Heme Modulates Bladder Contractility Through the HO–CO–sGC–cGMP Pathway: Insights into Sickle Cell Disease-Associated Bladder Dysfunction
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Preparation of Detrusor Muscle
2.3. Concentration–Response Curves
2.4. EFS-Induced Neurogenic Contraction
2.5. Determination of cGMP Levels in Mouse Detrusor Homogenates
2.6. Drugs and Chemicals
2.7. Statistical Analysis
3. Results
3.1. Heme Induces Detrusor Smooth Muscle Relaxation via the HO–CO–sGC–cGMP Pathway
3.2. Heme Reduces Carbachol-Induced Detrusor Contraction via the HO–sGC Pathway
3.3. Heme Reduces KCl-Induced Detrusor Contraction via the HO–sGC Pathway
3.4. Heme Reduces Neurogenic Detrusor Contraction via the HO–sGC Pathway
3.5. Heme Elevates cGMP Levels in Detrusor Tissue
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kavanagh, P.L.; Fasipe, T.A.; Wun, T. Sickle Cell Disease: A Review. JAMA 2022, 328, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Ballas, S.K.; Marcolina, M.J. Hyperhemolysis during the Evolution of Uncomplicated Acute Painful Episodes in Patients with Sickle Cell Anemia. Transfusion 2006, 46, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Field, J.J.; Austin, P.F.; An, P.; Yan, Y.; DeBaun, M.R. Enuresis Is a Common and Persistent Problem among Children and Young Adults with Sickle Cell Anemia. Urology 2008, 72, 81–84. [Google Scholar] [CrossRef] [PubMed]
- Portocarrero, M.L.; Portocarrero, M.L.; Sobral, M.M.; Lyra, I.; Lordêlo, P.; Barroso, U. Prevalence of Enuresis and Daytime Urinary Incontinence in Children and Adolescents with Sickle Cell Disease. J. Urol. 2012, 187, 1037–1040. [Google Scholar] [CrossRef]
- Anele, U.A.; Morrison, B.F.; Reid, M.E.; Madden, W.; Foster, S.; Burnett, A.L. Overactive Bladder in Adults with Sickle Cell Disease. Neurourol. Urodyn. 2016, 35, 642–646. [Google Scholar] [CrossRef]
- Muller-Eberhard, U.; Javid, J.; Liem, H.H.; Hanstein, A.; Hanna, M. Plasma Concentrations of Hemopexin, Haptoglobin and Heme in Patients with Various Hemolytic Diseases. Blood 1968, 32, 811–815. [Google Scholar] [CrossRef]
- Reiter, C.D.; Wang, X.; Tanus-Santos, J.E.; Hogg, N.; Cannon, R.O.; Schechter, A.N.; Gladwin, M.T. Cell-Free Hemoglobin Limits Nitric Oxide Bioavailability in Sickle-Cell Disease. Nat. Med. 2002, 8, 1383–1389. [Google Scholar] [CrossRef]
- Vinchi, F.; De Franceschi, L.; Ghigo, A.; Townes, T.; Cimino, J.; Silengo, L.; Hirsch, E.; Altruda, F.; Tolosano, E. Hemopexin Therapy Improves Cardiovascular Function by Preventing Heme-Induced Endothelial Toxicity in Mouse Models of Hemolytic Diseases. Circulation 2013, 127, 1317–1329. [Google Scholar] [CrossRef]
- Vercellotti, G.M.; Zhang, P.; Nguyen, J.; Abdulla, F.; Chen, C.; Nguyen, P.; Nowotny, C.; Steer, C.J.; Smith, A.; Belcher, J.D. Hepatic Overexpression of Hemopexin Inhibits Inflammation and Vascular Stasis in Murine Models of Sickle Cell Disease. Mol. Med. 2016, 22, 437–451. [Google Scholar] [CrossRef]
- Yalamanoglu, A.; Deuel, J.W.; Hunt, R.C.; Baek, J.H.; Hassell, K.; Redinius, K.; Irwin, D.C.; Schaer, D.J.; Buehler, P.W. Depletion of Haptoglobin and Hemopexin Promote Hemoglobin-Mediated Lipoprotein Oxidation in Sickle Cell Disease. Am. J. Physiol. Lung Cell Mol. Physiol. 2018, 315, L765–L774. [Google Scholar] [CrossRef]
- Graw, J.A.; Mayeur, C.; Rosales, I.; Liu, Y.; Sabbisetti, V.S.; Riley, F.E.; Rechester, O.; Malhotra, R.; Warren, H.S.; Colvin, R.B.; et al. Haptoglobin or Hemopexin Therapy Prevents Acute Adverse Effects of Resuscitation After Prolonged Storage of Red Cells. Circulation 2016, 134, 945–960. [Google Scholar] [CrossRef]
- Gbotosho, O.T.; Kapetanaki, M.G.; Kato, G.J. The Worst Things in Life Are Free: The Role of Free Heme in Sickle Cell Disease. Front. Immunol. 2020, 11, 561917. [Google Scholar] [CrossRef]
- Chiabrando, D.; Vinchi, F.; Fiorito, V.; Mercurio, S.; Tolosano, E. Heme in Pathophysiology: A Matter of Scavenging, Metabolism and Trafficking across Cell Membranes. Front. Pharmacol. 2014, 5, 61. [Google Scholar] [CrossRef] [PubMed]
- Bolívar, B.E.; Brown-Suedel, A.N.; Rohrman, B.A.; Charendoff, C.I.; Yazdani, V.; Belcher, J.D.; Vercellotti, G.M.; Flanagan, J.M.; Bouchier-Hayes, L. Noncanonical Roles of Caspase-4 and Caspase-5 in Heme-Driven IL-1β Release and Cell Death. J. Immunol. 2021, 206, 1878–1889. [Google Scholar] [CrossRef] [PubMed]
- Consoli, V.; Sorrenti, V.; Grosso, S.; Vanella, L. Heme Oxygenase-1 Signaling and Redox Homeostasis in Physiopathological Conditions. Biomolecules 2021, 11, 589. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chapman, G.B.; Peyton, K.J.; Schafer, A.I.; Durante, W. Carbon Monoxide Inhibits Apoptosis in Vascular Smooth Muscle Cells. Cardiovasc. Res. 2002, 55, 396–405. [Google Scholar] [CrossRef]
- Pae, H.-O.; Oh, G.-S.; Choi, B.-M.; Chae, S.-C.; Kim, Y.-M.; Chung, K.-R.; Chung, H.-T. Carbon Monoxide Produced by Heme Oxygenase-1 Suppresses T Cell Proliferation via Inhibition of IL-2 Production. J. Immunol. 2004, 172, 4744–4751. [Google Scholar] [CrossRef]
- Otterbein, L.E.; May, A.; Chin, B.Y. Carbon Monoxide Increases Macrophage Bacterial Clearance through Toll-like Receptor (TLR)4 Expression. Cell Mol. Biol. 2005, 51, 433–440. [Google Scholar]
- Nakahira, K.; Kim, H.P.; Geng, X.H.; Nakao, A.; Wang, X.; Murase, N.; Drain, P.F.; Wang, X.; Sasidhar, M.; Nabel, E.G.; et al. Carbon Monoxide Differentially Inhibits TLR Signaling Pathways by Regulating ROS-Induced Trafficking of TLRs to Lipid Rafts. J. Exp. Med. 2006, 203, 2377–2389. [Google Scholar] [CrossRef]
- Ryter, S.W.; Choi, A.M.K. Heme Oxygenase-1/Carbon Monoxide: From Metabolism to Molecular Therapy. Am. J. Respir. Cell Mol. Biol. 2009, 41, 251–260. [Google Scholar] [CrossRef]
- Motterlini, R.; Otterbein, L.E. The Therapeutic Potential of Carbon Monoxide. Nat. Rev. Drug Discov. 2010, 9, 728–743. [Google Scholar] [CrossRef]
- Ruan, Y.; Wang, L.; Zhao, Y.; Yao, Y.; Chen, S.; Li, J.; Guo, H.; Ming, C.; Chen, S.; Gong, F.; et al. Carbon Monoxide Potently Prevents Ischemia-Induced High-Mobility Group Box 1 Translocation and Release and Protects against Lethal Renal Ischemia-Reperfusion Injury. Kidney Int. 2014, 86, 525–537. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Habtezion, A. Carbon Monoxide-Based Therapy Ameliorates Acute Pancreatitis via TLR4 Inhibition. J. Clin. Investig. 2014, 124, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-C.; Huang, Y.-T.; Hsieh, C.-W.; Yang, P.-M.; Wung, B.-S. Carbon Monoxide Induces Heme Oxygenase-1 to Modulate STAT3 Activation in Endothelial Cells via S-Glutathionylation. PLoS ONE 2014, 9, e100677. [Google Scholar] [CrossRef] [PubMed]
- Riquelme, S.A.; Bueno, S.M.; Kalergis, A.M. Carbon Monoxide Down-Modulates Toll-like Receptor 4/MD2 Expression on Innate Immune Cells and Reduces Endotoxic Shock Susceptibility. Immunology 2015, 144, 321–332. [Google Scholar] [CrossRef]
- Belcher, J.D.; Gomperts, E.; Nguyen, J.; Chen, C.; Abdulla, F.; Kiser, Z.M.; Gallo, D.; Levy, H.; Otterbein, L.E.; Vercellotti, G.M. Oral Carbon Monoxide Therapy in Murine Sickle Cell Disease: Beneficial Effects on Vaso-Occlusion, Inflammation and Anemia. PLoS ONE 2018, 13, e0205194. [Google Scholar] [CrossRef]
- Wang, R.; Wang, Z.; Wu, L. Carbon Monoxide-Induced Vasorelaxation and the Underlying Mechanisms. Br. J. Pharmacol. 1997, 121, 927–934. [Google Scholar] [CrossRef]
- Werkström, V.; Ny, L.; Persson, K.; Andersson, K.E. Carbon Monoxide-Induced Relaxation and Distribution of Haem Oxygenase Isoenzymes in the Pig Urethra and Lower Oesophagogastric Junction. Br. J. Pharmacol. 1997, 120, 312–318. [Google Scholar] [CrossRef]
- Ushiyama, M.; Morita, T.; Kuramochi, T.; Yagi, S.; Katayama, S. Erectile Dysfunction in Hypertensive Rats Results from Impairment of the Relaxation Evoked by Neurogenic Carbon Monoxide and Nitric Oxide. Hypertens. Res. 2004, 27, 253–261. [Google Scholar] [CrossRef]
- Mustafa, A.K.; Gadalla, M.M.; Snyder, S.H. Signaling by Gasotransmitters. Sci. Signal 2009, 2, re2. [Google Scholar] [CrossRef]
- Pereira, D.A.; Pereira, D.A.; Silveira, T.H.R.; Calmasini, F.B.; Burnett, A.L.; Costa, F.F.; Silva, F.H. Heme-Induced Corpus Cavernosum Relaxation and Its Implications for Priapism in Sickle Cell Disease: A Mechanistic Insight. Andrology 2024, 12, 1857–1864. [Google Scholar] [CrossRef] [PubMed]
- Claudino, M.A.; Leiria, L.O.S.; da Silva, F.H.; Alexandre, E.C.; Renno, A.; Mónica, F.Z.; de Nucci, G.; Fertrin, K.Y.; Antunes, E.; Costa, F.F.; et al. Urinary Bladder Dysfunction in Transgenic Sickle Cell Disease Mice. PLoS ONE 2015, 10, e0133996. [Google Scholar] [CrossRef] [PubMed]
- Karakus, S.; Anele, U.A.; Silva, F.H.; Musicki, B.; Burnett, A.L. Urinary Dysfunction in Transgenic Sickle Cell Mice: Model of Idiopathic Overactive Bladder Syndrome. Am. J. Physiol. Ren. Physiol. 2019, 317, F540–F546. [Google Scholar] [CrossRef]
- Karakus, S.; Musicki, B.; Navati, M.S.; Friedman, J.M.; Davies, K.P.; Burnett, A.L. NO-Releasing Nanoparticles Ameliorate Detrusor Overactivity in Transgenic Sickle Cell Mice via Restored NO/ROCK Signaling. J. Pharmacol. Exp. Ther. 2020, 373, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Musicki, B.; Anele, U.A.; Campbell, J.D.; Karakus, S.; Shiva, S.; Silva, F.H.; Burnett, A.L. Dysregulated NO/PDE5 Signaling in the Sickle Cell Mouse Lower Urinary Tract: Reversal by Oral Nitrate Therapy. Life Sci. 2019, 238, 116922. [Google Scholar] [CrossRef]
- Silveira, T.H.R.E.; Pereira, D.A.; Pereira, D.A.; Calmasini, F.B.; Burnett, A.L.; Costa, F.F.; Silva, F.H. Impact of Intravascular Hemolysis on Functional and Molecular Alterations in the Urinary Bladder: Implications for an Overactive Bladder in Sickle Cell Disease. Front. Physiol. 2024, 15, 1369120. [Google Scholar] [CrossRef]
- Pereira, D.A.; Silveira, T.H.R.; Calmasini, F.B.; Costa, F.F.; Burnett, A.L.; Silva, F.H. Heme Reduces Corpus Cavernosum Smooth Muscle Contraction via the HO-CO-sGC-cGMP Pathway: Implications for Priapism in Sickle Cell Disease. Int. J. Impot. Res. 2025. [Google Scholar] [CrossRef]
- Galvao, J.; Davis, B.; Tilley, M.; Normando, E.; Duchen, M.R.; Cordeiro, M.F. Unexpected Low-Dose Toxicity of the Universal Solvent DMSO. FASEB J. 2014, 28, 1317–1330. [Google Scholar] [CrossRef]
- Belcher, J.D.; Chen, C.; Nguyen, J.; Milbauer, L.; Abdulla, F.; Alayash, A.I.; Smith, A.; Nath, K.A.; Hebbel, R.P.; Vercellotti, G.M. Heme Triggers TLR4 Signaling Leading to Endothelial Cell Activation and Vaso-Occlusion in Murine Sickle Cell Disease. Blood 2014, 123, 377–390. [Google Scholar] [CrossRef]
- Buehler, P.W.; Swindle, D.; Pak, D.I.; Ferguson, S.K.; Majka, S.M.; Karoor, V.; Moldovan, R.; Sintas, C.; Black, J.; Gentinetta, T.; et al. Hemopexin Dosing Improves Cardiopulmonary Dysfunction in Murine Sickle Cell Disease. Free Radic. Biol. Med. 2021, 175, 95–107. [Google Scholar] [CrossRef]
- Vendrame, F.; Olops, L.; Saad, S.T.O.; Costa, F.F.; Fertrin, K.Y. Differences in Heme and Hemopexin Content in Lipoproteins from Patients with Sickle Cell Disease. J. Clin. Lipidol. 2018, 12, 1532–1538. [Google Scholar] [CrossRef] [PubMed]
- Kozma, F.; Johnson, R.A.; Nasjletti, A. Role of Carbon Monoxide in Heme-Induced Vasodilation. Eur. J. Pharmacol. 1997, 323, R1–R2. [Google Scholar] [CrossRef] [PubMed]
- Naseem, K.M.; Mumtaz, F.H.; Thompson, C.S.; Sullivan, M.E.; Khan, M.A.; Morgan, R.J.; Mikhailidis, D.P.; Bruckdorfer, K.R. Relaxation of Rabbit Lower Urinary Tract Smooth Muscle by Nitric Oxide and Carbon Monoxide: Modulation by Hydrogen Peroxide. Eur. J. Pharmacol. 2000, 387, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Achouh, P.E.; Simonet, S.; Fabiani, J.-N.; Verbeuren, T.J. Carbon Monoxide Induces Relaxation of Human Internal Thoracic and Radial Arterial Grafts. Interact. Cardiovasc. Thorac. Surg. 2008, 7, 959–962. [Google Scholar] [CrossRef]
- Zhao, Y.; Brandish, P.E.; Di Valentin, M.; Schelvis, J.P.; Babcock, G.T.; Marletta, M.A. Inhibition of Soluble Guanylate Cyclase by ODQ. Biochemistry 2000, 39, 10848–10854. [Google Scholar] [CrossRef]
- de Groat, W.C.; Yoshimura, N. Anatomy and Physiology of the Lower Urinary Tract. Handb. Clin. Neurol. 2015, 130, 61–108. [Google Scholar] [CrossRef]
- Quaghebeur, J.; Petros, P.; Wyndaele, J.-J.; De Wachter, S. The Innervation of the Bladder, the Pelvic Floor, and Emotion: A Review. Auton. Neurosci. 2021, 235, 102868. [Google Scholar] [CrossRef]
- Andersson, K.-E.; Arner, A. Urinary Bladder Contraction and Relaxation: Physiology and Pathophysiology. Physiol. Rev. 2004, 84, 935–986. [Google Scholar] [CrossRef]
- Ratz, P.H.; Berg, K.M.; Urban, N.H.; Miner, A.S. Regulation of Smooth Muscle Calcium Sensitivity: KCl as a Calcium-Sensitizing Stimulus. Am. J. Physiol. Cell Physiol. 2005, 288, C769–C783. [Google Scholar] [CrossRef]
- Pereira, D.A.; Calmasini, F.B.; Silveira, T.H.R.; Pereira, D.A.; de Oliveira, M.G.; Costa, F.F.; Silva, F.H. Bladder Dysfunction in Sickle Cell Disease Is Associated with Inflammation and Oxidative Stress. Int. J. Mol. Sci. 2025, 26, 9776. [Google Scholar] [CrossRef]
- Abdel Aziz, M.T.; El-Asmar, M.F.; Mostafa, T.; Atta, H.; Fouad, H.H.; Roshdy, N.K.; Rashed, L.A.; Obaia, E.A.; Sabry, D.A.; Abdel Aziz, A.T.; et al. Effect of Hemin and Carbon Monoxide Releasing Molecule (CORM-3) on cGMP in Rat Penile Tissue. J. Sex. Med. 2008, 5, 336–343. [Google Scholar] [CrossRef]
- Choi, I.S. Delayed Neurologic Sequelae in Carbon Monoxide Intoxication. Arch. Neurol. 1983, 40, 433–435. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.S. Carbon Monoxide Poisoning: Systemic Manifestations and Complications. J. Korean Med. Sci. 2001, 16, 253–261. [Google Scholar] [CrossRef]
- Hsiao, C.-L.; Kuo, H.-C.; Huang, C.-C. Delayed Encephalopathy after Carbon Monoxide Intoxication--Long-Term Prognosis and Correlation of Clinical Manifestations and Neuroimages. Acta Neurol. Taiwan 2004, 13, 64–70. [Google Scholar]
- Asher, C.; de Villiers, K.A.; Egan, T.J. Speciation of Ferriprotoporphyrin IX in Aqueous and Mixed Aqueous Solution Is Controlled by Solvent Identity, pH, and Salt Concentration. Inorg. Chem. 2009, 48, 7994–8003. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, D.A.; Costa, F.F.; Silva, F.H. Heme Modulates Bladder Contractility Through the HO–CO–sGC–cGMP Pathway: Insights into Sickle Cell Disease-Associated Bladder Dysfunction. Antioxidants 2025, 14, 1398. https://doi.org/10.3390/antiox14121398
Pereira DA, Costa FF, Silva FH. Heme Modulates Bladder Contractility Through the HO–CO–sGC–cGMP Pathway: Insights into Sickle Cell Disease-Associated Bladder Dysfunction. Antioxidants. 2025; 14(12):1398. https://doi.org/10.3390/antiox14121398
Chicago/Turabian StylePereira, Dalila Andrade, Fernando Ferreira Costa, and Fábio Henrique Silva. 2025. "Heme Modulates Bladder Contractility Through the HO–CO–sGC–cGMP Pathway: Insights into Sickle Cell Disease-Associated Bladder Dysfunction" Antioxidants 14, no. 12: 1398. https://doi.org/10.3390/antiox14121398
APA StylePereira, D. A., Costa, F. F., & Silva, F. H. (2025). Heme Modulates Bladder Contractility Through the HO–CO–sGC–cGMP Pathway: Insights into Sickle Cell Disease-Associated Bladder Dysfunction. Antioxidants, 14(12), 1398. https://doi.org/10.3390/antiox14121398

