New Insights into Potential Anti-Aging and Fatigue Effects of a Dietary Supplement from the Resveratrol Beverage in Aged SAMP8 Mice
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Animals
2.3. Animal Experiment Design
- In the low-dose group (0.5-fold), the recommended intake for adults was 0.25 mL/kg BW/day, which is equal to 0.25 mL/kg BW/day × 12.3 = 3.08 mL/kg BW/day for mice.
- In the medium-dose group (1-fold), the recommended intake for adults was 0.5 mL/kg BW/day, which is equal to 0.5 mL/kg BW/day × 12.3 = 6.15 mL/kg BW/day for mice.
- In the high-dose group (2-fold), the recommended intake for adults was 1.0 mL/kg BW/day, which is equal to 1.0 mL/kg BW/day × 12.3 = 12.3 mL/kg BW/day.
2.4. Blood Biochemical Analysis
2.5. Hepatic Glucose Analysis
2.6. Locomotor Ability Assessment
2.7. Forelimb Grip Strength Assessment
2.8. Aging Index Assessment
2.9. Learning and Memory Trial
2.9.1. Passive Avoidance Task (PAT)
2.9.2. Active Shuttle Avoidance Test
2.10. Determination of Biological Activity Indicators Related to the Aging of Brain Tissues
2.10.1. Quantitative Analysis of TBARS
2.10.2. 8-OHdG Content of Genomic DNA
2.11. Determination of Antioxidant Biochemical Indicators in the Liver
2.11.1. Measurement of Superoxide Dismutase (SOD) Activity
2.11.2. Catalase Activity Measurement
2.12. Statistical Analysis
3. Results and Discussion
3.1. Body Weight, Diet, and Water Intake
3.2. Forelimb Grip Strength
3.3. Aging Index
3.4. Learning and Memory Skills
3.5. Locomotor Ability
3.6. Organ Weight
3.7. Blood Biochemical Analysis
3.8. Blood Lactate and Liver Glucose Level
3.9. Bioactivity Activity Indicators Related to the Aging of Brain Tissues
3.10. Antioxidant Biochemical Indicators in the Liver
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, K.; Liu, H.-C.; Hu, Q.-C.; Wang, L.-N.; Liu, J.-Q.; Zheng, Z.-K.; Zhang, W.-Q.; Ren, J.; Zhu, F.-F.; Liu, G.-H. Epigenetic regulation of aging: Implications for interventions of aging and diseases. Signal Transduct. Target. Ther. 2022, 7, 374. [Google Scholar] [CrossRef]
- United Nations Department of Economic and Social Affairs. World Population Prospects 2022: Summary of Results; United Nations Publication: New York, NY, USA, 2022. [Google Scholar]
- Villaflores, O.B.; Chen, Y.-J.; Chen, C.-P.; Yeh, J.-M.; Wu, T.-Y. Curcuminoids and resveratrol as anti-Alzheimer agents. Taiwan J. Obstet. Gynecol. 2012, 51, 515–525. [Google Scholar] [CrossRef]
- Roshani, M.; Jafari, A.; Loghman, A.; Sheida, A.H.; Taghavi, T.; Tamehri Zadeh, S.S.; Hamblin, M.R.; Homayounfal, M.; Mirzaei, H. Applications of resveratrol in the treatment of gastrointestinal cancer. Biomed. Pharmacother. 2022, 153, 113274. [Google Scholar] [CrossRef]
- Moradi, F.; Rocha, S.; Cino, J.; Legros, S.; Fenton, V.; Mistry, M.; Potalivo, E.; Manning, J.; Stuart, J.A. Chapter 24—Resveratrol effects on skeletal muscle mitochondria and contractile function. In Mitochondrial Physiology and Vegetal Molecules; de Oliveira, M.R., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 541–555. [Google Scholar] [CrossRef]
- Flores, G.; Vázquez-Roque, R.A.; Diaz, A. Resveratrol effects on neural connectivity during aging. Neural Regen. Res. 2016, 11, 1067–1068. [Google Scholar] [CrossRef]
- Nunes, S.; Danesi, F.; Del Rio, D.; Silva, P. Resveratrol and inflammatory bowel disease: The evidence so far. Nutr. Res. Rev. 2018, 31, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.-Q.; Mi, Y.; Jiao, K.; Xu, J.-K.; Guo, T.-T.; Zhou, D.; Zhang, X.-N.; Ni, H.; Sun, Y.; Wei, K.; et al. Kellerin alleviates cognitive impairment in mice after ischemic stroke by multiple mechanisms. Phytother. Res. 2020, 34, 2258–2274. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Huang, N.-Q.; Xu, S.-F.; Luo, Y.; Li, Y.; Jin, H.; Yu, C.-Y.; Shi, J.-S.; Jin, F. Signaling mechanisms underlying inhibition of neuroinflammation by resveratrol in neurodegenerative diseases. J. Nutr. Biochem. 2021, 88, 108552. [Google Scholar] [CrossRef]
- De Sá Coutinho, D.; Pacheco, M.T.; Frozza, R.L.; Bernardi, A. Anti-inflammatory effects of resveratrol: Mechanistic insights. Int. J. Mol. Sci. 2018, 19, 1812. [Google Scholar] [CrossRef]
- Shayganfard, M. Molecular and biological functions of resveratrol in psychiatric disorders: A review of recent evidence. Cell Biosci. 2020, 10, 128. [Google Scholar] [CrossRef]
- Labban, S.; Alghamdi, B.S.; Alshehri, F.S.; Kurdi, M. Effects of melatonin and resveratrol on recognition memory and passive avoidance performance in a mouse model of Alzheimer’s disease. Behav. Brain Res. 2021, 402, 113100. [Google Scholar] [CrossRef] [PubMed]
- Simão, F.; Matté, A.; Pagnussat, A.S.; Netto, C.A.; Salbego, C.G. Resveratrol preconditioning modulates inflammatory response in the rat hippocampus following global cerebral ischemia. Neurochem. Int. 2012, 61, 659–665. [Google Scholar] [CrossRef]
- Kuhnle, G.; Spencer, J.P.E.; Chowrimootoo, G.; Schroeter, H.; Debnam, E.S.; Srai, S.K.S.; Rice-Evans, C.; Hahn, U. Resveratrol Is Absorbed in the Small Intestine as Resveratrol Glucuronide. Biochem. Biophys. Res. Commun. 2000, 272, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Lettieri Barbato, D.; Tatulli, G.; Aquilano, K.; Ciriolo, M.R. Inhibition of age-related cytokines production by ATGL: A mechanism linked to the anti-inflammatory effect of resveratrol. Mediat. Inflamm. 2014, 2014, 917698. [Google Scholar] [CrossRef] [PubMed]
- Henry, C.; Vitrac, X.; Decendit, A.; Ennamany, R.; Krisa, S.; Mérillon, J.-M. Cellular uptake and efflux of trans-piceid and Its aglycone trans-resveratrol on the apical membrane of human intestinal Caco-2 cells. J. Agric. Food Chem. 2005, 53, 798–803. [Google Scholar] [CrossRef]
- Meng, T.-T.; Xiao, D.-F.; Muhammed, A.; Deng, J.-Y.; Chen, L.; He, J.-H. Anti-inflammatory action and mechanisms of resveratrol. Molecules 2021, 26, 229. [Google Scholar] [CrossRef]
- Walle, T. Bioavailability of resveratrol. Ann. N. Y. Acad. Sci. 2011, 1215, 9–15. [Google Scholar] [CrossRef]
- Xu, Y.; Fang, M.-X.; Li, X.; Wang, D.; Yu, L.; Ma, F.; Jiang, J.; Zhang, L.-X.; Li, P.-W. Contributions of common foods to resveratrol intake in the Chinese diet. Foods 2024, 13, 1267. [Google Scholar] [CrossRef] [PubMed]
- Tomobe, K.; Nomura, Y. Neurochemistry, neuropathology, and heredity in SAMP8: A mouse model of senescence. Neurochem. Res. 2009, 34, 660–669. [Google Scholar] [CrossRef]
- Woodruff-Pak, D.; Pallas, M.; Camins, A.; Smith, M.A.; Perry, G.; Lee, H.-G.; Casadesus, G. From aging to Alzheimer’s Disease: Unveiling “the switch” with the senescence-accelerated mouse model (SAMP8). J. Alzheimer’s Dis. 2008, 15, 615–624. [Google Scholar] [CrossRef]
- Pačesová, A.; Holubová, M.; Hrubá, L.; Strnadová, V.; Neprašová, B.; Pelantová, H.; Kuzma, M.; Železná, B.; Kuneš, J.; Maletínská, L. Age-related metabolic and neurodegenerative changes in SAMP8 mice. Aging 2022, 14, 7300. [Google Scholar] [CrossRef]
- Macheda, T.; Snider, H.C.; Watson, J.B.; Roberts, K.N.; Bachstetter, A.D. An active avoidance behavioral paradigm for use in a mild closed head model of traumatic brain injury in mice. J. Neurosci. Methods 2020, 343, 108831. [Google Scholar] [CrossRef] [PubMed]
- Mowrer, O.H. A stimulus-response analysis of anxiety and its role as a reinforcing agent. Psychol. Rev. 1939, 46, 553–565. [Google Scholar] [CrossRef]
- Marcus, D.L.; Thomas, C.; Rodriguez, C.; Simberkoff, K.; Tsai, J.S.; Strafaci, J.A.; Freedman, M.L. Increased peroxidation and reduced antioxidant enzyme activity in Alzheimer’s Disease. Exp. Neurol. 1998, 150, 40–44. [Google Scholar] [CrossRef]
- Dhaliwal, J.; Dhaliwal, N.; Akhtar, A.; Kuhad, A.; Chopra, K. Tetramethylpyrazine attenuates cognitive impairment via suppressing oxidative stress, neuroinflammation, and apoptosis in Type 2 Diabetic rats. Neurochem. Res. 2022, 47, 2431–2444. [Google Scholar] [CrossRef]
- Oike, H.; Ogawa, Y.; Azami, K. Long-Term Feeding of a High-Fat Diet Ameliorated Age-Related Phenotypes in SAMP8 Mice. Nutrients 2020, 12, 1416. [Google Scholar] [CrossRef] [PubMed]
- Crowell, J.A.; Korytko, P.J.; Morrissey, R.L.; Booth, T.D.; Levine, B.S. Resveratrol-associated renal toxicity. Tox. Sci. 2004, 82, 614–619. [Google Scholar] [CrossRef]
- Zhu, C.W.; Grossman, H.; Neugroschl, J.; Parker, S.; Burden, A.; Luo, X.; Sano, M. A randomized, double-blind, placebo-controlled trial of resveratrol with glucose and malate (RGM) to slow the progression of Alzheimer’s disease: A pilot study. Transl. Res. Clin. Interv. 2018, 4, 609–616. [Google Scholar] [CrossRef]
- Thaung Zaw, J.J.; Howe, P.R.C.; Wong, R.H.X. Long-term effects of resveratrol on cognition, cerebrovascular function and cardio-metabolic markers in postmenopausal women: A 24-month randomised, double-blind, placebo-controlled, crossover study. Clin. Nutr. 2021, 40, 820–829. [Google Scholar] [CrossRef]
- Jhanji, M.; Rao, C.N.; Sajish, M. Towards resolving the enigma of the dichotomy of resveratrol: Cis- and trans-resveratrol have opposite effects on TyrRS-regulated PARP1 activation. Geroscience 2021, 43, 1171–1200. [Google Scholar] [CrossRef]
- Rudolf, R.; Khan, M.M.; Labeit, S.; Deschenes, M.R. Degeneration of neuromuscular junction in age and dystrophy. Front. Aging Neurosci. 2014, 6, 99. [Google Scholar] [CrossRef]
- Grillo, F.W. Long live the axon. Parallels between ageing and pathology from a presynaptic point of view. Chem. Neuroanat. 2016, 76, 28–34. [Google Scholar] [CrossRef]
- Azpurua, J.; Eaton, B.A. Neuronal epigenetics and the aging synapse. Front. Cell. Neurosci. 2015, 9, 208. [Google Scholar] [CrossRef]
- Stockinger, J.; Maxwell, N.; Shapiro, D.; deCabo, R.; Valdez, G. Caloric restriction mimetics slow aging of neuromuscular synapses and muscle fibers. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 73, 21–28. [Google Scholar] [CrossRef]
- Ueta, R.; Sugita, S.; Minegishi, Y.; Shimotoyodome, A.; Ota, N.; Ogiso, N.; Eguchi, T.; Yamanashi, Y. DOK7 gene therapy enhances neuromuscular junction innervation and motor function in aged mice. iScience 2020, 23, 101385. [Google Scholar] [CrossRef]
- Ureshino, R.P.; Rocha, K.K.; Lopes, G.S.; Bincoletto, C.; Smaili, S.S. Calcium signaling alterations, oxidative stress, and autophagy in aging. Antioxid. Redox Signal. 2014, 21, 123–137. [Google Scholar] [CrossRef]
- Martín Ortega, A.M.; Segura Campos, M.R. Chapter 13—Bioactive compounds as therapeutic alternatives. In Bioactive Compounds; Campos, M.R.S., Ed.; Woodhead Publishing: Cambridge, UK, 2019; pp. 247–264. [Google Scholar] [CrossRef]
- Garrett, A.R.; Gupta-Elera, G.; Keller, M.A.; Robison, R.A.; O’Neill, K.L. Chapter 3—Bioactive foods in aging: The role in cancer prevention and treatment. In Bioactive Food as Dietary Interventions for the Aging Population; Watson, R.R., Preedy, V.R., Eds.; Academic Press: Cambridge, MA, USA, 2013; pp. 33–45. [Google Scholar] [CrossRef]
- Sharma, M.; Gupta, Y.K. Chronic treatment with trans resveratrol prevents intracerebroventricular streptozotocin induced cognitive impairment and oxidative stress in rats. Life Sci. 2002, 71, 2489–2498. [Google Scholar] [CrossRef] [PubMed]
- Gocmez, S.S.; Şahin, T.D.; Yazir, Y.; Duruksu, G.; Eraldemir, F.C.; Polat, S.; Utkan, T. Resveratrol prevents cognitive deficits by attenuating oxidative damage and inflammation in rat model of streptozotocin diabetes induced vascular dementia. Physiol. Behav. 2019, 201, 198–207. [Google Scholar] [CrossRef]
- Oleksiak, C.R.; Ramanathan, K.R.; Miles, O.W.; Perry, S.J.; Maren, S.; Moscarello, J.M. Ventral hippocampus mediates the context-dependence of two-way signaled avoidance in male rats. Neurobiol. Learn. Mem. 2021, 183, 107458. [Google Scholar] [CrossRef] [PubMed]
- Koh, Y.C.; Lee, P.S.; Kuo, Y.L.; Nagabhushanam, K.; Ho, C.T.; Pan, M.H. Dietary pterostilbene and resveratrol modulate the gut microbiota influenced by circadian rhythm dysregulation. Mol. Nutr. Food Res. 2021, 65, 2100434. [Google Scholar] [CrossRef]
- Subramanian, A.; Tamilanban, T.; Abdullah, A.D.I.; Chitra, V.; Sekar, M.; Swaminathan, G.; Yadav, I.; Manimaran, V.; Rajakumari, V.; Subramaniyan, V. Safety assessment of resveratrol surrogate molecule 5 (RSM5): Acute and sub-acute oral toxicity studies in BALB/c mice. Toxicol. Rep. 2025, 14, 101956. [Google Scholar] [CrossRef] [PubMed]
- Cerexhe, L.; Easton, C.; Macdonald, E.; Renfrew, L.; Sculthorpe, N. Blood lactate concentrations during rest and exercise in people with Multiple Sclerosis: A systematic review and meta-analysis. Mult. Scler. Relat. Disord. 2022, 57, 103454. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, A.M.Z.; Soto, M.J.C.; Aranzales, J.R.M.; Valencia, N.M.C.; Gutiérrez, M.P.A. Blood lactate concentrations and heart rates of Colombian Paso horses during a field exercise test. Vet. Sci. 2021, 13, 100185. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Kitaoka, Y.; Matsunaga, Y.; Hatta, H. Effect of post-exercise lactate administration on glycogen repletion and signaling activation in different types of mouse skeletal muscle. Curr. Res. Physiol. 2020, 3, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, Y.; Koyama, S.; Takahashi, K.; Takahashi, Y.; Shinya, T.; Yoshida, H.; Hatta, H. Effects of post-exercise glucose ingestion at different solution temperatures on glycogen repletion in mice. Physiol. Rep. 2021, 9, e15041. [Google Scholar] [CrossRef]
- Pederson, B.A.; Cope, C.R.; Irimia, J.M.; Schroeder, J.M.; Thurberg, B.L.; DePaoli-Roach, A.A.; Roach, P.J. Mice with elevated muscle glycogen stores do not have improved exercise performance. Biochem. Biophys. Res. Commun. 2005, 331, 491–496. [Google Scholar] [CrossRef]
- Liu, M.-Y.; Yin, Y.; Ye, X.-Y.; Zeng, M.; Zhao, Q.; Keefe, D.L.; Liu, L. Resveratrol protects against age-associated infertility in mice. Hum. Reprod. 2013, 28, 707–717. [Google Scholar] [CrossRef]
- Finkel, T.; Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408, 239–247. [Google Scholar] [CrossRef]
- Chae, S.-Y.; Park, R.-W.; Hong, S.-W. Surface-mediated high antioxidant and anti-inflammatory effects of astaxanthin-loaded ultrathin graphene oxide film that inhibits the overproduction of intracellular reactive oxygen species. Biomater. Res. 2022, 26, 30. [Google Scholar] [CrossRef]
- Terlecky, S.R.; Koepke, J.I.; Walton, P.A. Peroxisomes and aging. Biochim. Biophys. Acta Mol. Cell Res. 2006, 1763, 1749–1754. [Google Scholar] [CrossRef]
- Tiana, L.-Q.; Caib, Q.-Y.; Wei, H.-C. Alterations of antioxidant enzymes and oxidative damage to macromolecules in different organs of rats during aging. Free Radic. Biol. Med. 1998, 24, 1477–1484. [Google Scholar] [CrossRef]
- Hutson, K.H.; Willis, K.; Nwokwu, C.D.; Maynard, M.; Nestorova, G.G. Photon versus proton neurotoxicity: Impact on mitochondrial function and 8-OHdG base-excision repair mechanism in human astrocytes. Neurotoxicology 2021, 82, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Li, P.-Y.; Wang, Z.-Y.; Li, Y.-Y.; Liu, L.-Z.; Qiu, J.-G.; Zhang, C.-Y. Bsu polymerase-mediated fluorescence coding for rapid and sensitive detection of 8-oxo-7,8-dihydroguanine in telomeres of cancer cells. Talanta 2022, 243, 123340. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.-N.; Liu, B.-D.; Yin, J.-F.; Xu, T.; Zhao, S.-L.; Xu, Q.; Chen, X.; Wang, H.-L. Detection of 8-hydroxydeoxyguanosine (8-OHdG) as a biomarker of oxidative damage in peripheral leukocyte DNA by UHPLC–MS/MS. J. Chromatogr. B 2017, 1064, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, Y.-M.; Luo, J.; Jiang, Y.-Q.; Zhao, Z.; Chen, Y.-Y.; Huang, Q.-H.; Zhang, L.-Q.; Wu, T.; Pang, J.-X. Resveratrol, a novel inhibitor of GLUT9, ameliorates liver and kidney injuries in ad-galactose-induced ageing mouse model via the regulation of uric acid metabolism. Food Funct. 2021, 12, 8274–8287. [Google Scholar] [CrossRef]





| Group | Body Weight (g) | Food Intake (g/Day) | Water Consumption (mL/Day) | ||
|---|---|---|---|---|---|
| Initial | Final | Gain | |||
| Control | 29.18 ± 0.33 a | 30.05 ± 0.17 a | 0.88 ± 0.25 a | 5.51 ± 0.07 a | 6.07 ± 0.10 b |
| Low-dose | 28.64 ± 1.03 a | 29.79 ± 0.92 a | 1.16 ± 0.37 b | 5.52 ± 0.08 a | 5.84 ± 0.12 a |
| Medium-dose | 29.33 ± 0.88 a | 30.40 ± 0.67 a | 1.07 ± 0.37 b | 5.60 ± 0.09 a | 5.71 ± 0.11 a |
| High-dose | 29.41 ± 0.80 a | 31.05 ± 0.72 a | 1.64 ± 0.58 c | 5.71 ± 0.06 b | 5.99 ± 0.04 a |
| Group | Control | Low-Dose | Medium-Dose | High-Dose |
|---|---|---|---|---|
| Behavior | ||||
| Reactivity | 0.75 ± 0.16 c | 0.63 ± 0.18 b | 0.38 ± 0.18 a | 0.38 ± 0.18 a |
| Passivity | 0.63 ± 0.18 c | 0.38 ± 0.18 a | 0.38 ± 0.18 a | 0.50 ± 0.19 b |
| Skin | ||||
| Glossiness | 1.25 ± 0.16 c | 1.25 ± 0.16 c | 0.63 ± 0.18 a | 0.75 ± 0.25 b |
| Coarseness | 1.38 ± 0.26 d | 1.00 ± 0.27 c | 0.50 ± 0.19 a | 0.75 ± 0.16 b |
| Hair loss | 0.88 ± 0.30 d | 0.75 ± 0.16 c | 0.38 ± 0.18 b | 0.13 ± 0.13 a |
| Ulcer | 0.25 ± 0.16 b | 0.25 ± 0.16 b | 0.13 ± 0.13 a | 0.13 ± 0.13 a |
| Eyes | ||||
| Periophthalmic lesion | 0.75 ± 0.25 b | 0.63 ± 0.18 a | 0.75 ± 0.25 b | 0.75 ± 0.25 b |
| Spine | ||||
| Lordokyphosis | 0.63 ± 0.18 a | 0.75 ± 0.25 b | 0.63 ± 0.26 a | 0.63 ± 0.26 a |
| Total | 6.50 ± 0.71 a | 5.63 ± 0.89 ab | 3.75 ± 0.37 b | 4.00 ± 0.42 b |
| Group | Relative Organ Weights (g/100 g Body Weight) | |||||
|---|---|---|---|---|---|---|
| Brain | Heart | Liver | Spleen | Lung | Kidney | |
| Control | 1.43 ± 0.10 a | 0.65 ± 0.06 a | 4.80 ± 0.12 a | 0.26 ± 0.02 a | 0.66 ± 0.04 a | 1.62 ± 0.06 a |
| Low-dose | 1.44 ± 0.04 a | 0.62 ± 0.03 a | 4.97 ± 0.29 a | 0.28 ± 0.03 a | 0.68 ± 0.02 a | 1.57 ± 0.05 a |
| Medium-dose | 1.47 ± 0.04 a | 0.59 ± 0.03 a | 4.48 ± 0.17 a | 0.23 ± 0.02 a | 0.64 ± 0.02 a | 1.64 ± 0.06 a |
| High-dose | 1.55 ± 0.07 b | 0.62 ± 0.04 a | 4.65 ± 0.27 a | 0.24 ± 0.02 a | 0.65 ± 0.02 a | 1.63 ± 0.06 a |
| Group | A | B | C | D |
|---|---|---|---|---|
| Glucose (mg/dL) | 120.00 ± 6.90 a | 113.13 ± 5.02 a | 111.75 ± 6.91 a | 118.63 ± 8.46 a |
| Total Protein (g/dL) | 5.31 ± 0.18 a | 5.39 ± 0.10 a | 5.60 ± 0.10 a | 5.55 ± 0.12 a |
| Albumin (g/dL) | 3.11 ± 0.09 a | 3.18 ± 0.11 a | 3.26 ± 0.16 a | 3.33 ± 0.15 a |
| Triglyceride (mg/dL) | 107.50 ± 4.74 a | 105.75 ± 5.80 a | 109.00 ± 4.95 a | 103.88 ± 4.47 a |
| Total Cholesterol (mg/dL) | 111.13 ± 4.24 a | 114.00 ± 5.07 a | 110.25 ± 3.86 a | 116.63 ± 4.65 a |
| HDL (mg/dL) | 56.63 ± 4.48 a | 54.63 ± 7.02 a | 58.38 ± 3.21 a | 59.88 ± 5.26 a |
| LDL (mg/dL) | 7.11 ± 0.69 a | 7.51 ± 0.74 a | 7.10 ± 0.59 a | 7.38 ± 0.64 a |
| AST (U/L) | 88.63 ± 3.35 a | 87.00 ± 3.85 a | 86.25 ± 5.27 a | 92.75 ± 2.95 a |
| ALT (U/L) | 65.38 ± 8.60 a | 56.75 ± 5.90 a | 61.25 ± 6.08 a | 58.00 ± 5.84 a |
| BUN (mg/dL) | 29.69 ± 1.65 a | 27.34 ± 0.78 a | 26.14 ± 1.25 a | 25.04 ± 0.91 a |
| Creatinine (mg/dL) | 0.31 ± 0.02 a | 0.29 ± 0.02 a | 0.33 ± 0.03 a | 0.30 ± 0.03 a |
| Creatine kinase (U/L) | 265.75 ± 20.59 a | 264.00 ± 19.06 a | 266.88 ± 19.37 a | 261.38 ± 13.89 a |
| Uric acid (mg/dL) | 4.64 ± 0.46 a | 4.34 ± 0.39 a | 4.11 ± 0.42 a | 4.00 ± 0.52 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-C.; Chou, M.-Y.; Li, P.-H.; Lin, Y.-S.; Yang, M.-D.; Chi, C.-H.; Huang, P.-H.; Wei, Y.-J.; Wang, M.-F.; Kuo, C.-Y. New Insights into Potential Anti-Aging and Fatigue Effects of a Dietary Supplement from the Resveratrol Beverage in Aged SAMP8 Mice. Antioxidants 2025, 14, 1337. https://doi.org/10.3390/antiox14111337
Chen Y-C, Chou M-Y, Li P-H, Lin Y-S, Yang M-D, Chi C-H, Huang P-H, Wei Y-J, Wang M-F, Kuo C-Y. New Insights into Potential Anti-Aging and Fatigue Effects of a Dietary Supplement from the Resveratrol Beverage in Aged SAMP8 Mice. Antioxidants. 2025; 14(11):1337. https://doi.org/10.3390/antiox14111337
Chicago/Turabian StyleChen, Yu-Chien, Ming-Yu Chou, Po-Hsien Li, Ying-Shen Lin, Mei-Due Yang, Ching-Hsin Chi, Ping-Hsiu Huang, Yun-Jhen Wei, Ming-Fu Wang, and Chun-Yen Kuo. 2025. "New Insights into Potential Anti-Aging and Fatigue Effects of a Dietary Supplement from the Resveratrol Beverage in Aged SAMP8 Mice" Antioxidants 14, no. 11: 1337. https://doi.org/10.3390/antiox14111337
APA StyleChen, Y.-C., Chou, M.-Y., Li, P.-H., Lin, Y.-S., Yang, M.-D., Chi, C.-H., Huang, P.-H., Wei, Y.-J., Wang, M.-F., & Kuo, C.-Y. (2025). New Insights into Potential Anti-Aging and Fatigue Effects of a Dietary Supplement from the Resveratrol Beverage in Aged SAMP8 Mice. Antioxidants, 14(11), 1337. https://doi.org/10.3390/antiox14111337

