Effect of Copper-Catalyzed Oxidation on the Aggregation of the Islet Amyloid Polypeptide
Abstract
1. Introduction
2. Materials and Methods
2.1. Peptide Synthesis, Purification, Characterization and Monomerization
2.2. Metal-Catalyzed Oxidation of Peptides and Proteolytic Digestion
2.3. HPLC-MS/MS Analysis of Peptide Samples
2.4. Aggregation Kinetics by Thioflavin T Fluorescence
2.5. Fluorescence Spectroscopy
2.6. Atomic Force Microscopy
3. Results and Discussion
3.1. Site-Specific Oxidation of IAPP Induced by Copper Redox Cycling
3.2. Cu(II)-Mediated Oxidation Impacts the Kinetics of Amyloid Self-Assembly
3.3. Copper-Induced Oxidation Promotes the Formation of Amorphous Aggregates
3.4. Oxidized IAPP Aggregates Do Not Seed Amyloid Formation
3.5. Substitution of IAPP His18 by Ala Alters the Oxidation Pattern
3.6. Oxidation of [H18A]IAPP Modulates Amyloid Formation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ong, K.L.; Stafford, L.K.; McLaughlin, S.A.; Boyko, E.J.; Vollset, S.E.; Smith, A.E.; Dalton, B.E.; Duprey, J.; Cruz, J.A.; Hagins, H.; et al. Global, Regional, and National Burden of Diabetes from 1990 to 2021, with Projections of Prevalence to 2050: A Systematic Analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234, Erratum in Lancet 2025, 405, 202. [Google Scholar] [CrossRef]
- Burgos-Morón, E.; Abad-Jiménez, Z.; Martínez de Marañón, A.; Iannantuoni, F.; Escribano-López, I.; López-Domènech, S.; Salom, C.; Jover, A.; Mora, V.; Roldan, I.; et al. Relationship between Oxidative Stress, ER Stress, and Inflammation in Type 2 Diabetes: The Battle Continues. J. Clin. Med. 2019, 8, 1385. [Google Scholar] [CrossRef]
- Clark, A.; Saad, M.F.; Nezzer, T.; Uren, C.; Knowler, W.C.; Bennett, P.H.; Turner, R.C. Islet Amyloid Polypeptide in Diabetic and Non-Diabetic Pima Indians. Diabetologia 1990, 33, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Akter, R.; Cao, P.; Noor, H.; Ridgway, Z.; Tu, L.-H.; Wang, H.; Wong, A.G.; Zhang, X.; Abedini, A.; Schmidt, A.M.; et al. Islet Amyloid Polypeptide: Structure, Function, and Pathophysiology. J. Diabetes Res. 2016, 2016, 2798269. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.; White, K.; Terry, C. Linking hIAPP Misfolding and Aggregation with Type 2 Diabetes Mellitus: A Structural Perspective. Biosci. Rep. 2022, 42, BSR20211297. [Google Scholar] [CrossRef]
- Gurlo, T.; Ryazantsev, S.; Huang, C.; Yeh, M.W.; Reber, H.A.; Hines, O.J.; O’Brien, T.D.; Glabe, C.G.; Butler, P.C. Evidence for Proteotoxicity in β Cells in Type 2 Diabetes: Toxic Islet Amyloid Polypeptide Oligomers Form Intracellularly in the Secretory Pathway. Am. J. Pathol. 2010, 176, 861–869. [Google Scholar] [CrossRef] [PubMed]
- Raleigh, D.; Zhang, X.; Hastoy, B.; Clark, A. The β-Cell Assassin: IAPP Cytotoxicity. J. Mol. Endocrinol. 2017, 59, R121–R140. [Google Scholar] [CrossRef]
- Bishoyi, A.K.; Roham, P.H.; Rachineni, K.; Save, S.; Hazari, M.A.; Sharma, S.; Kumar, A. Human Islet Amyloid Polypeptide (hIAPP)—A Curse in Type II Diabetes Mellitus: Insights from Structure and Toxicity Studies. Biol. Chem. 2021, 402, 133–153. [Google Scholar] [CrossRef]
- Paulsson, J.F.; Westermark, G.T. Aberrant Processing of Human Proislet Amyloid Polypeptide Results in Increased Amyloid Formation. Diabetes 2005, 54, 2117–2125. [Google Scholar] [CrossRef]
- Khemtemourian, L.; Antoniciello, F.; Sahoo, B.R.; Decossas, M.; Lecomte, S.; Ramamoorthy, A. Investigation of the Effects of Two Major Secretory Granules Components, Insulin and Zinc, on Human-IAPP Amyloid Aggregation and Membrane Damage. Chem. Phys. Lipids 2021, 237, 105083. [Google Scholar] [CrossRef]
- Giacco, F.; Brownlee, M. Oxidative Stress and Diabetic Complications. Circ. Res. 2010, 107, 1058–1070. [Google Scholar] [CrossRef]
- Asmat, U.; Abad, K.; Ismail, K. Diabetes Mellitus and Oxidative Stress—A Concise Review. Saudi Pharm. J. 2016, 24, 547–553. [Google Scholar] [CrossRef]
- Eguchi, N.; Vaziri, N.D.; Dafoe, D.C.; Ichii, H. The Role of Oxidative Stress in Pancreatic β Cell Dysfunction in Diabetes. Int. J. Mol. Sci. 2021, 22, 1509. [Google Scholar] [CrossRef]
- Renaudin, X. Chapter Three—Reactive Oxygen Species and DNA Damage Response in Cancer. In International Review of Cell and Molecular Biology; Weyemi, U., Galluzzi, L., Eds.; Chromatin and Genomic Instability in Cancer; Academic Press: Cambridge, MA, USA, 2021; Volume 364, pp. 139–161. [Google Scholar]
- Ma, Z.A. The Role of Peroxidation of Mitochondrial Membrane Phospholipids in Pancreatic β-Cell Failure. Curr. Diabetes Rev. 2012, 8, 69–75. [Google Scholar] [CrossRef]
- Sohal, R.S. Role of Oxidative Stress and Protein Oxidation in the Aging Process. Free Radic. Biol. Med. 2002, 33, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Babych, M.; Nguyen, P.T.; Côté-Cyr, M.; Kihal, N.; Quittot, N.; Golizeh, M.; Sleno, L.; Bourgault, S. Site-Specific Alkylation of the Islet Amyloid Polypeptide Accelerates Self-Assembly and Potentiates Perturbation of Lipid Membranes. Biochemistry 2021, 60, 2285–2299. [Google Scholar] [CrossRef]
- Milordini, G.; Zacco, E.; Percival, M.; Puglisi, R.; Dal Piaz, F.; Temussi, P.; Pastore, A. The Role of Glycation on the Aggregation Properties of IAPP. Front. Mol. Biosci. 2020, 7, 104. [Google Scholar] [CrossRef]
- Coughlan, M.T.; Thorburn, D.R.; Penfold, S.A.; Laskowski, A.; Harcourt, B.E.; Sourris, K.C.; Tan, A.L.Y.; Fukami, K.; Thallas-Bonke, V.; Nawroth, P.P.; et al. RAGE-Induced Cytosolic ROS Promote Mitochondrial Superoxide Generation in Diabetes. J. Am. Soc. Nephrol. 2009, 20, 742. [Google Scholar] [CrossRef] [PubMed]
- Abedini, A.; Cao, P.; Plesner, A.; Zhang, J.; He, M.; Derk, J.; Patil, S.A.; Rosario, R.; Lonier, J.; Song, F.; et al. RAGE Binds Preamyloid IAPP Intermediates and Mediates Pancreatic β Cell Proteotoxicity. J. Clin. Investig. 2018, 128, 682–698. [Google Scholar] [CrossRef] [PubMed]
- McCalpin, S.D.; Khemtemourian, L.; Suladze, S.; Ivanova, M.I.; Reif, B.; Ramamoorthy, A. Zinc and pH Modulate the Ability of Insulin to Inhibit Aggregation of Islet Amyloid Polypeptide. Commun. Biol. 2024, 7, 776. [Google Scholar] [CrossRef]
- Tomasello, M.F.; Sinopoli, A.; Pappalardo, G. On the Environmental Factors Affecting the Structural and Cytotoxic Properties of IAPP Peptides. J. Diabetes Res. 2015, 2015, 918573. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Meng, F.; Lu, T.; Wang, C.; Li, F. Regulation of Divalent Metal Ions to the Aggregation and Membrane Damage of Human Islet Amyloid Polypeptide Oligomers. RSC Adv. 2021, 11, 12815–12825. [Google Scholar] [CrossRef]
- Poulson, B.G.; Szczepski, K.; Lachowicz, J.I.; Jaremko, L.; Emwas, A.H.; Jaremko, M. Aggregation of Biologically Important Peptides and Proteins: Inhibition or Acceleration Depending on Protein and Metal Ion Concentrations. RSC Adv. 2020, 10, 215–227. [Google Scholar] [CrossRef]
- Lowe, J.; Taveira-da-Silva, R.; Hilário-Souza, E. Dissecting Copper Homeostasis in Diabetes Mellitus. IUBMB Life 2017, 69, 255–262. [Google Scholar] [CrossRef]
- Tanaka, A.; Kaneto, H.; Miyatsuka, T.; Yamamoto, K.; Yoshiuchi, K.; Yamasaki, Y.; Shimomura, I.; Matsuoka, T.; Matsuhisa, M. Role of Copper Ion in the Pathogenesis of Type 2 Diabetes. Endocr. J. 2009, 56, 699–706. [Google Scholar] [CrossRef]
- Qiu, Q.; Zhang, F.; Zhu, W.; Wu, J.; Liang, M. Copper in Diabetes Mellitus: A Meta-Analysis and Systematic Review of Plasma and Serum Studies. Biol. Trace Elem. Res. 2017, 177, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Luan, F.; Chen, Y.; Xu, Y.; Jiang, X.; Liu, B.; Wang, Y. Associations between Whole Blood Trace Elements Concentrations and HbA1c Levels in Patients with Type 2 Diabetes. Biometals 2022, 35, 1011–1022. [Google Scholar] [CrossRef] [PubMed]
- Pham, A.N.; Xing, G.; Miller, C.J.; Waite, T.D. Fenton-like Copper Redox Chemistry Revisited: Hydrogen Peroxide and Superoxide Mediation of Copper-Catalyzed Oxidant Production. J. Catal. 2013, 301, 54–64. [Google Scholar] [CrossRef]
- Cheignon, C.; Faller, P.; Testemale, D.; Hureau, C.; Collin, F. Metal-Catalyzed Oxidation of Aβ and the Resulting Reorganization of Cu Binding Sites Promote ROS Production. Metallomics 2016, 8, 1081–1089. [Google Scholar] [CrossRef]
- Faller, P.; Hureau, C.; La Penna, G. Metal Ions and Intrinsically Disordered Proteins and Peptides: From Cu/Zn Amyloid-β to General Principles. Acc. Chem. Res. 2014, 47, 2252–2259. [Google Scholar] [CrossRef]
- Ahmadi, S.; Zhu, S.; Sharma, R.; Wilson, D.J.; Kraatz, H.-B. Interaction of Metal Ions with Tau Protein. The Case for a Metal-Mediated Tau Aggregation. J. Inorg. Biochem. 2019, 194, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-López, C.; Cortés-Mejía, R.; Miotto, M.C.; Binolfi, A.; Fernández, C.O.; del Campo, J.M.; Quintanar, L. Copper Coordination Features of Human Islet Amyloid Polypeptide: The Type 2 Diabetes Peptide. Inorg. Chem. 2016, 55, 10727–10740. [Google Scholar] [CrossRef] [PubMed]
- Rivillas-Acevedo, L.; Sánchez-López, C.; Amero, C.; Quintanar, L. Structural Basis for the Inhibition of Truncated Islet Amyloid Polypeptide Aggregation by Cu(II): Insights into the Bioinorganic Chemistry of Type II Diabetes. Inorg. Chem. 2015, 54, 3788–3796. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Li, X.; Wang, Y.; Zheng, W.; Chen, T. Cu(II) Inhibits hIAPP Fibrillation and Promotes hIAPP-Induced Beta Cell Apoptosis through Induction of ROS-Mediated Mitochondrial Dysfunction. J. Inorg. Biochem. 2014, 140, 143–152. [Google Scholar] [CrossRef]
- Westermark, P.; Engström, U.; Johnson, K.H.; Westermark, G.T.; Betsholtz, C. Islet Amyloid Polypeptide: Pinpointing Amino Acid Residues Linked to Amyloid Fibril Formation. Proc. Natl. Acad. Sci. USA 1990, 87, 5036–5040. [Google Scholar] [CrossRef]
- Nguyen, P.T.; Zottig, X.; Sebastiao, M.; Arnold, A.A.; Marcotte, I.; Bourgault, S. Identification of Transmissible Proteotoxic Oligomer-like Fibrils That Expand Conformational Diversity of Amyloid Assemblies. Commun. Biol. 2021, 4, 939. [Google Scholar] [CrossRef]
- Cheignon, C.; Hureau, C.; Collin, F. Real-Time Evolution of Aβ40 Metal-Catalyzed Oxidation Reveals Asp1 as the Main Target and a Dependence on Metal Binding Site. Inorganica Chim. Acta 2018, 472, 111–118. [Google Scholar] [CrossRef]
- Seal, M.; Dey, S.G. Active-Site Environment of Copper-Bound Human Amylin Relevant to Type 2 Diabetes. Inorg. Chem. 2018, 57, 129–138. [Google Scholar] [CrossRef]
- Sebastiao, M.; Quittot, N.; Bourgault, S. Thioflavin T Fluorescence to Analyse Amyloid Formation Kinetics: Measurement Frequency as a Factor Explaining Irreproducibility. Anal. Biochem. 2017, 532, 83–86. [Google Scholar] [CrossRef]
- Shoffner, S.K.; Schnell, S. Estimation of the Lag Time in a Subsequent Monomer Addition Model for Fibril Elongation. Phys. Chem. Chem. Phys. 2016, 18, 21259–21268. [Google Scholar] [CrossRef]
- Kihal, N.; Archambault, M.J.; Babych, M.; Nazemi, A.; Bourgault, S. Probing the Molecular Determinants of the Activation of Toll-like Receptor 2/6 by Amyloid Nanostructures through Directed Peptide Self-Assembly. Soft Matter 2024, 20, 7821–7831. [Google Scholar] [CrossRef]
- Opazo, C.; Barría, M.I.; Ruiz, F.H.; Inestrosa, N.C. Copper Reduction by Copper Binding Proteins and Its Relation to Neurodegenerative Diseases. Biometals 2003, 16, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Sugumaran, M.; Robinson, W.E. Bioactive Dehydrotyrosyl and Dehydrodopyl Compounds of Marine Origin. Mar. Drugs 2010, 8, 2906–2935. [Google Scholar] [CrossRef] [PubMed]
- Appel, M.J.; Bertozzi, C.R. Formylglycine, a Post-Translationally Generated Residue with Unique Catalytic Capabilities and Biotechnology Applications. ACS Chem. Biol. 2015, 10, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Schöneich, C. Mechanisms of Metal-Catalyzed Oxidation of Histidine to 2-Oxo-Histidine in Peptides and Proteins. J. Pharm. Biomed. Anal. 2000, 21, 1093–1097. [Google Scholar] [CrossRef]
- Irudayanathan, F.J.; Zarzar, J.; Lin, J.; Izadi, S. Deciphering Deamidation and Isomerization in Therapeutic Proteins: Effect of Neighboring Residue. MAbs 2022, 14, 2143006. [Google Scholar] [CrossRef]
- Hao, P.; Adav, S.S.; Gallart-Palau, X.; Sze, S.K. Recent Advances in Mass Spectrometric Analysis of Protein Deamidation. Mass Spectrom. Rev. 2017, 36, 677–692. [Google Scholar] [CrossRef]
- Cheignon, C.; Collin, F.; Sabater, L.; Hureau, C. Oxidative Damages on the Alzheimer’s Related-Aβ Peptide Alters Its Ability to Assemble. Antioxidants 2023, 12, 472. [Google Scholar] [CrossRef]
- Hou, L.; Kang, I.; Marchant, R.E.; Zagorski, M.G. Methionine 35 Oxidation Reduces Fibril Assembly of the Amyloid Aβ-(1–42) Peptide of Alzheimer’s Disease. J. Biol. Chem. 2002, 277, 40173–40176. [Google Scholar] [CrossRef]
- Glaser, C.B.; Yamin, G.; Uversky, V.N.; Fink, A.L. Methionine Oxidation, α-Synuclein and Parkinson’s Disease. Biochim. Biophys. Acta (BBA)—Proteins Proteom. 2005, 1703, 157–169. [Google Scholar] [CrossRef]
- Khurana, R.; Coleman, C.; Ionescu-Zanetti, C.; Carter, S.A.; Krishna, V.; Grover, R.K.; Roy, R.; Singh, S. Mechanism of Thioflavin T Binding to Amyloid Fibrils. J. Struct. Biol. 2005, 151, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Kanti Mal, D.; Jonnalgadda, P.N.; Chakraborty, G. Aggregation Assisted Turn-on Response of ANS Dye towards Protamine. New J. Chem. 2023, 47, 2107–2116. [Google Scholar] [CrossRef]
- Luca, S.; Yau, W.-M.; Leapman, R.; Tycko, R. Peptide Conformation and Supramolecular Organization in Amylin Fibrils: Constraints from Solid-State NMR. Biochemistry 2007, 46, 13505–13522. [Google Scholar] [CrossRef]
- Identification of a Hinge Residue Controlling Islet Amyloid Polypeptide Self-Assembly and Cytotoxicity—Journal of Biological Chemistry. Available online: https://www.jbc.org/article/S0021-9258 (accessed on 12 October 2025).
- Ren, B.; Zhang, Y.; Zhang, M.; Liu, Y.; Zhang, D.; Gong, X.; Feng, Z.; Tang, J.; Chang, Y.; Zheng, J. Fundamentals of Cross-Seeding of Amyloid Proteins: An Introduction. J. Mater. Chem. B 2019, 7, 7267–7282. [Google Scholar] [CrossRef]
- Magrì, A.; Pietropaolo, A.; Tabbì, G.; La Mendola, D.; Rizzarelli, E. From Peptide Fragments to Whole Protein: Copper(II) Load and Coordination Features of IAPP. Chem. Eur. J. 2017, 23, 17898–17902. [Google Scholar] [CrossRef]
- Magrì, A.; La Mendola, D.; Nicoletti, V.G.; Pappalardo, G.; Rizzarelli, E. New Insight in Copper-Ion Binding to Human Islet Amyloid: The Contribution of Metal-Complex Speciation To Reveal the Polypeptide Toxicity. Chem. Eur. J. 2016, 22, 13287–13300. [Google Scholar] [CrossRef]
- Missense Mutation of Amylin Gene (S20G) in Japanese NIDDM Patients | Diabetes | American Diabetes Association. Available online: https://diabetesjournals.org/diabetes/article/45/9/1279/9564/Missense-Mutation-of-Amylin-Gene-S20G-in-Japanese (accessed on 12 October 2025).
- S20G Mutant Amylin Exhibits Increased in Vitro Amyloidogenicity and Increased Intracellular Cytotoxicity Compared to Wild-Type Amylin—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S0002944010648481 (accessed on 12 October 2025).
- Fan, X.; Zhang, J.; Theves, M.; Strauch, C.; Nemet, I.; Liu, X.; Qian, J.; Giblin, F.J.; Monnier, V.M. Mechanism of Lysine Oxidation in Human Lens Crystallins during Aging and in Diabetes. J. Biol. Chem. 2009, 284, 34618–34627. [Google Scholar] [CrossRef]
- Woolf, L.I.; Jakubovič, A.; Chan-Henry, E. The Non-Enzymic Hydroxylation of Phenylalanine to Tyrosine by 2-Amino-4-Hydroxy-6,7-Dimethyl-5,6,7,8-Tetrahydropteridine. Biochem. J. 1971, 125, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Trouillas, P.; Bergès, J.; Houée-Lévin, C. Toward Understanding the Protein Oxidation Processes: •OH Addition on Tyrosine, Phenylalanine, or Methionine? Int. J. Quantum Chem. 2011, 111, 1143–1151. [Google Scholar] [CrossRef]
- Roy, D.; Maity, N.C.; Kumar, S.; Maity, A.; Ratha, B.N.; Biswas, R.; Maiti, N.C.; Mandal, A.K.; Bhunia, A. Modulatory Role of Copper on hIAPP Aggregation and Toxicity in Presence of Insulin. Int. J. Biol. Macromol. 2023, 241, 124470. [Google Scholar] [CrossRef]






| Peptide | Charge | m/z (Exact) | m/z (Measured) | Error (ppm) | Retention Time (min) |
|---|---|---|---|---|---|
![]() | +3 | 547.2613 | 547.2610 | −0.56 | 7.27 |
![]() | +3 | 546.5895 | 546.5891 | 0.44 | 6.71 |
| 16LVHSSNNF23 | +2 | 459.2279 | 459.2282 | 0.85 | 4.29 |
| 16LVHSSNNF23 (−2) | +2 | 458.2201 | 458.2197 | 0.44 | 4.69 |
| 16LVHSSNNF23 (+16) | +2 | 467.2253 | 467.2244 | −1.0 | 5.90 |
| 16LVHSSNNF23 (+32) | +2 | 475.2228 | 475.2226 | 0.70 | 5.70 |
| 24GAILSSTNVGSNTY37 | +2 | 692.3416 | 692.3420 | 0.09 | 7.98 |
| 24GAILSSTNVGSNTY37 (+16) | +2 | 700.3391 | 700.3393 | 1.0 | 6.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amilca, O.; Nguyen, P.T.; Perquis, L.; Collin, F.; Bourgault, S. Effect of Copper-Catalyzed Oxidation on the Aggregation of the Islet Amyloid Polypeptide. Antioxidants 2025, 14, 1269. https://doi.org/10.3390/antiox14111269
Amilca O, Nguyen PT, Perquis L, Collin F, Bourgault S. Effect of Copper-Catalyzed Oxidation on the Aggregation of the Islet Amyloid Polypeptide. Antioxidants. 2025; 14(11):1269. https://doi.org/10.3390/antiox14111269
Chicago/Turabian StyleAmilca, Océane, Phuong Trang Nguyen, Lucie Perquis, Fabrice Collin, and Steve Bourgault. 2025. "Effect of Copper-Catalyzed Oxidation on the Aggregation of the Islet Amyloid Polypeptide" Antioxidants 14, no. 11: 1269. https://doi.org/10.3390/antiox14111269
APA StyleAmilca, O., Nguyen, P. T., Perquis, L., Collin, F., & Bourgault, S. (2025). Effect of Copper-Catalyzed Oxidation on the Aggregation of the Islet Amyloid Polypeptide. Antioxidants, 14(11), 1269. https://doi.org/10.3390/antiox14111269



