air pollutants and related metabolites with preterm birth during pregnancy. Sci. Total Environ. 2024, 951, 175542. [Google Scholar] [CrossRef]
- Li, Z.; Dunlop, A.L.; Sarnat, J.A.; Hüls, A.; Eick, S.M.; Gaskins, A.; Chang, H.; Russell, A.; Tan, Y.; Cheng, H.; et al. Unraveling the molecular links between fine particulate matter exposure and early birth risks in African American mothers: A metabolomics study in the Atlanta African American Maternal-Child Cohort. Environ. Sci. Technol. 2025, 59, 10905–10918. [Google Scholar] [CrossRef] [PubMed]
- Parthasarathy, A.; Cross, P.J.; Dobson, R.C.J.; Adams, L.E.; Savka, M.A.; Hudson, A.O. A three-ring circus: Metabolism of the three proteogenic aromatic amino acids and their role in the health of plants and animals. Front. Mol. Biosci. 2018, 5, 29. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhang, L.; Li, Q.; Xu, S.; Wang, P.; Shi, H.; Zhang, Y.; Li, J. The effect of PM2.5 exposure on placenta and its associated metabolites: A birth cohort study. Ecotoxicol. Environ. Saf. 2025, 292, 117891. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Liew, Z.; Uppal, K.; Cui, X.; Ling, C.; Heck, J.E.; von Ehrenstein, O.S.; Wu, J.; Walker, D.I.; Jones, D.P.; et al. Maternal serum metabolome and traffic-related air pollution exposure in pregnancy. Environ. Int. 2019, 130, 104872. [Google Scholar] [CrossRef]
- Kim, J.H.; Yan, Q.; Uppal, K.; Cui, X.; Ling, C.; Walker, D.I.; Heck, J.E.; von Ehrenstein, O.S.; Jones, D.P.; Ritz, B. Metabolomics analysis of maternal serum exposed to high air pollution during pregnancy and risk of autism spectrum disorder in offspring. Environ. Res. 2021, 196, 110823. [Google Scholar] [CrossRef]
- De Simone, R.; Vissicchio, F.; Mingarelli, C.; De Nuccio, C.; Visentin, S.; Ajmone-Cat, M.A.; Minghetti, L. Branched-chain amino acids influence the immune properties of microglial cells and their responsiveness to pro-inflammatory signals. Biochim. Biophys. Acta 2013, 1832, 650–659. [Google Scholar] [CrossRef]
- Zheng, H.F.; Wang, W.Q.; Li, X.M.; Rauw, G.; Baker, G.B. Body fluid levels of neuroactive amino acids in autism spectrum disorders: A review of the literature. Amino Acids 2017, 49, 57–65. [Google Scholar] [CrossRef]
- India-Aldana, S.; Petrick, L.; Niedzwiecki, M.M.; Valvi, D.; Just, A.C.; Gutiérrez-Avila, I.; Kloog, I.; Barupal, D.K.; Téllez-Rojo, M.M.; Wright, R.O.; et al. Pregnancy as a susceptible period to ambient air pollution exposure on the maternal postpartum metabolome. Environ. Sci. Technol. 2025, 59, 6400–6413. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, G.; Liang, S.; Liu, J.; Zhang, J.; Shen, H.; Chen, Y.; Duan, J.; Sun, Z. PM2.5 exposure exaggerates the risk of adverse birth outcomes in pregnant women with pre-existing hyperlipidemia: Modulation role of adipokines and lipidome. Sci. Total Environ. 2021, 787, 147604. [Google Scholar] [CrossRef]
- Ritz, B.; Yan, Q.; He, D.; Wu, J.; Walker, D.I.; Uppal, K.; Jones, D.P.; Heck, J.E. Child serum metabolome and traffic-related air pollution exposure in pregnancy. Environ. Res. 2022, 203, 111907. [Google Scholar] [CrossRef]
- Szczuko, M.; Kikut, J.; Komorniak, N.; Bilicki, J.; Celewicz, Z.; Ziętek, M. The role of arachidonic and linoleic acid derivatives in pathological pregnancies and the human reproduction process. Int. J. Mol. Sci. 2020, 21, 9628. [Google Scholar] [CrossRef]
- Holzhausen, E.A.; Chalifour, B.N.; Tan, Y.; Young, N.; Lurmann, F.; Jones, D.P.; Sarnat, J.A.; Chang, H.H.; Goran, M.I.; Liang, D.; et al. Prenatal and early life exposure to ambient air pollutants is associated with the fecal metabolome in the first two years of life. Environ. Sci. Technol. 2024, 58, 14121–14134. [Google Scholar] [CrossRef]
- Holzhausen, E.A.; Tan, Y.; Young, N.; Jones, R.B.; Tang, Z.; Sarnat, J.A.; Lurmann, F.; Chang, H.H.; Tran, V.; Jones, D.P.; et al. Prenatal nitrogen oxide (NOx) and its potential impact on infant metabolism during the first month of life: Evidence from two distinct cohorts—The Atlanta African American Maternal-Child Cohort and the Southern California Mother’s Milk Study. Environ. Sci. Technol. 2025, 59, 19131–19145. [Google Scholar] [CrossRef]
- Talhout, R.; Schulz, T.; Florek, E.; van Benthem, J.; Wester, P.; Opperhuizen, A. Hazardous compounds in tobacco smoke. Int. J. Environ. Res. Public Health 2011, 8, 613–628. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hecht, S.S. Carcinogenic components of tobacco and tobacco smoke: A 2022 update. Food Chem. Toxicol. 2022, 165, 113179. [Google Scholar] [CrossRef] [PubMed]
- Mund, M.; Louwen, F.; Klingelhoefer, D.; Gerber, A. Smoking and pregnancy—A review on the first major environmental risk factor of the unborn. Int. J. Environ. Res. Public Health 2013, 10, 6485–6499. [Google Scholar] [CrossRef] [PubMed]
- McEvoy, C.T.; Spindel, E.R. Pulmonary effects of maternal smoking on the fetus and child: Effects on lung development, respiratory morbidities, and lifelong lung health. Paediatr. Respir. Rev. 2017, 21, 27–33. [Google Scholar] [CrossRef]
- Gordon, T.; Karey, E.; Rebuli, M.E.; Escobar, Y.H.; Jaspers, I.; Chen, L.C. E-Cigarette Toxicology. Annu. Rev. Pharmacol. Toxicol. 2022, 62, 301–322. [Google Scholar] [CrossRef]
- Patanavanich, R.; Thatasawakul, C.; Youngcharoen, K.; Soponvashira, V.; Pichetsin, P. Health Effects from Secondhand Exposure to E-Cigarettes: A Systematic Review of Peer-Reviewed Articles from 2004–2024. Int. J. Environ. Res. Public Health 2025, 22, 1408. [Google Scholar] [CrossRef]
- Zečić, A.; Vazdar, B.; Slišković, L.; Sutlović, D. Urine Levels of Nicotine and Its Metabolites in Young Population Exposed to Second-Hand Smoke in Nightclubs: A Pilot Study. Arh. Hig. Rada Toksikol. 2024, 75, 211–216. [Google Scholar] [CrossRef]
- Rodriguez, J.; Silverstein, D.; Mutic, A.; Liang, D.; Peterson, S.; Yang, I. Passive electronic cigarette vapor exposure in children: A systematic review. Biol. Res. Nurs. 2025, 10998004251357832. [Google Scholar] [CrossRef]
- Cajachagua-Torres, K.N.; Blaauwendraad, S.M.; El Marroun, H.; Demmelmair, H.; Koletzko, B.; Gaillard, R.; Jaddoe, V.W.V. Fetal exposure to maternal smoking and neonatal metabolite profiles. Metabolites 2022, 12, 1101. [Google Scholar] [CrossRef]
- Snyder, B.M.; Nian, H.; Miller, A.M.; Ryckman, K.K.; Li, Y.; Tindle, H.A.; Ammar, L.; Ramesh, A.; Liu, Z.; Hartert, T.V.; et al. Associations between smoking and smoking cessation during pregnancy and newborn metabolite concentrations: Findings from PRAMS and INSPIRE birth cohorts. Metabolites 2023, 13, 1163. [Google Scholar] [CrossRef]
- Rolle-Kampczyk, U.E.; Krumsiek, J.; Otto, W.; Röder, S.W.; Kohajda, T.; Borte, M.; Theis, F.; Lehmann, I.; von Bergen, M. Metabolomics reveals effects of maternal smoking on endogenous metabolites from lipid metabolism in cord blood of newborns. Metabolomics 2016, 12, 76. [Google Scholar] [CrossRef]
- Fischer, S.T.; Lili, L.N.; Li, S.; Tran, V.T.; Stewart, K.B.; Schwartz, C.E.; Jones, D.P.; Sherman, S.L.; Fridovich-Keil, J.L. Low-level maternal exposure to nicotine associates with significant metabolic perturbations in second-trimester amniotic fluid. Environ. Int. 2017, 107, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Barr, D.B.; Ryan, P.B.; Fedirko, V.; Sarnat, J.A.; Gaskins, A.J.; Chang, C.J.; Tang, Z.; Marsit, C.J.; Corwin, E.J.; et al. High-resolution metabolomics of exposure to tobacco smoke during pregnancy and adverse birth outcomes in the Atlanta African American maternal-child cohort. Environ. Pollut. 2022, 292 Pt A, 118361. [Google Scholar] [CrossRef] [PubMed]
- Abebe, W.; Mozaffari, M.S. Role of taurine in the vasculature: An overview of experimental and human studies. Am. J. Cardiovasc. Dis. 2011, 1, 293–311. [Google Scholar] [PubMed]
- Park, S.; Park, J.Y.; Lee, J.H.; Kim, S.H. Plasma levels of lysine, tyrosine, and valine during pregnancy are independent risk factors of insulin resistance and gestational diabetes. Metab. Syndr. Relat. Disord. 2015, 13, 64–70. [Google Scholar] [CrossRef]
- Kwan, S.T.C.; King, J.H.; Yan, J.; Jiang, X.; Wei, E.; Fomin, V.G.; Roberson, M.S.; Caudill, M.A. Maternal choline supplementation during murine pregnancy modulates placental markers of inflammation, apoptosis and vascularization in a fetal sex-dependent manner. Placenta 2017, 53, 57–65. [Google Scholar] [CrossRef]
- Scholl, T.O.; Chen, X.; Khoo, C.S.; Lenders, C. The dietary glycemic index during pregnancy: Influence on infant birth weight, fetal growth, and biomarkers of carbohydrate metabolism. Am. J. Epidemiol. 2004, 159, 467–474. [Google Scholar] [CrossRef]
- He, D.; Yan, Q.; Uppal, K.; Walker, D.I.; Jones, D.P.; Ritz, B.; Heck, J.E. An untargeted metabolome-wide association study of maternal perinatal tobacco smoking in newborn blood spots. Metabolomics 2025, 21, 30. [Google Scholar] [CrossRef]
- Xue, Y.; Harris, E.; Wang, W.; Baybutt, R.C. Vitamin A depletion induced by cigarette smoke is associated with an increase in lung cancer-related markers in rats. J. Biomed. Sci. 2015, 22, 84. [Google Scholar] [CrossRef] [PubMed]
- Lovelace, M.D.; Varney, B.; Sundaram, G.; Lennon, M.J.; Lim, C.K.; Jacobs, K.; Guillemin, G.J.; Brew, B.J. Recent evidence for an expanded role of the kynurenine pathway of tryptophan metabolism in neurological diseases. Neuropharmacology 2017, 112 Pt B, 373–388. [Google Scholar] [CrossRef] [PubMed]
- Cavalier, H.; Long, S.E.; Rodrick, T.; Siu, Y.; Jacobson, M.H.; Afanasyeva, Y.; Sherman, S.; Liu, M.; Kahn, L.G.; Jones, D.R.; et al. Exploratory Untargeted Metabolomics Analysis Reveals Differences in Metabolite Profiles in Pregnant People Exposed vs. Unexposed to E-Cigarettes Secondhand in the NYU Children’s Health and Environment Study. Metabolomics 2025, 21, 92. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Valko, M. Advances in metal-induced oxidative stress and human disease. Toxicology 2011, 283, 65–87. [Google Scholar] [CrossRef]
- Jomova, K.; Alomar, S.Y.; Nepovimova, E.; Kuca, K.; Valko, M. Heavy metals: Toxicity and human health effects. Arch. Toxicol. 2025, 99, 153–209. [Google Scholar] [CrossRef]
- Liang, D.; Li, Z.; Vlaanderen, J.; Tang, Z.; Jones, D.P.; Vermeulen, R.; Sarnat, J.A. A state-of-the-science review on high-resolution metabolomics application in air pollution health research: Current progress, analytical challenges, and recommendations for future direction. Environ. Health Perspect. 2023, 131, 56002. [Google Scholar] [CrossRef]
- Syama, K.P.; Blais, E.; Kumarathasan, P. Maternal mechanisms in air pollution exposure-related adverse pregnancy outcomes: A systematic review. Sci. Total Environ. 2025, 970, 178999. [Google Scholar] [CrossRef]
- Hood, R.B.; Moyd, S.; Hoffman, S.; Chow, S.S.; Tan, Y.; Bhanushali, P.; Wang, Y.; Sivalogan, K.; Gaskins, A.J.; Liang, D. Metabolomics application in understanding the link between air pollution and infant health outcomes: A narrative review. Curr. Pollut. Rep. 2024, 10, 786–798. [Google Scholar] [CrossRef]
- Bedia, C. Metabolomics in environmental toxicology: Applications and challenges. Trends Environ. Anal. Chem. 2022, 34, e00161. [Google Scholar] [CrossRef]
- Piasek, M.; Mikolić, A.; Sekovanić, A.; Sulimanec Grgec, A.; Jurasović, J. Cadmium in placenta—A valuable biomarker of exposure during pregnancy in biomedical research. J. Toxicol. Environ. Health A 2014, 77, 1071–1074. [Google Scholar] [CrossRef]
- Piasek, M.; Jurasović, J.; Sekovanić, A.; Brajenović, N.; Brčić Karačonji, I.; Mikolić, A.; Grgec, A.S.; Stasenko, S. Placental cadmium as an additional noninvasive bioindicator of active maternal tobacco smoking. J. Toxicol. Environ. Health A 2016, 79, 443–446. [Google Scholar] [CrossRef]
- Lovrić, M.; Gajski, G.; Fernández-Agüera, J.; Pöhlker, M.; Gursch, H.; EDIAQI Consortium; Borg, A.; Switters, J.; Mureddu, F. Evidence driven indoor air quality improvement: An innovative and interdisciplinary approach to improving indoor air quality. Biofactors 2025, 51, e2126. [Google Scholar] [CrossRef] [PubMed]
- Soni, V.; Bartelo, N.; Schweickart, A.; Chawla, Y.; Dutta, A.; Jain, S. Future Perspectives of Metabolomics: Gaps, Planning, and Recommendations. In Metabolomics; Soni, V., Hartman, T.E., Eds.; Springer: Cham, Switzerland, 2023; pp. 479–512. [Google Scholar] [CrossRef]
- Hsu, C.N.; Lin, Y.J.; Hou, C.Y.; Chen, Y.W.; Chang-Chien, G.P.; Lin, S.F.; Tain, Y.L. Antioxidants, gut microbiota, and cardiovascular programming: Unraveling a triad of early-life interactions. Antioxidants 2025, 14, 1049. [Google Scholar] [CrossRef] [PubMed]
- Brown, B.; Wright, C. Safety and efficacy of supplements in pregnancy. Nutr. Rev. 2020, 78, 813–826. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Kluz, T.; Costa, M. Toxic element contaminations of prenatal vitamins. Toxicol. Appl. Pharmacol. 2023, 477, 116670. [Google Scholar] [CrossRef]
- Vineis, P.; Perera, F. Molecular epidemiology and biomarkers in etiologic cancer research: The new in light of the old. Cancer Epidemiol. Biomarkers Prev. 2007, 16, 1954–1965. [Google Scholar] [CrossRef]
- Nicholson, J.K.; Holmes, E.; Elliott, P. The metabolome-wide association study: A new look at human disease risk factors. J. Proteome Res. 2008, 7, 3637–3638. [Google Scholar] [CrossRef]
- Liu, X.; Locasale, J.W. Metabolomics: A primer. Trends Biochem. Sci. 2017, 42, 274–284. [Google Scholar] [CrossRef]

| Pollutant | Main Metabolic Pathways Affected | Health/Functional Implications | References |
|---|---|---|---|
| Metals (e.g., cadmium, lead, mercury, arsenic) |
|
| [58,59,60,61,62,65,68,72,73,74,75,76,77] |
| Air pollution (PM2.5, PM10, NOx, CO, O3) |
|
| [24,84,85,86,89,90,91,93,94] |
| Tobacco and e-cigarettes (maternal and secondhand) |
|
| [103,104,105,106,107,112,115] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pizent, A. Oxidative Stress-Related Metabolomic Alterations in Pregnancy: Evidence from Exposure to Air Pollution, Metals/Metalloid, and Tobacco Smoke. Antioxidants 2025, 14, 1442. https://doi.org/10.3390/antiox14121442
Pizent A. Oxidative Stress-Related Metabolomic Alterations in Pregnancy: Evidence from Exposure to Air Pollution, Metals/Metalloid, and Tobacco Smoke. Antioxidants. 2025; 14(12):1442. https://doi.org/10.3390/antiox14121442
Chicago/Turabian StylePizent, Alica. 2025. "Oxidative Stress-Related Metabolomic Alterations in Pregnancy: Evidence from Exposure to Air Pollution, Metals/Metalloid, and Tobacco Smoke" Antioxidants 14, no. 12: 1442. https://doi.org/10.3390/antiox14121442
APA StylePizent, A. (2025). Oxidative Stress-Related Metabolomic Alterations in Pregnancy: Evidence from Exposure to Air Pollution, Metals/Metalloid, and Tobacco Smoke. Antioxidants, 14(12), 1442. https://doi.org/10.3390/antiox14121442
