Differential Expression of Antioxidant and Oxidant Pathways in Chronic Rhinosinusitis Without Nasal Polyps
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Patient Recruitment and Sample Collection
2.3. Real-Time PCR Microarrays
2.4. RT-PCR Analysis of mRNA Expression Levels of DEGs
2.5. Tissue Lysate Preparation and Western Blot Analysis
2.6. Immunohistochemistry
2.7. Data Analysis
3. Results
3.1. Twenty-Seven OxS-Related Genes Are Significantly Altered in CRSsNP Nasal Mucosa Tissues
3.2. Confirmation of the DEGs by RT-PCR, Western Blot, and Customized Real-Time PCR Array Analyses
3.3. The DEGs Lead to the Presence of Oxidative/Nitrosative Damage in CRSsNP Nasal Mucosa
3.4. The Analysis by STRING Reveals a Novel Adaptive Antioxidant Defense Imbalance Signature in CRSsNP but a Pro-Inflammatory/Oxidant Pathway in CRSwNP
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duracková, Z. Some current insights into oxidative stress. Physiol. Res. 2010, 59, 459–469. [Google Scholar] [CrossRef]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative stress: Harms and benefits for human health. Oxidative Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef]
- Sato, H.; Shibata, M.; Shimizu, T.; Shibata, S.; Toriumi, H.; Ebine, T.; Kuroi, T.; Iwashita, T.; Funakubo, M.; Kayama, Y.; et al. Differential cellular localization of antioxidant enzymes in the trigeminal ganglion. Neuroscience 2013, 248, 345–358. [Google Scholar] [CrossRef]
- Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 2007, 87, 315–424. [Google Scholar] [CrossRef] [PubMed]
- Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.; Rahu, N. Oxidative stress and inflammation: What polyphenols can do for us? Oxidative Med. Cell. Longev. 2016, 2016, 7432797. [Google Scholar] [CrossRef]
- Deponte, M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim. Biophys. Acta 2013, 1830, 3217–3266. [Google Scholar] [CrossRef]
- Van Bruaene, N.; Derycke, L.; Perez-Novo, C.A.; Gevaert, P.; Holtappels, G.; De Ruyck, N.; Cuvelier, C.; Van Cauwenberge, P.; Bachert, C. Tgf-beta signaling and collagen deposition in chronic rhinosinusitis. J. Allergy Clin. Immunol. 2009, 124, 253–259, 259.e251–252. [Google Scholar] [CrossRef] [PubMed]
- Takabayashi, T.; Kato, A.; Peters, A.T.; Hulse, K.E.; Suh, L.A.; Carter, R.; Norton, J.; Grammer, L.C.; Cho, S.H.; Tan, B.K.; et al. Excessive fibrin deposition in nasal polyps caused by fibrinolytic impairment through reduction of tissue plasminogen activator expression. Am. J. Respir. Crit. Care Med. 2013, 187, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Van Bruaene, N.; Bachert, C. Tissue remodeling in chronic rhinosinusitis. Curr. Opin. Allergy Clin. Immunol. 2011, 11, 8–11. [Google Scholar] [CrossRef]
- Tai, J.; Shin, J.M.; Park, J.; Han, M.; Kim, T.H. Oxidative stress and antioxidants in chronic rhinosinusitis with nasal polyps. Antioxidants 2023, 12, 195. [Google Scholar] [CrossRef]
- Mihalj, H.; Butković, J.; Tokić, S.; Štefanić, M.; Kizivat, T.; Bujak, M.; Baus Lončar, M.; Mihalj, M. Expression of oxidative stress and inflammation-related genes in nasal mucosa and nasal polyps from patients with chronic rhinosinusitis. Int. J. Mol. Sci. 2022, 23, 5521. [Google Scholar] [CrossRef]
- Tsai, Y.J.; Hsu, Y.T.; Ma, M.C.; Wu, C.K.; Luo, S.D.; Wu, W.B. Transcriptomic analysis of genes associated with oxidative stress in chronic rhinosinusitis patients with nasal polyps: Identifying novel genes involved in nasal polyposis. Antioxidants 2022, 11, 1899. [Google Scholar] [CrossRef] [PubMed]
- Topal, O.; Kulaksızoglu, S.; Erbek, S.S. Oxidative stress and nasal polyposis: Does it affect the severity of the disease? Am. J. Rhinol. Allergy 2014, 28, e1–e4. [Google Scholar] [CrossRef]
- Lin, H.; Ba, G.; Tang, R.; Li, M.; Li, Z.; Li, D.; Ye, H.; Zhang, W. Increased expression of txnip facilitates oxidative stress in nasal epithelial cells of patients with chronic rhinosinusitis with nasal polyps. Am. J. Rhinol. Allergy 2021, 35, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Taş, B.M.; Tuna, A.; Başaran Kankılıç, G.; Koçak, F.M.; Şencan, Z.; Cömert, E.; Bayar Muluk, N. Role of microplastics in chronic rhinosinusitis without nasal polyps. Laryngoscope 2023, 134, 1077–1080. [Google Scholar] [CrossRef] [PubMed]
- Cho, D.Y.; Nayak, J.V.; Bravo, D.T.; Le, W.; Nguyen, A.; Edward, J.A.; Hwang, P.H.; Illek, B.; Fischer, H. Expression of dual oxidases and secreted cytokines in chronic rhinosinusitis. Int. Forum Allergy Rhinol. 2013, 3, 376–383. [Google Scholar] [CrossRef]
- Fordham, M.T.; Mulligan, J.K.; Casey, S.E.; Mulligan, R.M.; Wang, E.W.; Sansoni, E.R.; Schlosser, R.J. Reactive oxygen species in chronic rhinosinusitis and secondhand smoke exposure. Otolaryngol. Head Neck Surg. 2013, 149, 633–638. [Google Scholar] [CrossRef]
- Fruth, K.; Best, N.; Amro, M.; Ingel, K.; Gosepath, J.; Mann, W.J.; Brieger, J. No evidence for a correlation of glutathione s-tranferase polymorphisms and chronic rhinosinusitis. Rhinology 2011, 49, 180–184. [Google Scholar] [CrossRef]
- Lai, T.-H.; Shieh, J.-M.; Tsou, C.-J.; Wu, W.-B. Gold nanoparticles induce heme oxygenase-1 expression through nrf2 activation and bach1 export in human vascular endothelial cells. Int. J. Nanomed. 2015, 10, 5925–5939. [Google Scholar] [CrossRef]
- Tsai, Y.-J.; Chi, J.C.-Y.; Hao, C.-Y.; Wu, W.-B. Peptidoglycan induces bradykinin receptor 1 expression through toll-like receptor 2 and nf-κb signaling pathway in human nasal mucosa-derived fibroblasts of chronic rhinosinusitis patients. J. Cell. Physiol. 2018, 233, 7226–7238. [Google Scholar] [CrossRef]
- Tsai, Y.J.; Hao, C.Y.; Chen, C.L.; Wu, P.H.; Wu, W.B. Expression of long pentraxin 3 in human nasal mucosa fibroblasts, tissues, and secretions of chronic rhinosinusitis without nasal polyps. J. Mol. Med. 2020, 98, 673–689. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The string database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef]
- Rhee, S.G.; Chae, H.Z.; Kim, K. Peroxiredoxins: A historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic. Biol. Med. 2005, 38, 1543–1552. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.C. Regulation of glutathione synthesis. Mol. Asp. Med. 2009, 30, 42–59. [Google Scholar] [CrossRef]
- Marklund, S.L. Extracellular superoxide dismutase and other superoxide dismutase isoenzymes in tissues from nine mammalian species. Biochem. J. 1984, 222, 649–655. [Google Scholar] [CrossRef]
- Brigelius-Flohé, R.; Maiorino, M. Glutathione peroxidases. Biochim. Biophys. Acta 2013, 1830, 3289–3303. [Google Scholar] [CrossRef] [PubMed]
- Lambeth, J.D. Nox enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 2004, 4, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Arnhold, J. Heme peroxidases at unperturbed and inflamed mucous surfaces. Antioxidants 2021, 10, 1805. [Google Scholar] [CrossRef]
- Bogdan, C. Nitric oxide and the immune response. Nat. Immunol. 2001, 2, 907–916. [Google Scholar] [CrossRef]
- Benhar, M.; Forrester, M.T.; Stamler, J.S. Protein denitrosylation: Enzymatic mechanisms and cellular functions. Nat. Rev. Mol. Cell Biol. 2009, 10, 721–732. [Google Scholar] [CrossRef]
- Nagarajan, N.; Sadoshima, J. Regulation of protein nitrosylation by thioredoxin 1. In Biochemistry of Oxidative Stress: Physiopathology and Clinical Aspects; Gelpi, R.J., Boveris, A., Poderoso, J.J., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 163–175. [Google Scholar]
- Bedard, K.; Krause, K.H. The nox family of ros-generating nadph oxidases: Physiology and pathophysiology. Physiol. Rev. 2007, 87, 245–313. [Google Scholar] [CrossRef]
- Csala, M.; Kardon, T.; Legeza, B.; Lizák, B.; Mandl, J.; Margittai, É.; Puskás, F.; Száraz, P.; Szelényi, P.; Bánhegyi, G. On the role of 4-hydroxynonenal in health and disease. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2015, 1852, 826–838. [Google Scholar] [CrossRef]
- Bandookwala, M.; Sengupta, P. 3-nitrotyrosine: A versatile oxidative stress biomarker for major neurodegenerative diseases. Int. J. Neurosci. 2020, 130, 1047–1062. [Google Scholar] [CrossRef]
- Dröge, W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002, 82, 47–95. [Google Scholar] [CrossRef]
- Gornicka, A.; Morris-Stiff, G.; Thapaliya, S.; Papouchado, B.G.; Berk, M.; Feldstein, A.E. Transcriptional profile of genes involved in oxidative stress and antioxidant defense in a dietary murine model of steatohepatitis. Antioxid. Redox Signal 2011, 15, 437–445. [Google Scholar] [CrossRef]
- Yoshihara, E.; Masaki, S.; Matsuo, Y.; Chen, Z.; Tian, H.; Yodoi, J. Thioredoxin/Txnip: Redoxisome, as a redox switch for the pathogenesis of diseases. Front. Immunol. 2014, 4, 2013. [Google Scholar] [CrossRef] [PubMed]
- Cadenas, C.; Franckenstein, D.; Schmidt, M.; Gehrmann, M.; Hermes, M.; Geppert, B.; Schormann, W.; Maccoux, L.J.; Schug, M.; Schumann, A.; et al. Role of thioredoxin reductase 1 and thioredoxin interacting protein in prognosis of breast cancer. Breast Cancer Res. 2010, 12, R44. [Google Scholar] [CrossRef] [PubMed]
- Parker, J.L.; Deme, J.C.; Kolokouris, D.; Kuteyi, G.; Biggin, P.C.; Lea, S.M.; Newstead, S. Molecular basis for redox control by the human cystine/glutamate antiporter system xc−. Nat. Commun. 2021, 12, 7147. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, Y.; Liu, M.; Qin, X.; Yu, X.; Zhao, H.; Li, X.; Li, W. Cox-2 is required to mediate crosstalk of ros-dependent activation of MAPK/NF-κb signaling with pro-inflammatory response and defense-related no enhancement during challenge of macrophage-like cell line with giardia duodenalis. PLoS Neglected Trop. Dis. 2022, 16, e0010402. [Google Scholar] [CrossRef] [PubMed]
- Hervé, C.; Tonon, T.; Collén, J.; Corre, E.; Boyen, C. Nadph oxidases in eukaryotes: Red algae provide new hints! Curr. Genet. 2006, 49, 190–204. [Google Scholar] [CrossRef]
- Guo, J.; Xu, N.; Yao, Y.; Lin, J.; Li, R.; Li, J.-W. Efficient expression of recombinant human heavy chain ferritin (fth1) with modified peptides. Protein Expr. Purif. 2017, 131, 101–108. [Google Scholar] [CrossRef]
- Enami, S.; Sakamoto, Y.; Colussi, A.J. Fenton chemistry at aqueous interfaces. Proc. Natl. Acad. Sci. USA 2014, 111, 623–628. [Google Scholar] [CrossRef] [PubMed]
- Castroflorio, E.; den Hoed, J.; Svistunova, D.; Finelli, M.J.; Cebrian-Serrano, A.; Corrochano, S.; Bassett, A.R.; Davies, B.; Oliver, P.L. The ncoa7 locus regulates v-atpase formation and function, neurodevelopment and behaviour. Cell Mol. Life Sci. 2021, 78, 3503–3524. [Google Scholar] [CrossRef]
- Wang, L.; Wei, Z.; Wu, Y.; Hu, X.; Zhou, L.; Zhao, M.; Sun, A.; Shao, G.; Yang, W.; Lin, Q. Nuclear receptor coactivator 7 (ncoa7) protects cancer cells from oxidative damage through its erbd domain. Cell Signal 2024, 124, 111382. [Google Scholar] [CrossRef]
- Kensler, T.W.; Wakabayashi, N.; Biswal, S. Cell survival responses to environmental stresses via the keap1-nrf2-are pathway. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 89–116. [Google Scholar] [CrossRef]
- Anavi, S.; Tirosh, O. Inos as a metabolic enzyme under stress conditions. Free Radic. Biol. Med. 2020, 146, 16–35. [Google Scholar] [CrossRef] [PubMed]
- Ozcan, C.; Apa, D.D.; Pata, Y.S.; Görür, K.; Akbaş, Y. Expression of inducible nitric oxide synthase in antrochoanal polyps. Int. J. Pediatr. Otorhinolaryngol. 2003, 67, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Kakuta, S. Expression and localization of the inducible isoform of nitric oxide synthase in nasal polyps. Nippon. Jibiinkoka Gakkai Kaiho 2002, 105, 873–881. [Google Scholar] [CrossRef]
- Tang, B.; Tu, J.; Zhang, M.; Zhang, Z.; Yu, J.; Shen, L.; Luo, Q.; Ye, J. Diagnostic value and underlying mechanism of nasal nitric oxide in eosinophilic chronic rhinosinusitis with nasal polyps. Mol. Immunol. 2023, 159, 1–14. [Google Scholar] [CrossRef]
- Wu, V.; Cusimano, M.; Marsden, P.; Lee, J.M. Levels of nasal nitric oxide and nitric oxide synthase expression in chronic rhinosinusitis with nasal polyposis. Int. Forum Allergy Rhinol. 2024, 14, 127–129. [Google Scholar] [CrossRef]
- Yoshimura, T.; Moon, T.C.; St Laurent, C.D.; Puttagunta, L.; Chung, K.; Wright, E.; Yoshikawa, M.; Moriyama, H.; Befus, A.D. Expression of nitric oxide synthases in leukocytes in nasal polyps. Ann. Allergy Asthma Immunol. Off. Publ. Am. Coll. Allergy Asthma Immunol. 2012, 108, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Begleiter, A.; Fourie, J. Induction of nqo1 in cancer cells. Methods Enzymol. 2004, 382, 320–351. [Google Scholar] [PubMed]
- Lee, W.S.; Ham, W.; Kim, J. Roles of nad(p)h:Quinone oxidoreductase 1 in diverse diseases. Life 2021, 11, 1301. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Lei, K.; Xiang, D.; Ye, K. Nqo1 is regulated by pten in glioblastoma, mediating cell proliferation and oxidative stress. Oxidative Med. Cell. Longev. 2018, 2018, 9146528. [Google Scholar] [CrossRef]
- Wang, Z.; Feng, Y.; Song, J.; Sun, D.; Zhang, Y.Y. Function, drug resistance and prognostic effect of akr1c2 in human cancer. Neoplasma 2023, 70, 319–332. [Google Scholar] [CrossRef]
- Zamocky, M.; Jakopitsch, C.; Furtmüller, P.G.; Dunand, C.; Obinger, C. The peroxidase-cyclooxygenase superfamily: Reconstructed evolution of critical enzymes of the innate immune system. Proteins 2008, 72, 589–605. [Google Scholar] [CrossRef]
- Fukai, T.; Ushio-Fukai, M. Superoxide dismutases: Role in redox signaling, vascular function, and diseases. Antioxid. Redox Signal 2011, 15, 1583–1606. [Google Scholar] [CrossRef]
- Wang, Y.; Branicky, R.; Noë, A.; Hekimi, S. Superoxide dismutases: Dual roles in controlling ros damage and regulating ros signaling. J. Cell Biol. 2018, 217, 1915–1928. [Google Scholar] [CrossRef]
- Qin, L.; Guo, J.; Zheng, Q.; Zhang, H. Bag2 structure, function and involvement in disease. Cell. Mol. Biol. Lett. 2016, 21, 18. [Google Scholar] [CrossRef]
- Bilska-Wilkosz, A.; Iciek, M.; Górny, M. Chemistry and biochemistry aspects of the 4-hydroxy-2,3-trans-nonenal. Biomolecules 2022, 12, 145. [Google Scholar] [CrossRef]
- Giri, S.; Schneider, A.L.; Tan, B.K. Chronic rhinosinusitis: Future treatments and unmet needs. J. Allergy Clin. Immunol. 2022, 150, 287–290. [Google Scholar] [CrossRef] [PubMed]
- Hamada, K.; Oishi, K.; Chikumoto, A.; Murakawa, K.; Ohteru, Y.; Matsuda, K.; Uehara, S.; Suetake, R.; Ohata, S.; Murata, Y.; et al. Impact of sinus surgery on type 2 airway and systemic inflammation in asthma. J. Asthma 2021, 58, 750–758. [Google Scholar] [CrossRef] [PubMed]
- Delemarre, T.; Holtappels, G.; De Ruyck, N.; Zhang, N.; Nauwynck, H.; Bachert, C.; Gevaert, E. Type 2 inflammation in chronic rhinosinusitis without nasal polyps: Another relevant endotype. J. Allergy Clin. Immunol. 2020, 146, 337–343.e336. [Google Scholar] [CrossRef]







| Gene | Forward Primer (5′ ⟶ 3′) | Reverse Primer (5′ ⟶ 3′) | Product Size |
|---|---|---|---|
| HSP90AA1 | GCCGGATGCCTAAGTAGACC | CCATGTCAACCCTTGGAGCA | 489 bp |
| NOS2 | GCAGAATGTGACCATCATGG | ACAACCTTGGGGTTGAAGGC | 426 bp |
| HMOX1 | GAGACGGCTTCAAGCTGGTGATG | GTTGAGCAGGAACGCAGTCTTGG | 500 bp |
| SOD3 | ATGCTGGCGCTACTGTGTT | GCTTCTTGCGCTCTGAGT | 690 bp |
| GPX3 | GCCGGGGACAAGAGAAGT | GAGGACGTATTTGCCAGCAT | 131 bp |
| β-ACTIN | ATCATGTTTGAGACCTTCAA | CATCTCTTGCTCGAAGTCCA | 314 bp |
| Gene Ref No. | Gene Name/Abbreviation | Fold Regulation | p-Value (p < 0.05) |
|---|---|---|---|
| NM_014762 | 24-Dehydrocholesterol reductase (DHCR24) | 1.65 | 0.112073 |
| NM_000477 | Albumin (ALB) | 2.85 | 0.00957 |
| NM_001159 | Aldehyde oxidase 1 (AOX1) | −1.33 | 0.285081 |
| NM_001354 | Aldo-keto reductase family 1, member C2 (dihydrodiol dehydrogenase 2; bile acid binding protein; 3-alpha hydroxysteroid dehydrogenase, type III) (AKR1C2) | 4.24 | 0.024788 |
| NM_000041 | Apolipoprotein E (APOE) | −1.42 | 0.660256 |
| NM_000697 | Arachidonate 12-lipoxygenase (ALOX12) | −1.08 | 0.814280 |
| NM_004045 | ATX1 antioxidant protein 1 homolog (yeast) (ATOX1) | 1.43 | 0.088614 |
| NM_004052 | BCL2/adenovirus E1B 19kDa interacting protein 3 (BNIP3) | 1.10 | 0.612231 |
| NM_004282 | BCL2-associated athanogene 2 (BAG2) | 2.28 | 0.009770 |
| NM_001752 | Catalase (CAT) | 1.36 | 0.099366 |
| NM_002985 | Chemokine (C-C motif) ligand 5 (CCL5) | 1.44 | 0.293668 |
| NM_005125 | Copper chaperone for superoxide dismutase (CCS) | −1.06 | 0.544413 |
| NM_000397 | Cytochrome b-245, beta polypeptide (CYBB) | 2.30 | 0.054597 |
| NM_134268 | Cytoglobin (CYGB) | −1.27 | 0.401843 |
| NM_175940 | Dual oxidase 1 (DUOX1) | 3.44 | 0.014514 |
| NM_014080 | Dual oxidase 2 (DUOX2) | 2.76 | 0.162189 |
| NM_004417 | Dual specificity phosphatase 1 (DUSP1) | 1.98 | 0.290027 |
| NM_000502 | Eosinophil peroxidase (EPX) | 2.42 | 0.021458 |
| NM_001979 | Epoxide hydrolase 2, cytoplasmic (EPHX2) | 1.43 | 0.070129 |
| NM_002032 | Ferritin, heavy polypeptide 1 (FTH1) | 1.84 | 0.026055 |
| NM_021953 | Forkhead box M1 (FOXM1) | 1.37 | 0.330551 |
| NM_001450 | Four and a half LIM domains 2 (FHL2) | 1.76 | 0.009407 |
| NM_000169 | Galactosidase, alpha (GLA) | 1.61 | 0.076094 |
| NM_001498 | Glutamate-cysteine ligase, catalytic subunit (GCLC) | 3.60 | 0.032331 |
| NM_002061 | Glutamate-cysteine ligase, modifier subunit (GCLM) | 4.86 | 0.004368 |
| NM_000581 | Glutathione peroxidase 1 (GPX1) | 1.81 | 0.011334 |
| NM_002083 | Glutathione peroxidase 2 (GPX2) | 4.18 | 0.042426 |
| NM_002084 | Glutathione peroxidase 3 (GPX3) | −2.15 | 0.042700 |
| NM_002085 | Glutathione peroxidase 4 (GPX4) | 1.40 | 0.095091 |
| NM_001509 | Glutathione peroxidase 5 (GPX5) | 2.17 | 0.193101 |
| NM_000637 | Glutathione reductase (GSR) | 1.50 | 0.336807 |
| NM_000852 | Glutathione S-transferase pi 1 (GSTP1) | 2.58 | 0.001655 |
| NM_000178 | Glutathione synthetase (GSS) | 1.27 | 0.045122 |
| NM_001513 | Glutathione transferase zeta 1 (GSTZ1) | −1.09 | 0.662221 |
| NM_005345 | Heat shock 70kDa protein 1A (HSPA1A) | −1.11 | 0.763232 |
| NM_001017963 | Heat shock protein 90kDa alpha (cytosolic), class A member 1 (HSP90AA1) | 3.34 | 0.007239 |
| NM_002133 | Heme oxygenase (decycling) 1 (HMOX1) | 3.37 | 0.016069 |
| NM_006121 | Keratin 1 (KRT1) | 2.00 | 0.229629 |
| NM_006151 | Lactoperoxidase (LPO) | −15.51 | 0.021233 |
| NM_000242 | Mannose-binding lectin (protein C) 2, soluble (MBL2) | 2.12 | 0.189694 |
| NM_005954 | Metallothionein 3 (MT3) | 2.38 | 0.347306 |
| NM_012331 | Methionine sulfoxide reductase A (MSRA) | 1.01 | 0.840076 |
| NM_002437 | MpV17 mitochondrial inner membrane protein (MPV17) | 1.31 | 0.039592 |
| NM_000250 | Myeloperoxidase (MPO) | −7.09 | 0.063002 |
| NM_005368 | Myoglobin (MB) | 1.70 | 0.126031 |
| NM_000903 | NAD(P)H dehydrogenase, quinone 1 (NQO1) | 7.99 | 0.006945 |
| NM_016931 | NADPH oxidase 4 (NOX4) | 1.10 | 0.664407 |
| NM_024505 | NADPH oxidase, EF-hand calcium binding domain 5 (NOX5) | 1.36 | 0.430648 |
| NM_000265 | Neutrophil cytosolic factor 1 (NCF1) | 1.77 | 0.782783 |
| NM_000433 | Neutrophil cytosolic factor 2 (NCF2) | 2.61 | 0.039859 |
| NM_000625 | Nitric oxide synthase 2, inducible (NOS2) | 17.62 | 0.024602 |
| NM_181782 | Nuclear receptor coactivator 7 (NCOA7) | 1.32 | 0.198973 |
| NM_002452 | Nudix (nucleoside diphosphate linked moiety X)-type motif 1 (NUDT1) | −1.00 | 0.700534 |
| NM_020992 | PDZ and LIM domain 1 (PDLIM1) | 1.89 | 0.000223 |
| NM_002574 | Peroxiredoxin 1 (PRDX1) | 3.22 | 0.016044 |
| NM_005809 | Peroxiredoxin 2 (PRDX2) | −1.03 | 0.809541 |
| NM_006793 | Peroxiredoxin 3 (PRDX3) | 2.38 | 0.029921 |
| NM_006406 | Peroxiredoxin 4 (PRDX4) | −1.27 | 0.715809 |
| NM_181652 | Peroxiredoxin 5 (PRDX5) | 3.06 | 0.018082 |
| NM_004905 | Peroxiredoxin 6 (PRDX6) | 1.47 | 0.056072 |
| NM_022126 | Phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) | 1.89 | 0.032497 |
| NM_183079 | Prion protein (PRNP) | 1.42 | 0.130447 |
| NM_012212 | Prostaglandin reductase 1 (PTGR1) | 1.90 | 0.018686 |
| NM_000962 | Prostaglandin-endoperoxide synthase 1 (PTGS1) | 1.06 | 0.773287 |
| NM_000963 | Prostaglandin-endoperoxide synthase 2 (PTGS2) | 1.01 | 0.915271 |
| NM_014245 | Ring finger protein 7 (RNF7) | 1.51 | 0.041667 |
| NM_005410 | Selenoprotein P, plasma, 1 (SEPP1) | 1.14 | 0.374880 |
| NM_203472 | Selenoprotein S (VIMP) | −1.08 | 0.688003 |
| NM_003900 | Sequestosome 1 (SQSTM1) | −1.12 | 0.506208 |
| NM_003122 | Serine peptidase inhibitor, Kazal type 1 (SPINK1) | −1.71 | 0.461753 |
| NM_012237 | Sirtuin 2 (SIRT2) | 1.03 | 0.861359 |
| NM_014331 | Solute carrier family 7 (SLC7A11) | 2.15 | 0.028303 |
| NM_080725 | Sulfiredoxin 1 (SRXN1) | −1.26 | 0.328914 |
| NM_000454 | Superoxide dismutase 1, soluble (SOD1) | 2.62 | 0.010116 |
| NM_000636 | Superoxide dismutase 2, mitochondrial (SOD2) | 1.49 | 0.049991 |
| NM_003102 | Superoxide dismutase 3, extracellular (SOD3) | −3.23 | 0.002625 |
| NM_003019 | Surfactant protein D (SFTPD) | −1.14 | 0.651687 |
| NM_003329 | Thioredoxin (TXN) | 2.48 | 0.039142 |
| NM_003330 | Thioredoxin reductase 1 (TXNRD1) | 2.44 | 0.017214 |
| NM_006440 | Thioredoxin reductase 2 (TXNRD2) | −1.05 | 0.969389 |
| NM_000547 | Thyroid peroxidase (TPO) | 2.96 | 0.027426 |
| NM_003319 | Titin (TTN) | 2.19 | 0.002894 |
| NM_024108 | Trafficking protein particle complex 6A (TRAPPC6A) | 1.15 | 0.337397 |
| NM_003355 | Uncoupling protein 2 (UCP2) | 3.47 | 0.001925 |
| Category | No. | Gene Name | Fold Regulation | p-Value |
|---|---|---|---|---|
| nonDEGs | 1 | Peroxiredoxin 4 (PRDX4) | −1.289 | 0.02521 |
| 2 | Dual specificity phosphatase 1 (DUSP1) | −1.7163 | 0.00599 | |
| DEGs | 1 | Lactoperoxidase (LPO) | −5.1107 | 0.00001 **** |
| 2 | Superoxide dismutase 3, extracellular (SOD3) | −3.1359 | 1 × 106 **** | |
| 3 | Nitric oxide synthase 2, inducible (NOS2) | 4.7613 | 0.01469 * | |
| 4 | Heme oxygenase (decycling) 1 (HMOX1) | 2.4445 | 0.00237 ** |
| (a) | ||
| Category | Putative OxS Status | DEGs Involved |
| Increase in Antioxidant Defense and Redox Balance | ↑ ROS detoxification (especially H2O2 and lipid hydroperoxides) | ↑ PRDX1/3/5, GPX2, SOD1, TXN, and TXNRD1 |
| ↑ Glutathione synthesis and cystine import → robust GSH system | ↑ GCLC, GCLM, and SLC7A11 | |
| ↑ Detoxification of quinones and electrophilic compounds | ↑ NQO1 and GSTP1 | |
| ROS Production/Inflammation | ↓ Extracellular ROS clearance → ↑ extracellular oxidative stress risk | ↓ GPX3 and SOD3 |
| ↑ ROS generation (hydrogen peroxide, nitric oxide and superoxide) | ↑ DUOX1, NOS2, and NCF2 | |
| ↑ Oxidative burst activity | ↑ EPX | |
| ↓ Classic peroxidase activity linked to antimicrobial defense | ↓ LPO | |
| Stress Response and Protein Quality Control | ↑ Heme catabolism, cytoprotection, anti-inflammatory signaling and protein folding | ↑ HMOX1, HSP90AA1, and BAG2 |
| Energy Metabolism and Mitochondrial Function | ↓ Mitochondrial membrane potential and ROS production at mitochondria | ↑ UCP2 |
| Other (Extracellular/Structural) | Associated with muscle structural integrity and plasma antioxidant capacity | ↑ ALB and TTN |
| (b) | ||
| Process | Putative NsS Status | DEGs Involved |
| NO/RNS Production | ↑ NO, superoxide, peroxynitrite → nitration/S-nitrosylation | ↑ NOS2, NCF2, and DUOX1 |
| Protein (De)nitrosylation | Removal of nitrosyl groups from proteins | ↑ TXN and TXNRD1 |
| S-Nitrosothiol Formation | Buffer/trans-nitrosylation | ↑ GCLC, GCLM, SLC7A11, GSTP1, and NQO1 |
| ROS Regulation of RNS | Modulates ROS/RNS interplay | ↑ PRDXs, GPX2, and SOD1 |
| NOS2 Stabilization | Sustains NO production | ↑ HSP90AA1 |
| Extracellular Vulnerability | Increased extracellular nitrosative stress | ↓ GPX3 and SOD3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, Y.-J.; Shieh, J.-M.; Ma, M.-C.; Wu, W.-B. Differential Expression of Antioxidant and Oxidant Pathways in Chronic Rhinosinusitis Without Nasal Polyps. Antioxidants 2025, 14, 1292. https://doi.org/10.3390/antiox14111292
Tsai Y-J, Shieh J-M, Ma M-C, Wu W-B. Differential Expression of Antioxidant and Oxidant Pathways in Chronic Rhinosinusitis Without Nasal Polyps. Antioxidants. 2025; 14(11):1292. https://doi.org/10.3390/antiox14111292
Chicago/Turabian StyleTsai, Yih-Jeng, Jiunn-Min Shieh, Ming-Chieh Ma, and Wen-Bin Wu. 2025. "Differential Expression of Antioxidant and Oxidant Pathways in Chronic Rhinosinusitis Without Nasal Polyps" Antioxidants 14, no. 11: 1292. https://doi.org/10.3390/antiox14111292
APA StyleTsai, Y.-J., Shieh, J.-M., Ma, M.-C., & Wu, W.-B. (2025). Differential Expression of Antioxidant and Oxidant Pathways in Chronic Rhinosinusitis Without Nasal Polyps. Antioxidants, 14(11), 1292. https://doi.org/10.3390/antiox14111292

