Irisin, Brain-Derived Neurotrophic Factor (BDNF), and Redox Balance in Geriatric Dynapenia
Abstract
1. Introduction
2. Materials and Methods
- -
- The SARC-F questionnaire (an acronym that stands for Strength, Assistance in walking, Rise from a chair, Climb stairs, and Falls), a self-assessment tool for identifying deficiencies suggestive of sarcopenia. A score of 0 to 2 points may be assigned for each item (with a maximum total score of 10). A result of ≥4 points indicates probable sarcopenia and a potential risk of poor functional outcomes [11,12].
- -
- Functional test assessing the strength of lower extremities—5 Times Sit-to-Stand Test, 5TSST. The patient sits in a chair with a straight back, feet flat on the floor, and arms folded across their chest. The time it takes the person to stand up and sit down five times as quickly as possible is measured. A result greater than 15 seconds indicates lower limb dynapenia, which is recognized as probable sarcopenia.
3. Results
3.1. Study Group Characteristics
3.2. Association Between Dynapenia, Irisin, BDNF and Redox Parameters
3.3. Predictors of Dynapenia in Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BDNF | Brain-derived neurotrophic factor |
| CI | Confidence interval |
| CV | Coefficient of variation |
| EWGSOP2 | The Second European Working Group on Sarcopenia in Older People |
| ICD-10 | The 10th International Classification of Diseases |
| IQR | Interquartile range |
| M | Mean |
| Me | Median |
| N | Number |
| OR | Odds ratio |
| OSI | Oxidative stress index |
| SARC-F | S(trength), A(ssistance with walking), R(ise from a chair), C(limbing stairs), and F(alls) questionnaire |
| SD | Standard deviation |
| TAS | Total antioxidative status |
| TOS | Total oxidative status |
| 5TSST | 5 Times Sit-to-Stand Test |
References
- Kirk, B.; Cawthon, P.M.; Arai, H.; Ávila-Funes, J.A.; Barazzoni, R.; Bhasin, S.; Binder, E.F.; Bruyere, O.; Cederholm, T.; Chen, L.-K.; et al. The Conceptual Definition of Sarcopenia: Delphi Consensus from the Global Leadership Initiative in Sarcopenia (GLIS). Age Ageing 2024, 53, afae052. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2018, 48, 16–31. [Google Scholar] [CrossRef]
- Tu, S.; Hao, X.; Xu, S.; Jin, X.; Liao, W.; Xia, H.; Wang, S.; Sun, G. Sarcopenia: Current Insights into Molecular Mechanisms, Diagnostics, and Emerging Interventional Approaches. Int. J. Mol. Sci. 2025, 26, 6740. [Google Scholar] [CrossRef]
- Chen, L.-K.; Woo, J.; Assantachai, P.; Auyeung, T.-W.; Chou, M.-Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S. Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e302. [Google Scholar] [CrossRef]
- Bhasin, S.; Travison, T.G.; Manini, T.M.; Patel, S.; Pencina, K.M.; Fielding, R.A.; Magaziner, J.M.; Newman, A.B.; Kiel, D.P.; Cooper, C. Sarcopenia definition: The position statements of the sarcopenia definition and outcomes consortium. J. Am. Geriatr. Soc. 2020, 68, 1410–1418. [Google Scholar] [CrossRef] [PubMed]
- Ladang, A.; Beaudart, C.; Reginster, J.-Y.; Al-Daghri, N.; Bruyère, O.; Burlet, N.; Cesari, M.; Cherubini, A.; da Silva, M.C.; Cooper, C.; et al. Biochemical Markers of Musculoskeletal Health and Aging to be Assessed in Clinical Trials of Drugs Aiming at the Treatment of Sarcopenia: Consensus Paper from an Expert Group Meeting Organized by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) and the Centre Académique de Recherche et d’Expérimentation en Santé (CARES SPRL), Under the Auspices of the World Health Organization Collaborating Center for the Epidemiology of Musculoskeletal Conditions and Aging. Calcif. Tissue Int. 2023, 112, 197–217. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Qian, M.; Gao, F.; Li, G.; Peng, K.; Sun, Q.; Sun, Y.; Liu, G.; Ge, Y.; Yang, M.; et al. Potential effect of Irisin on sarcopenia: A systematic review. BMC Musculoskelet. Disord. 2025, 26, 520. [Google Scholar] [CrossRef]
- Rentería, I.; García-Suárez, P.C.; Fry, A.C.; Moncada-Jiménez, J.; Machado-Parra, J.P.; Antunes, B.M.; Jiménez-Maldonado, A. The Molecular Effects of BDNF Synthesis on Skeletal Muscle: A Mini-Review. Front. Physiol. 2022, 13, 934714. [Google Scholar] [CrossRef] [PubMed]
- Villamil-Parra, W.; Moscoso-Loaiza, L. Effects of physical exercise on Irisin and BDNF concentrations, and their relationship with cardiometabolic and mental health of individuals with Metabolic Syndrome: A Systematic Review. Exp. Gerontol. 2024, 198, 112640. [Google Scholar] [CrossRef]
- Xu, H.; Brown, J.L.; Bhaskaran, S.; Van Remmen, H. Reactive oxygen species in the pathogenesis of sarcopenia. Free Radic. Biol. Med. 2025, 227, 446–458. [Google Scholar] [CrossRef]
- Malmstrom, T.; Morley, J. SARC-F: A Simple Questionnaire to Rapidly Diagnose Sarcopenia. J. Am. Med. Dir. Assoc. 2013, 14, 531–532. [Google Scholar] [CrossRef]
- Malmstrom, T.K.; Miller, D.K.; Simonsick, E.M.; Ferrucci, L.; Morley, J.E. SARC-F: A symptom score to predict persons with sarcopenia at risk for poor functional outcomes. J. Cachexia Sarcopenia Muscle 2016, 7, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Erel, O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 2004, 37, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Larsson, L.; Degens, H.; Li, M.; Salviati, L.; Lee, Y.i.; Thompson, W.; Kirkland, J.L.; Sandri, M. Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiol. Rev. 2019, 99, 427–511. [Google Scholar] [CrossRef] [PubMed]
- Sivritepe, R.; Siyer, O.K.; Tiril, S.M.; Basat, S.U. Do we know about dynapenia? North. Clin. Istanb. 2024, 11, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Park, H.S.; Kim, H.C.; Zhang, D.; Yeom, H.; Lim, S.K. The novel myokine irisin: Clinical implications and potential role as a biomarker for sarcopenia in postmenopausal women. Endocrine 2019, 64, 341–348. [Google Scholar] [CrossRef]
- Chang, J.S.; Kim, T.H.; Nguyen, T.T.; Park, K.S.; Kim, N.; Kong, I.D. Circulating irisin levels as a predictive biomarker for sarcopenia: A cross-sectional community-based study. Geriatr. Gerontol. Int. 2017, 17, 2266–2273. [Google Scholar] [CrossRef]
- Baek, J.Y.; Jang, I.Y.; Jung, H.W.; Park, S.J.; Lee, J.Y.; Choi, E.; Lee, Y.S.; Lee, E.; Kim, B.J. Serum irisin level is independent of sarcopenia and related muscle parameters in older adults. Exp. Gerontol. 2022, 162, 111744. [Google Scholar] [CrossRef]
- Radikova, Z.; Mosna, L.; Eckerstorfer, C.; Bajer, B.; Havranova, A.; Imrich, R.; Vlcek, M.; Penesova, A. Plasma irisin and the brain-derived neurotrophic factor levels in sedentary subjects: Effect of 8-weeks lifestyle intervention. Endocr. Regul. 2024, 58, 115–128. [Google Scholar] [CrossRef]
- Plácido, A.I.; Azevedo, D.; Herdeiro, M.T.; Morgado, M.; Roque, F. Understanding the Role of Irisin in Longevity and Aging: A Narrative Review. Epidemiologia 2025, 6, 1. [Google Scholar] [CrossRef]
- Woźniak, W. Brain-derived neurotrophic factor (BDNF): Role in neuronal development and survival. Folia Morphol. 1993, 52, 173–181. [Google Scholar] [PubMed]
- Miranda, M.; Morici, J.F.; Zanoni, M.B.; Bekinschtein, P. Brain-Derived Neurotrophic Factor: A Key Molecule for Memory in the Healthy and the Pathological Brain. Front. Cell. Neurosci. 2019, 13, 363. [Google Scholar] [CrossRef]
- Numakawa, T.; Kajihara, R. The Role of Brain-Derived Neurotrophic Factor as an Essential Mediator in Neuronal Functions and the Therapeutic Potential of Its Mimetics for Neuroprotection in Neurologic and Psychiatric Disorders. Molecules 2025, 30, 848. [Google Scholar] [CrossRef]
- Zhang, J.; Kwan, H.-L.R.; Chan, C.B.; Lee, C.W. Localized release of muscle-generated BDNF regulates the initial formation of postsynaptic apparatus at neuromuscular synapses. Cell Death Differ. 2025, 32, 546–560. [Google Scholar] [CrossRef]
- Chan, W.S.; Ng, C.F.; Pang, B.P.S.; Hang, M.; Tse, M.C.L.; Iu, E.C.Y.; Ooi, X.C.; Yang, X.; Kim, J.K.; Lee, C.W.; et al. Exercise-induced BDNF promotes PPARδ-dependent reprogramming of lipid metabolism in skeletal muscle during exercise recovery. Sci. Signal. 2024, 17, eadh2783. [Google Scholar] [CrossRef] [PubMed]
- Shobeiri, P.; Karimi, A.; Momtazmanesh, S.; Teixeira, A.L.; Teunissen, C.E.; van Wegen, E.E.H.; Hirsch, M.A.; Yekaninejad, M.S.; Rezaei, N. Exercise-induced increase in blood-based brain-derived neurotrophic factor (BDNF) in people with multiple sclerosis: A systematic review and meta-analysis of exercise intervention trials. PLoS ONE 2022, 17, e0264557. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Suarez, P.C.; Renteria, I.; Plaisance, E.P.; Moncada-Jimenez, J.; Jimenez-Maldonado, A. The effects of interval training on peripheral brain derived neurotrophic factor (BDNF) in young adults: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 8937. [Google Scholar] [CrossRef]
- Jamali, A.; Shahrbanian, S.; Morteza Tayebi, S. The Effects of Exercise Training on the Brain-Derived Neurotrophic Factor (BDNF) in the Patients with Type 2 Diabetes: A Systematic Review of the Randomized Controlled Trials. J. Diabetes Metab. Disord. 2020, 19, 633–643. [Google Scholar] [CrossRef]
- Coelho, F.G.; Gobbi, S.; Andreatto, C.A.; Corazza, D.I.; Pedroso, R.V.; Santos-Galduroz, R.F. Physical exercise modulates peripheral levels of brain-derived neurotrophic factor (BDNF): A systematic review of experimental studies in the elderly. Arch. Gerontol. Geriatr. 2013, 56, 10–15. [Google Scholar] [CrossRef]
- Carrero-Rojas, G.; Benítez-Temiño, B.; Pastor, A.M.; Davis López de Carrizosa, M.A. Muscle Progenitors Derived from Extraocular Muscles Express Higher Levels of Neurotrophins and their Receptors than other Cranial and Limb Muscles. Cells 2020, 9, 747. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, T.; Ulfhake, B. Aging Skeletal Muscles: What Are the Mechanisms of Age-Related Loss of Strength and Muscle Mass, and Can We Impede Its Development and Progression? Int. J. Mol. Sci. 2024, 25, 10932. [Google Scholar] [CrossRef]
- Wrann, C.D.; White, J.P.; Salogiannnis, J.; Laznik-Bogoslavski, D.; Wu, J.; Ma, D.; Lin, J.D.; Greenberg, M.E.; Spiegelman, B.M. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab. 2013, 18, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Pignataro, P.; Dicarlo, M.; Zerlotin, R.; Zecca, C.; Dell’Abate, M.T.; Buccoliero, C.; Logroscino, G.; Colucci, S.; Grano, M. FNDC5/Irisin System in Neuroinflammation and Neurodegenerative Diseases: Update and Novel Perspective. Int. J. Mol. Sci. 2021, 22, 1605. [Google Scholar] [CrossRef]
- Waseem, R.; Shamsi, A.; Mohammad, T.; Hassan, M.I.; Kazim, S.N.; Chaudhary, A.A.; Rudayni, H.A.; Al-Zharani, M.; Ahmad, F.; Islam, A. FNDC5/Irisin: Physiology and Pathophysiology. Molecules 2022, 27, 1118. [Google Scholar] [CrossRef]
- Kubat, G.B.; Bouhamida, E.; Ulger, O.; Turkel, I.; Pedriali, G.; Ramaccini, D.; Ekinci, O.; Ozerklig, B.; Atalay, O.; Patergnani, S.; et al. Mitochondrial dysfunction and skeletal muscle atrophy: Causes, mechanisms, and treatment strategies. Mitochondrion 2023, 72, 33–58. [Google Scholar] [CrossRef]
- Hyatt, H.W.; Powers, S.K. Mitochondrial dysfunction is a common denominator linking skeletal muscle wasting due to disease, aging, and prolonged inactivity. Antioxidants 2021, 10, 588. [Google Scholar] [CrossRef]
- Pascual-Fernández, J.; Fernández-Montero, A.; Córdova-Martínez, A.; Pastor, D.; Martínez-Rodríguez, A.; Roche, E. Sarcopenia: Molecular Pathways and Potential Targets for Intervention. Int. J. Mol. Sci. 2020, 21, 8844. [Google Scholar] [CrossRef] [PubMed]
- Musaro, A.; Fulle, S.; Fano, G. Oxidative stress and muscle homeostasis. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 236–242. [Google Scholar] [CrossRef]
- Harma, M.; Erel, O. Increased oxidative stress in patients with hydatidiform mole. Swiss Med. Wkly. 2003, 133, 563–566. [Google Scholar] [CrossRef]
- Kawamura, K.; Iwase, T.; Ishino, S.; Nakao, Y.; Kagaya, H.; Akatsu, H.; Arai, H. Low five-repetition chair stand test and usual gait speed scores predict falls within one year in an outpatient clinic for frailty. Eur. Geriatr. Med. 2025, 16, 1295–1302. [Google Scholar] [CrossRef] [PubMed]
- Verstraeten, L.M.G.; de Haan, N.J.; Verbeet, E.; van Wijngaarden, J.P.; Meskers, C.G.M.; Maier, A.B. Handgrip strength rather than chair stand test should be used to diagnose sarcopenia in geriatric rehabilitation inpatients: REStORing health of acutely unwell adulTs (RESORT). Age Ageing 2022, 51, afac242. [Google Scholar] [CrossRef]
- Li, Y.H.; Wang, X.H.; Ya, S. Prevalence and Diagnostic Agreement of Sarcopenia Based on Handgrip Strength and 5-Time Chair-Stand Test Among Chinese Community-Dwelling Older Adults. Int. J. Older People Nurs. 2024, 19, e12635. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Cortés, R.; Cruz, B.d.P.; Gallardo-Gómez, D.; Calatayud, J.; Cruz-Montecinos, C.; López-Gil, J.F.; López-Bueno, R. Handgrip strength measurement protocols for all-cause and cause-specific mortality outcomes in more than 3 million participants: A systematic review and meta-regression analysis. Clin. Nutr. 2022, 41, 2473–2489. [Google Scholar] [CrossRef]
- Gränicher, P.; Maurer, Y.; Spörri, J.; Haller, B.; Swanenburg, J.; de Bie, R.A.; Lenssen, T.A.F.; Scherr, J. Accuracy and Reliability of Grip Strength Measurements: A Comparative Device Analysis. J. Funct. Morphol. Kinesiol. 2024, 9, 274. [Google Scholar] [CrossRef]
- Quattrocchi, A.; Garufi, G.; Gugliandolo, G.; De Marchis, C.; Collufio, D.; Cardali, S.M.; Donato, N. Handgrip Strength in Health Applications: A Review of the Measurement Methodologies and Influencing Factors. Sensors 2024, 24, 5100. [Google Scholar] [CrossRef] [PubMed]
- Mohammad Rahimi, G.R.; Hejazi, K.; Hofmeister, M. The effect of exercise interventions on Irisin level: A systematic review and meta-analysis of randomized controlled trials. EXCLI J. 2022, 21, 524–539. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Lin, M.; Liu, C.; Xiao, F.; Liu, Y.; Huang, P.; Zeng, X.; Yan, B.; Liu, S.; Li, X.; et al. Elevated circulating irisin is associated with lower risk of insulin resistance: Association and path analyses of obese Chinese adults. BMC Endocr. Disord. 2016, 16, 44. [Google Scholar] [CrossRef]
- Yuksel Ozgor, B.; Demiral, I.; Zeybek, U.; Celik, F.; Buyru, F.; Yeh, J.; Bastu, E. Effects of Irisin Compared with Exercise on Specific Metabolic and Obesity Parameters in Female Mice with Obesity. Metab. Syndr. Relat. Disord. 2020, 18, 141–145. [Google Scholar] [CrossRef]
- Dianatinasab, A.; Koroni, R.; Bahramian, M.; Bagheri-Hosseinabadi, Z.; Vaismoradi, M.; Fararouei, M.; Amanat, S. The effects of aerobic, resistance, and combined exercises on the plasma irisin levels, HOMA-IR, and lipid profiles in women with metabolic syndrome: A randomized controlled trial. J. Exerc. Sci. Fit. 2020, 18, 168–176. [Google Scholar] [CrossRef]
- Li, J.; Yi, X.; Li, T.; Yao, T.; Li, D.; Hu, G.; Ma, Y.; Chang, B.; Cao, S. Effects of exercise and dietary intervention on muscle, adipose tissue, and blood IRISIN levels in obese male mice and their relationship with the beigeization of white adipose tissue. Endocr. Connect. 2022, 11, e210625. [Google Scholar] [CrossRef]
| Characteristic | Total | Dynapenia “−” | Dynapenia “+” | p 1 |
|---|---|---|---|---|
| N (%) | 110 (100) | 37 (33.6) | 73 (66.4) | |
| Age (y), M (SD) | 78.2 (7.1) | 74.3 (7.8) | 80.1 (5.9) | <0.001 |
| Sex | 0.003 | |||
| female, n (%) | 80 (72.7) | 20 (25.0) | 60 (75.0) | |
| male, n (%) | 30 (27.3) | 17 (56.7) | 13 (43.3) | |
| SARC-F, points, Me (IQR) | 2.0 (1.0, 4.0) | 1 (0, 2) | 3 (1.5, 5) | <0.001 |
| Sarcopenia by SARC-F | <0.001 | |||
| no (<4 points), n (%) | 74 (67.3) | 36 (48.6) | 38 (51.4) | |
| yes (≥4 points), n (%) | 36 (32.7) | 1 (2.8) | 35 (97.2) | |
| Number of chronic diseases, Me (IQR) | 4 (3, 5) | 3 (2, 4.5) | 4 (3, 6) | 0.003 |
| Multimorbidity | 0.006 | |||
| no, n (%) | 7 (6.4) | 6 (85.7) | 1 (14.3) | |
| yes, n (%) | 103 (93.6) | 31 (30.1) | 72 (69.9) | |
| 5TSST, s, Me (IQR) | 17.4 (13.5, 24.0) | 12.9 (11.7, 13.6) | 20.4 (17.4, 28.0) | <0.001 |
| Characteristic | All | Dynapenia “−” | Dynapenia “+” | p 1 |
|---|---|---|---|---|
| N (%) | 110 (100) | 37 (33.6) | 73 (66.4) | |
| BDNF, ng/mL, Me (IQR) | 4.02 (2.4, 5.9) | 5.45 (3.1, 6.9) | 3.7 (2.9, 5.6) | 0.03 |
| Irisin, µg/mL, Me (IQR) | 2.1 (1.7, 2.4) | 1.9 (1.6, 2.3) | 2.2 (1.7, 2.4) | 0.11 |
| Irisin/BDNF ratio, Me(IQR) | 584 (272, 760) | 379 (230, 705) | 648 (297, 773) | 0.02 |
| TOS, µmol/L, Me (IQR) | 656.5 (401.1, 1041.4) | 495.4 (399.7, 818.1) | 799.6 (401.9, 1111.1) | 0.05 |
| TAS, µmol/L, Me (IQR) | 359.4 (277.4, 386.1) | 375.8 (265.4, 386.6) | 353.1 (291.6, 385.1) | 0.94 |
| OSI, M (SD) | 2.1 (1.4, 2.8) | 1.9 (0.7) | 2.3 (1.1) | 0.03 |
| Variable | SARCF | 5TSST | BDNF | Irisin | Irisin/ BDNF | TOS | TAS | OSI | Age | |
|---|---|---|---|---|---|---|---|---|---|---|
| SARC-F | 0.62 ** | −0.11 | −0.01 | 0.06 | 0.03 | −0.09 | 0.09 | 0.36 ** | ||
| p | <0.001 | 0.24 | 0.94 | 0.51 | 0.78 | 0.34 | 0.34 | <0.001 | ||
| 5TSST | 0.62 ** | −0.27 ** | 0.17 | 0.27 ** | 0.27 ** | 0.06 | 0.30 ** | 0.40 ** | ||
| <0.001 | 0.004 | 0.08 | 0.005 | 0.005 | 0.52 | 0.001 | <0.001 | |||
| BDNF | −0.11 | −0.27 ** | −0.53 ** | −0.95 ** | −0.95 ** | −0.95 ** | −0.12 | −0.12 | ||
| p | 0.24 | 0.004 | <0.001 | <0.001 | <0.001 | <0.001 | 0.22 | 0.22 | ||
| Irisin | −0.01 | 0.17 | −0.53 ** | 0.71 ** | 0.55 ** | 0.69 ** | 0.33 ** | 0.04 | ||
| p | 0.94 | 0.08 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.71 | ||
| Irisin/BDNF | 0.064 | 0.27 ** | −0.95 ** | 0.71 ** | 0.50 ** | 0.59 ** | 0.32 ** | 0.12 | ||
| p | 0.51 | 0.005 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.22 | ||
| TOS | 0.03 | 0.27 ** | −0.95 ** | 0.55 ** | 0.50 ** | 0.48 ** | 0.92 ** | −0.07 | ||
| p | 0.78 | 0.005 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.47 | ||
| TAS | −0.09 | 0.06 | −0.95 ** | 0.69 ** | 0.59 ** | 0.48 ** | 0.18 | 0.001 | ||
| p | 0.34 | 0.52 | <0.001 | <0.001 | <0.001 | <0.001 | 0.05 | 0.99 | ||
| OSI | 0.09 | 0.30 ** | −0.12 | 0.33 ** | 0.32 ** | 0.92 ** | 0.18 | −0.07 | ||
| p | 0.34 | 0.001 | 0.22 | <0.001 | <0.001 | <0.001 | 0.05 | 0.50 | ||
| Age (years) | 0.36 ** | 0.40 ** | −0.12 | 0.04 | 0.12 | −0.07 | 0.001 | −0.07 | ||
| p | <0.001 | <0.001 | 0.22 | 0.71 | 0.22 | 0.47 | 0.99 | 0.50 | ||
| Number of diseases | 0.38 ** | 0.33 ** | −0.02 | −0.03 | 0.03 | −0.10 | −0.260 * | −0.04 | 0.33 ** | |
| p | <0.001 | <0.001 | 0.87 | 0.75 | 0.76 | 0.28 | 0.006 | 0.69 | <0.001 |
| OR | 95% CI | p | |
|---|---|---|---|
| MODEL 1 | |||
| Age (years) | 1.13 | 1.04–1.23 | 0.005 |
| Sex (female) | 5.45 | 1.75–16.96 | 0.003 |
| Number of chronic diseases | 1.48 | 1.01–2.16 | 0.04 |
| OSI | 2.23 | 0.52–9.54 | 0.28 |
| TOS | 1.00 | 0.996–1.004 | 0.99 |
| BDNF | 0.81 | 0.61–1.06 | 0.13 |
| Irisin/BDNF | 0.999 | 0.997–1.001 | 0.52 |
| OR | 95% CI | p | |
|---|---|---|---|
| MODEL 2 | |||
| Age (years) | 1.13 | 1.04–1.22 | 0.003 |
| Sex (female) | 5.67 | 1.86–17.27 | 0.002 |
| Number of chronic diseases | 1.44 | 1.01–2.06 | 0.04 |
| OSI | 2.20 | 1.23–3.94 | 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojszel, A.; Śliwowski, J.; Rentflejsz, J.; Rogalska, J.; Brzóska, M.M.; Wojszel, Z.B. Irisin, Brain-Derived Neurotrophic Factor (BDNF), and Redox Balance in Geriatric Dynapenia. Antioxidants 2025, 14, 1268. https://doi.org/10.3390/antiox14101268
Wojszel A, Śliwowski J, Rentflejsz J, Rogalska J, Brzóska MM, Wojszel ZB. Irisin, Brain-Derived Neurotrophic Factor (BDNF), and Redox Balance in Geriatric Dynapenia. Antioxidants. 2025; 14(10):1268. https://doi.org/10.3390/antiox14101268
Chicago/Turabian StyleWojszel, Aleksandra, Jakub Śliwowski, Justyna Rentflejsz, Joanna Rogalska, Małgorzata Michalina Brzóska, and Zyta Beata Wojszel. 2025. "Irisin, Brain-Derived Neurotrophic Factor (BDNF), and Redox Balance in Geriatric Dynapenia" Antioxidants 14, no. 10: 1268. https://doi.org/10.3390/antiox14101268
APA StyleWojszel, A., Śliwowski, J., Rentflejsz, J., Rogalska, J., Brzóska, M. M., & Wojszel, Z. B. (2025). Irisin, Brain-Derived Neurotrophic Factor (BDNF), and Redox Balance in Geriatric Dynapenia. Antioxidants, 14(10), 1268. https://doi.org/10.3390/antiox14101268

