Artesunate Exerts Organ- and Tissue-Protective Effects by Regulating Oxidative Stress, Inflammation, Autophagy, Apoptosis, and Fibrosis: A Review of Evidence and Mechanisms
Abstract
:1. Introduction
2. Pharmacological Properties of AS
3. Protective Effects and Action Mechanisms of AS
3.1. AS Protects Organs and Tissue through Anti-Inflammatory Effect
3.2. AS Protects Organs and Tissue through Antioxidative Stress Effect
3.3. AS Protects Organs and Tissue by Regulating Metabolism
3.4. AS Protects Organs and Tissue through Anti-Fibrotic Effect
3.5. AS Protects Organs and Tissue by Affecting Apoptosis
3.6. AS Protects Organs and Tissue through Pro-Autophagy Effect
3.7. Other Protective Effects of AS
4. Safety Evaluation of AS
5. Stability Improvements for AS
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vos, T.; Lim, S.S.; Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A.; et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef] [PubMed]
- Nie, X.; Qian, L.; Sun, R.; Huang, B.; Dong, X.; Xiao, Q.; Zhang, Q.; Lu, T.; Yue, L.; Chen, S.; et al. Multi-organ proteomic landscape of COVID-19 autopsies. Cell 2021, 184, 775–791.e14. [Google Scholar] [CrossRef] [PubMed]
- Mattson, D.L. Immune mechanisms of salt-sensitive hypertension and renal end-organ damage. Nat. Rev. Nephrol. 2019, 15, 290–300. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Donnan, P.T.; Bell, S.; Guthrie, B. Non-steroidal anti-inflammatory drug induced acute kidney injury in the community dwelling general population and people with chronic kidney disease: Systematic review and meta-analysis. BMC Nephrol. 2017, 18, 256. [Google Scholar] [CrossRef] [PubMed]
- Licata, A. Adverse drug reactions and organ damage: The liver. Eur. J. Intern. Med. 2016, 28, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Lan, X.; Zhao, J.; Zhang, Y.; Chen, Y.; Liu, Y.; Xu, F. Oxymatrine exerts organ- and tissue-protective effects by regulating inflammation, oxidative stress, apoptosis, and fibrosis: From bench to bedside. Pharmacol. Res. 2020, 151, 104541. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.; Dai, S.; Wang, C.; Fu, K.; Wu, R.; Zhao, X.; Yao, Y.; Li, Y. Luteolin as a potential hepatoprotective drug: Molecular mechanisms and treatment strategies. Biomed. Pharmacother. 2023, 167, 115464. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wang, H.; Yang, Y.; Gou, Y.; Wang, Z.; Yang, D.; Li, C. Protective Effects of Silymarin Against D-Gal/LPS-Induced Organ Damage and Inflammation in Mice. Drug Des. Dev. Ther. 2021, 15, 1903–1914. [Google Scholar] [CrossRef] [PubMed]
- Hakimi, Z.; Salmani, H.; Marefati, N.; Arab, Z.; Gholamnezhad, Z.; Beheshti, F.; Shafei, M.N.; Hosseini, M. Protective Effects of Carvacrol on Brain Tissue Inflammation and Oxidative Stress as well as Learning and Memory in Lipopolysaccharide-Challenged Rats. Neurotox. Res. 2019, 37, 965–976. [Google Scholar] [CrossRef]
- Youyou, T. The Development of the Antimalarial Drugs with New Type of Chemical Structure—Qinghaosu and Dihydroqinghaosu. Southeast Asian J. Trop. Med. Public Health 2004, 35, 250–251. [Google Scholar]
- Cheong, D.H.J.; Tan, D.W.S.; Wong, F.W.S.; Tran, T. Anti-malarial drug, artemisinin and its derivatives for the treatment of respiratory diseases. Pharmacol. Res. 2020, 158, 104901. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, Y.; Wan, J.; Zhang, M.; Li, C.; Lin, J. Artesunate: A review of its therapeutic insights in respiratory diseases. Phytomedicine 2022, 104, 154259. [Google Scholar] [CrossRef] [PubMed]
- Newton, P.; Suputtamongkol, Y.; Teja-Isavadharm, P.; Pukrittayakamee, S.; Navaratnam, V.; Bates, I.; White, N. Antimalarial Bioavailability and Disposition of Artesunate in Acute Falciparum Malaria. Antimicrob. Agents Chemother. 2000, 44, 972–977. [Google Scholar] [CrossRef] [PubMed]
- Roussel, C.; Caumes, E.; Thellier, M.; Ndour, P.A.; Buffet, P.A.; Jauréguiberry, S. Artesunate to treat severe malaria in travellers: Review of efficacy and safety and practical implications. J. Travel Med. 2017, 24, taw093. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zheng, Y.; Liu, L.; Huang, J.; Wang, F.; Zhang, J. Progress on the study of the anticancer effects of artesunate (Review). Oncol. Lett. 2021, 22, 750. [Google Scholar] [CrossRef] [PubMed]
- Zuo, S.; Li, Q.; Liu, X.; Feng, H.; Chen, Y. The Potential Therapeutic Effects of Artesunate on Stroke and Other Central Nervous System Diseases. BioMed. Res. Int. 2016, 2016, 1489050. [Google Scholar] [CrossRef] [PubMed]
- Efferth, T.; Romero, M.R.; Wolf, D.G.; Stamminger, T.; Marin, J.J.G.; Marschall, M. The Antiviral Activities of Artemisinin and Artesunate. Clin. Infect. Dis. 2008, 47, 804–811. [Google Scholar] [CrossRef]
- Ruwizhi, N.; Maseko, R.B.; Aderibigbe, B.A. Recent Advances in the Therapeutic Efficacy of Artesunate. Pharmaceutics 2022, 14, 504. [Google Scholar] [CrossRef]
- Ismail, M.; Ling, L.; Du, Y.; Yao, C.; Li, X. Liposomes of dimeric artesunate phospholipid: A combination of dimerization and self-assembly to combat malaria. Biomaterials 2018, 163, 76–87. [Google Scholar] [CrossRef]
- Morris, C.A.; Duparc, S.; Borghini-Fuhrer, I.; Jung, D.; Shin, C.-S.; Fleckenstein, L. Review of the clinical pharmacokinetics of artesunate and its active metabolite dihydroartemisinin following intravenous, intramuscular, oral or rectal administration. Malar. J. 2011, 10, 263. [Google Scholar] [CrossRef]
- Kouakou, Y.I.; Tod, M.; Leboucher, G.; Lavoignat, A.; Bonnot, G.; Bienvenu, A.-L.; Picot, S. Systematic review of artesunate pharmacokinetics: Implication for treatment of resistant malaria. Int. J. Infect. Dis. 2019, 89, 30–44. [Google Scholar] [CrossRef] [PubMed]
- Marijon, A.; Fourier, G.B.A.; Bringer, C.; Lavoignat, A.; Gagnieu, M.-C.; Bienvenu, A.-L. Efficacy of intranasal administration of artesunate in experimental cerebral malaria. Malar. J. 2014, 13, 501. [Google Scholar] [CrossRef] [PubMed]
- Kouakou, Y.I.; Millet, A.; Fromentin, E.; Hauchard, N.; Farias, G.; Fieux, M.; Coudert, A.; Omorou, R.; Bin Sa’id, I.; Lavoignat, A.; et al. Pre-referral intranasal artesunate powder for cerebral malaria: A proof-of-concept study. Malar. J. 2022, 21, 291. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, J.; Ren, Y.; Ma, Y.; Liu, J.; Jiang, H.; Liu, C. Artesunate improves glucose and lipid metabolism in db/db mice by regulating the metabolic profile and the MAPK/PI3K/Akt signalling pathway. Phytomedicine 2024, 126, 155382. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhao, Y.; Gao, T.; Zhang, H.; Li, J.; Wang, G.; Wang, C.; Li, Y. Artesunate Reduces Remifentanil-induced Hyperalgesia and Peroxiredoxin-3 Hyperacetylation via Modulating Spinal Metabotropic Glutamate Receptor 5 in Rats. Neuroscience 2022, 487, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.-Z.; Zhuang, Y.; Ning, X.; Zhang, H.; Shen, Z.-M.; Shang, X.-W. Artesunate inhibits osteoclastogenesis through the miR-503/RANK axis. Biosci. Rep. 2020, 40, BSR20194387. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.-B.; Qiu, L.-Z.; Chen, Q.; Lin, J.-D. Artesunate alleviates the inflammatory response of ulcerative colitis by regulating the expression of miR-155. Pharm. Biol. 2021, 59, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Long, F.; Jia, W.; Zhang, M.; Su, G.; Liao, M.; Zeng, Z.; Chen, W.; Chen, J. Artesunate inhibits PDE4 leading to intracellular cAMP accumulation, reduced ERK/MAPK signaling, and blockade of influenza A virus vRNP nuclear export. Antivir. Res. 2023, 215, 105635. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Xia, L.; Wei, L.; Li, D.; Jiang, W. Artesunate inhibits Staphylococcus aureus biofilm formation by reducing alpha-toxin synthesis. Arch. Microbiol. 2020, 203, 707–717. [Google Scholar] [CrossRef]
- Guo, X.; Asthana, P.; Zhai, L.; Cheng, K.W.; Gurung, S.; Huang, J.; Wu, J.; Zhang, Y.; Mahato, A.K.; Saarma, M.; et al. Artesunate treats obesity in male mice and non-human primates through GDF15/GFRAL signalling axis. Nat. Commun. 2024, 15, 1034. [Google Scholar] [CrossRef]
- Feng, H.; Wu, T.; Zhou, Q.; Li, H.; Liu, T.; Ma, X.; Yue, R.; Hassan, I. Protective Effect and Possible Mechanisms of Artemisinin and Its Derivatives for Diabetic Nephropathy: A Systematic Review and Meta-Analysis in Animal Models. Oxidative Med. Cell. Longev. 2022, 2022, 5401760. [Google Scholar] [CrossRef]
- Chen, Y.; Li, W.; Nong, X.; Liang, C.; Li, J.; Lu, W.; Wang, B.; Yuan, Z.; Yang, S. Role of Artesunate on cardiovascular complications in rats with type 1 diabetes mellitus. BMC Endocr. Disord. 2021, 21, 19. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, A.M.; Moss, N.G.; Kaestner, K.H. GABA and Artesunate Do Not Induce Pancreatic α-to-β Cell Transdifferentiation In Vivo. Cell Metab. 2018, 28, 787–792.e3. [Google Scholar] [CrossRef] [PubMed]
- Kuhse, J.; Groeneweg, F.; Kins, S.; Gorgas, K.; Nawrotzki, R.; Kirsch, J.; Kiss, E. Loss of Extrasynaptic Inhibitory Glycine Receptors in the Hippocampus of an AD Mouse Model Is Restored by Treatment with Artesunate. Int. J. Mol. Sci. 2023, 24, 4623. [Google Scholar] [CrossRef]
- Gugliandolo, E.; Palma, E.; Peritore, A.F.; Siracusa, R.; D’Amico, R.; Fusco, R.; Licata, P.; Crupi, R. Effect of Artesunate on Leishmania Amazonesis Induced Neuroinflammation and Nociceptive Behavior in Male Balb/C Mice. Animals 2020, 10, 557. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, A.; Zhang, M.; Zeng, H.; Lu, Y.; Liu, L.; Li, J.; Deng, L. Artesunate attenuates airway resistance in vivo and relaxes airway smooth muscle cells in vitro via bitter taste receptor-dependent calcium signalling. Exp. Physiol. 2018, 104, 231–243. [Google Scholar] [CrossRef]
- Xiao, Q.; Yang, L.; Hu, H.; Ke, Y. Artesunate targets oral tongue squamous cell carcinoma via mitochondrial dysfunction-dependent oxidative damage and Akt/AMPK/mTOR inhibition. J. Bioenerg. Biomembr. 2020, 52, 113–121. [Google Scholar] [CrossRef]
- Chen, W.; Ma, Z.; Yu, L.; Mao, X.; Ma, N.; Guo, X.; Yin, X.; Jiang, F.; Wang, Q.; Wang, J.; et al. Preclinical investigation of artesunate as a therapeutic agent for hepatocellular carcinoma via impairment of glucosylceramidase-mediated autophagic degradation. Exp. Mol. Med. 2022, 54, 1536–1548. [Google Scholar] [CrossRef] [PubMed]
- DiDonato, J.A.; Mercurio, F.; Karin, M. NF-κB and the link between inflammation and cancer. Immunol. Rev. 2012, 246, 379–400. [Google Scholar] [CrossRef]
- Liu, Y.; Dang, W.; Zhang, S.; Wang, L.; Zhang, X. Artesunate attenuates inflammatory injury and inhibits the NF-κB pathway in a mouse model of cerebral ischemia. J. Int. Med. Res. 2021, 49, 03000605211053549. [Google Scholar] [CrossRef]
- Verma, S.; Kumar, V.L. Attenuation of gastric mucosal damage by artesunate in rat: Modulation of oxidative stress and NFκB mediated signaling. Chem. Biol. Interact. 2016, 257, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhong, K.; Jing, Y.; Liu, S.; Qin, S.; Peng, F.; Li, D.; Peng, C. Procyanidin B2: A promising multi-functional food-derived pigment for human diseases. Food Chem. 2023, 420, 136101. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, J.; Zhu, J.; Yang, G.; Tian, J.; Zhao, Y.; Wang, Y. Artesunate Provides Neuroprotection against Cerebral Ischemia–Reperfusion Injury via the TLR-4/NF-κB Pathway in Rats. Biol. Pharm. Bull. 2021, 44, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Gugliandolo, E.; D’Amico, R.; Cordaro, M.; Fusco, R.; Siracusa, R.; Crupi, R.; Impellizzeri, D.; Cuzzocrea, S.; Di Paola, R. Neuroprotective Effect of Artesunate in Experimental Model of Traumatic Brain Injury. Front. Neurol. 2018, 9, 590. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, M.; Li, J.; Yin, S.; Wu, Y.; Wang, A. Antimalarial agent artesunate protects Concanavalin A-induced autoimmune hepatitis in mice by inhibiting inflammatory responses. Chem. Biol. Interact. 2017, 274, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Ma, Y.; Chen, F.; Wang, S.; Chen, B.; Shi, J. Artesunate ameliorates high glucose-induced rat glomerular mesangial cell injury by suppressing the TLR4/NF-κB/NLRP3 inflammasome pathway. Chem. Biol. Interact. 2018, 293, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Cen, Y.; Xiong, Y.; Qin, R.; Tao, H.; Yang, Q.; Pan, X. Anti-malarial artesunate ameliorates atherosclerosis by modulating arterial inflammatory responses via inhibiting the NF-κB–NLRP3 inflammasome pathway. Front. Pharmacol. 2023, 14, 1123700. [Google Scholar] [CrossRef]
- Yin, S.; Yang, H.; Tao, Y.; Wei, S.; Li, L.; Liu, M.; Li, J. Artesunate ameliorates DSS-induced ulcerative colitis by protecting intestinal barrier and inhibiting inflammatory response. Inflammation 2020, 43, 765–776. [Google Scholar] [CrossRef]
- Pan, K.; Lu, J.; Song, Y. Artesunate ameliorates cigarette smoke-induced airway remodelling via PPAR-γ/TGF-β1/Smad2/3 signalling pathway. Respir. Res. 2021, 22, 91. [Google Scholar] [CrossRef]
- Xie, G.; Liang, Y.; Gao, W.; Wu, L.; Zhang, Y.; Ye, Z.; Qin, C. Artesunate alleviates intracerebral haemorrhage secondary injury by inducing ferroptosis in M1-polarized microglia and suppressing inflammation through AMPK/mTORC1/GPX4 pathway. Basic Clin. Pharmacol. Toxicol. 2023, 132, 369–383. [Google Scholar] [CrossRef]
- Ng, D.S.W.; Liao, W.; Tan, W.S.D.; Chan, T.K.; Loh, X.Y.; Wong, W.S.F. Anti-malarial drug artesunate protects against cigarette smoke-induced lung injury in mice. Phytomedicine 2014, 21, 1638–1644. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.-Z.; Zhang, Y.-Y.; Yang, Q.; Wang, S.; Zou, B.-H.; Tan, Y.-H.; Zou, M.; Liu, S.-W.; Li, X.-J. Artesunate attenuates LPS-induced osteoclastogenesis by suppressing TLR4/TRAF6 and PLCγ1-Ca2+-NFATc1 signaling pathway. Acta Pharmacol. Sin. 2019, 41, 229–236. [Google Scholar] [CrossRef] [PubMed]
- van der Pol, A.; van Gilst, W.H.; Voors, A.A.; van der Meer, P. Treating oxidative stress in heart failure: Past, present and future. Eur. J. Heart Fail. 2018, 21, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Yu, N.; Pasha, M.; Chua, J.J.E. Redox changes and cellular senescence in Alzheimer’s disease. Redox Biol. 2024, 70, 103048. [Google Scholar] [CrossRef] [PubMed]
- Hybertson, B.M.; Gao, B.; Bose, S.K.; McCord, J.M. Oxidative stress in health and disease: The therapeutic potential of Nrf2 activation. Mol. Asp. Med. 2011, 32, 234–246. [Google Scholar] [CrossRef] [PubMed]
- Ho, W.E.; Cheng, C.; Peh, H.Y.; Xu, F.; Tannenbaum, S.R.; Ong, C.N.; Wong, W.S.F. Anti-malarial drug artesunate ameliorates oxidative lung damage in experimental allergic asthma. Free Radic. Biol. Med. 2012, 53, 498–507. [Google Scholar] [CrossRef] [PubMed]
- Ji, T.; Chen, M.; Liu, Y.; Jiang, H.; Li, N.; He, X. Artesunate alleviates intestinal ischemia/reperfusion induced acute lung injury via up-regulating AKT and HO-1 signal pathway in mice. Int. Immunopharmacol. 2023, 122, 110571. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Zhang, J.; Xu, G.; Wang, Q. Artesunate Protects LPS-Induced Acute Lung Injury by Inhibiting TLR4 Expression and Inducing Nrf2 Activation. Inflammation 2017, 40, 798–805. [Google Scholar] [CrossRef] [PubMed]
- Cao, T.-H.; Jin, S.-G.; Fei, D.-S.; Kang, K.; Jiang, L.; Lian, Z.-Y.; Pan, S.-H.; Zhao, M.-R.; Zhao, M.-Y. Artesunate Protects Against Sepsis-Induced Lung Injury Via Heme Oxygenase-1 Modulation. Inflammation 2015, 39, 651–662. [Google Scholar] [CrossRef]
- Su, X.; Guo, W.; Yuan, B.; Wang, D.; Liu, L.; Wu, X.; Zhang, Y.; Kong, X.; Lin, N. Artesunate attenuates bone erosion in rheumatoid arthritis by suppressing reactive oxygen species via activating p62/Nrf2 signaling. Biomed. Pharmacother. 2021, 137, 111382. [Google Scholar] [CrossRef]
- Huang, S.; Galaj, E.; Wang, J.; Guo, Y.; Wang, S.; Shi, M.; Yin, X.; Liu, K.; Luo, Y.; Meng, L.; et al. Repurposing antimalarial artesunate for the prophylactic treatment of depression: Evidence from preclinical research. Brain Behav. 2022, 13, e2833. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Li, Y.; Huang, C.; Xiao, X.; Zhong, Z.; Tang, J.; Lu, H.; Tang, Y.; Yang, J. Dihydroartemisinin and artesunate inhibit aerobic glycolysis via suppressing c-Myc signaling in non-small cell lung cancer. Biochem. Pharmacol. 2022, 198, 114941. [Google Scholar] [CrossRef] [PubMed]
- Ho, W.E.; Xu, Y.-J.; Xu, F.; Cheng, C.; Peh, H.Y.; Huang, S.-M.; Tannenbaum, S.R.; Ong, C.N.; Wong, W.S.F. Anti-malarial drug artesunate restores metabolic changes in experimental allergic asthma. Metabolomics 2014, 11, 380–390. [Google Scholar] [CrossRef]
- Wang, X.; Du, H.; Li, X. Artesunate attenuates atherosclerosis by inhibiting macrophage M1-like polarization and improving metabolism. Int. Immunopharmacol. 2022, 102, 108413. [Google Scholar] [CrossRef]
- Yuan, J.; Li, S.; Peng, H.; Ma, Y.; Li, L.; Fu, L.; Liu, J.; Jiang, H. Artesunate protects pancreatic β-cells from streptozotocin-induced diabetes via inhibition of the NLRP3/caspase-1/GSDMD pathway. Gen. Comp. Endocrinol. 2022, 326, 114068. [Google Scholar] [CrossRef] [PubMed]
- Rosenbloom, J.; Macarak, E.; Piera-Velazquez, S.; Jimenez, S.A. Human Fibrotic Diseases: Current Challenges in Fibrosis Research. Fibros. Methods Protoc. 2017, 1627, 1–23. [Google Scholar]
- Li, X.; Wang, Y.; Wang, H.; Huang, C.; Huang, Y.; Li, J. Endoplasmic reticulum stress is the crossroads of autophagy, inflammation, and apoptosis signaling pathways and participates in liver fibrosis. Inflamm. Res. 2014, 64, 1–7. [Google Scholar] [CrossRef]
- Yoshida, K.; Matsuzaki, K.; Murata, M.; Yamaguchi, T.; Suwa, K.; Okazaki, K. Clinico-Pathological Importance of TGF-β/Phospho-Smad Signaling during Human Hepatic Fibrocarcinogenesis. Cancers 2018, 10, 183. [Google Scholar] [CrossRef]
- Tang, L.-Y.; Heller, M.; Meng, Z.; Yu, L.-R.; Tang, Y.; Zhou, M.; Zhang, Y.E. Transforming Growth Factor-β (TGF-β) Directly Activates the JAK1-STAT3 Axis to Induce Hepatic Fibrosis in Coordination with the SMAD Pathway. J. Biol. Chem. 2017, 292, 4302–4312. [Google Scholar] [CrossRef]
- Larson, S.A.; Dolivo, D.M.; Dominko, T. Artesunate inhibits myofibroblast formation via induction of apoptosis and antagonism of pro-fibrotic gene expression in human dermal fibroblasts. Cell Biol. Int. 2019, 43, 1317–1322. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, H.; Zhu, J.; Wei, T.; Peng, Y.; Li, R.; Xu, R.; Li, M.; Xia, A. Role of artesunate in TGF-β1-induced renal tubular epithelial-mesenchymal transdifferentiation in NRK-52E cells. Mol. Med. Rep. 2017, 16, 8891–8899. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Xuan, X.; Yao, W.; Huang, G.; Jin, J. Anti-profibrotic effects of artesunate on bleomycin-induced pulmonary fibrosis in Sprague Dawley rats. Mol. Med. Rep. 2015, 12, 1291–1297. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Huang, G.; Mo, B.; Wang, C. Artesunate ameliorates lung fibrosis via inhibiting the Notch signaling pathway. Exp. Ther. Med. 2017, 14, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Lai, L.; Chen, Y.; Tian, X.; Li, X.; Zhang, X.; Lei, J.; Bi, Y.; Fang, B.; Song, X. Artesunate alleviates hepatic fibrosis induced by multiple pathogenic factors and inflammation through the inhibition of LPS/TLR4/NF-κB signaling pathway in rats. Eur. J. Pharmacol. 2015, 765, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Lv, X.; Wu, Y.; Weng, Y.; Dai, F.; Ding, H.; Chen, R.; Zheng, B.; Zhao, W.; Tong, Q.; et al. Mining host candidate regulators of schistosomiasis-induced liver fibrosis in response to artesunate therapy through transcriptomics approach. PLOS Neglected Trop. Dis. 2023, 17, e0011626. [Google Scholar] [CrossRef] [PubMed]
- Pokharel, M.D.; Garcia-Flores, A.; Marciano, D.; Franco, M.C.; Fineman, J.R.; Aggarwal, S.; Wang, T.; Black, S.M. Mitochondrial network dynamics in pulmonary disease: Bridging the gap between inflammation, oxidative stress, and bioenergetics. Redox Biol. 2024, 70, 103049. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, A.M.; Chirillo, R.; Aversa, I.; Sacco, A.; Costanzo, F.; Biamonte, F. Ferroptosis and Cancer: Mitochondria Meet the “Iron Maiden” Cell Death. Cells 2020, 9, 1505. [Google Scholar] [CrossRef] [PubMed]
- Mou, Y.; Wang, J.; Wu, J.; He, D.; Zhang, C.; Duan, C.; Li, B. Ferroptosis, a new form of cell death: Opportunities and challenges in cancer. J. Hematol. Oncol. 2019, 12, 34. [Google Scholar] [CrossRef]
- Pei, Z.; Qin, Y.; Fu, X.; Yang, F.; Huo, F.; Liang, X.; Wang, S.; Cui, H.; Lin, P.; Zhou, G.; et al. Inhibition of ferroptosis and iron accumulation alleviates pulmonary fibrosis in a bleomycin model. Redox Biol. 2022, 57, 102509. [Google Scholar] [CrossRef]
- Pan, Q.; Luo, Y.; Xia, Q.; He, K. Ferroptosis and Liver Fibrosis. Int. J. Med. Sci. 2021, 18, 3361–3366. [Google Scholar] [CrossRef]
- Liu, J.; Pan, Z.; Tong, B.; Wang, C.; Yang, J.; Zou, J.; Jiang, J.; Zhang, L.; Jiang, B. Artesunate protects against ocular fibrosis by suppressing fibroblast activation and inducing mitochondria-dependent ferroptosis. FASEB J. 2023, 37, e22954. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; He, L.; Guo, H.; Chen, H.; Shan, H. Targeting activated hepatic stellate cells (aHSCs) for liver fibrosis imaging. EJNMMI Res. 2015, 5, 71. [Google Scholar] [CrossRef] [PubMed]
- Kong, Z.; Liu, R.; Cheng, Y. Artesunate alleviates liver fibrosis by regulating ferroptosis signaling pathway. Biomed. Pharmacother. 2019, 109, 2043–2053. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Y.; Qiu, Y.; Shen, M.; Wang, L.; Shao, J.; Zhang, F.; Xu, X.; Zhang, Z.; Guo, M.; et al. Artesunate Induces Ferroptosis in Hepatic Stellate Cells and Alleviates Liver Fibrosis via the ROCK1/ATF3 Axis. J. Clin. Transl. Hepatol. 2023, 12, 36–51. [Google Scholar] [CrossRef]
- Shen, S.; Luo, J.; Ye, J. Artesunate alleviates schistosomiasis-induced liver fibrosis by downregulation of mitochondrial complex Ⅰ subunit NDUFB8 and complex Ⅲ subunit UQCRC2 in hepatic stellate cells. Acta Trop. 2021, 214, 105781. [Google Scholar] [CrossRef]
- Sheibani, N.; Song, Y.-S.; Farnoodian, M.; Inampudi, S.; Wang, S.; Darjatmoko, S.R.; Sorenson, C.M. Artesunate mitigates choroidal neovascularization and scar formation. Exp. Eye Res. 2023, 236, 109666. [Google Scholar] [CrossRef]
- Grilo, A.L.; Mantalaris, A. Apoptosis: A mammalian cell bioprocessing perspective. Biotechnol. Adv. 2019, 37, 459–475. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liang, Z.; Zhou, Y.; Wang, F.; Wei, S.; Tan, B.; Guo, Y. Artesunate Inhibits Apoptosis and Promotes Survival in Schwann Cells via the PI3K/AKT/mTOR Axis in Diabetic Peripheral Neuropathy. Biol. Pharm. Bull. 2023, 46, 764–772. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.; Wang, J.; Chen, Q.; Wang, Z.; Li, D.; Jiang, N.; Ju, X. Artesunate ameliorates sepsis-induced acute lung injury by activating the mTOR/AKT/PI3K axis. Gene 2020, 759, 144969. [Google Scholar] [CrossRef]
- Zhou, C.; Pan, W.; Wang, X.P.; Chen, T.S. Artesunate induces apoptosis via a Bak-mediated caspase-independent intrinsic pathway in human lung adenocarcinoma cells. J. Cell. Physiol. 2012, 227, 3778–3786. [Google Scholar] [CrossRef]
- Liu, Z.; Meng, Y.; Miao, Y.; Yu, L.; Yu, Q. Artesunate reduces sepsis-mediated acute lung injury in a SIRT1-dependent manner. BioImpacts 2023, 13, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Wickström, M.; Dyberg, C.; Milosevic, J.; Einvik, C.; Calero, R.; Sveinbjörnsson, B.; Sandén, E.; Darabi, A.; Siesjö, P.; Kool, M.; et al. Wnt/β-catenin pathway regulates MGMT gene expression in cancer and inhibition of Wnt signalling prevents chemoresistance. Nat. Commun. 2015, 6, 8904. [Google Scholar] [CrossRef] [PubMed]
- Behrens, J.; Lustig, B. The Wnt connection to tumorigenesis. Int. J. Dev. Biol. 2004, 48, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Ismail, M.; Yang, W.; Li, Y.; Chai, T.; Zhang, D.; Du, Q.; Muhammad, P.; Hanif, S.; Zheng, M.; Shi, B. Targeted liposomes for combined delivery of artesunate and temozolomide to resistant glioblastoma. Biomaterials 2022, 287, 121608. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.Y.; Tan, R.Z.; Jia, J.; Wu, S.L.; Wen, C.L.; Lin, X.; Wang, H.; Shi, Z.J.; Li, B.; Kang, Y.; et al. Artesunate relieves acute kidney injury through inhibiting macrophagic Mincle-mediated necroptosis and inflammation to tubular epithelial cell. J. Cell. Mol. Med. 2021, 25, 8775–8788. [Google Scholar] [CrossRef] [PubMed]
- Eskelinen, E.-L. Autophagy: Supporting cellular and organismal homeostasis by self-eating. Int. J. Biochem. Cell Biol. 2019, 111, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Dupont, N.; Leroy, C.; Hamaï, A.; Codogno, P. Long-Lived Protein Degradation During Autophagy. In Molecular Characterization of Autophagic Responses, Part B; Academic Press: Cambridge, MA, USA, 2017; pp. 31–40. [Google Scholar]
- Han, B.; He, C. Targeting autophagy using saponins as a therapeutic and preventive strategy against human diseases. Pharmacol. Res. 2021, 166, 105428. [Google Scholar] [CrossRef] [PubMed]
- Heras-Sandoval, D.; Pérez-Rojas, J.M.; Hernández-Damián, J.; Pedraza-Chaverri, J. The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cell. Signal. 2014, 26, 2694–2701. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kundu, M.; Viollet, B.; Guan, K.-L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 2011, 13, 132–141. [Google Scholar] [CrossRef]
- Vidal, R.L.; Matus, S.; Bargsted, L.; Hetz, C. Targeting autophagy in neurodegenerative diseases. Trends Pharmacol. Sci. 2014, 35, 583–591. [Google Scholar] [CrossRef]
- Lippai, M.; Szatmári, Z. Autophagy—From molecular mechanisms to clinical relevance. Cell Biol. Toxicol. 2016, 33, 145–168. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, J.; Nong, X.; Zhan, Y.; Xu, J.; Zhao, D.; Ma, C.; Wang, Y.; Li, Y.; Li, Z.; et al. Artesunate Combined with Metformin Ameliorate on Diabetes-Induced Xerostomia by Mitigating Superior Salivatory Nucleus and Salivary Glands Injury in Type 2 Diabetic Rats via the PI3K/AKT Pathway. Front. Pharmacol. 2021, 12, 774674. [Google Scholar] [CrossRef] [PubMed]
- Wan, Q.; Chen, H.; Xiong, G.; Jiao, R.; Liu, Y.; Li, X.; Sun, Y.; Wang, J.; Yan, L. Artesunate protects against surgery-induced knee arthrofibrosis by activating Beclin-1-mediated autophagy via inhibition of mTOR signaling. Eur. J. Pharmacol. 2019, 854, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chen, J.; Zhou, Y.; Zhang, J.; Chen, L. Artesunate alleviates diabetic retinopathy by activating autophagy via the regulation of AMPK/SIRT1 pathway. Arch. Physiol. Biochem. 2021, 129, 943–950. [Google Scholar] [CrossRef]
- Ding, W.; Liao, L.; Liu, J.; Zhao, J.; Tang, Q.; Liao, Y. Lower dose of metformin combined with artesunate induced autophagy-dependent apoptosis of glioblastoma by activating ROS-AMPK-mTOR axis. Exp. Cell Res. 2023, 430, 113691. [Google Scholar] [CrossRef]
- Liu, X.; Wu, J.; Wang, N.; Xia, L.; Fan, S.; Lu, Y.; Chen, X.; Shang, S.; Yang, Y.; Huang, Q.; et al. Artesunate reverses LPS tolerance by promoting ULK1-mediated autophagy through interference with the CaMKII-IP3R-CaMKKβ pathway. Int. Immunopharmacol. 2020, 87, 106863. [Google Scholar] [CrossRef]
- Wan, Q.; Chen, H.; Li, X.; Yan, L.; Sun, Y.; Wang, J. Artesunate inhibits fibroblasts proliferation and reduces surgery-induced epidural fibrosis via the autophagy-mediated p53/p21waf1/cip1 pathway. Eur. J. Pharmacol. 2019, 842, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Sun, X.; Wang, L.; Wong, Y.K.; Lee, Y.M.; Zhou, C.; Wu, G.; Zhao, T.; Yang, L.; Lu, L.; et al. Artesunate-induced mitophagy alters cellular redox status. Redox Biol. 2018, 19, 263–273. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, Y.; Wang, F.; Wu, H.; Zhang, Y.; Liu, J.; Cai, Y.; Huang, S.; He, N.; Hu, Z.; et al. Artesunate induces autophagy dependent apoptosis through upregulating ROS and activating AMPK-mTOR-ULK1 axis in human bladder cancer cells. Chem.-Biol. Interact. 2020, 331, 109273. [Google Scholar] [CrossRef]
- Rando, T.A.; Jones, D.L. Regeneration, Rejuvenation, and Replacement: Turning Back the Clock on Tissue Aging. Cold Spring Harb. Perspect. Biol. 2021, 13, a040907. [Google Scholar] [CrossRef]
- Zhang, G.-L.; Zhu, Z.-H.; Wang, Y.-Z. Neural stem cell transplantation therapy for brain ischemic stroke: Review and perspectives. World J. Stem Cells 2019, 11, 817–830. [Google Scholar] [CrossRef] [PubMed]
- Bernstock, J.D.; Peruzzotti-Jametti, L.; Ye, D.; Gessler, F.A.; Maric, D.; Vicario, N.; Lee, Y.-J.; Pluchino, S.; Hallenbeck, J.M. Neural stem cell transplantation in ischemic stroke: A role for preconditioning and cellular engineering. J. Cereb. Blood Flow Metab. 2017, 37, 2314–2319. [Google Scholar] [CrossRef]
- Wang, M.; Liang, X.; Cheng, M.; Yang, L.; Liu, H.; Wang, X.; Sai, N.; Zhang, X. Homocysteine enhances neural stem cell autophagy in in vivo and in vitro model of ischemic stroke. Cell Death Dis. 2019, 10, 561. [Google Scholar] [CrossRef]
- Othman, F.A.; Tan, S.C. Preconditioning Strategies to Enhance Neural Stem Cell-Based Therapy for Ischemic Stroke. Brain Sci. 2020, 10, 893. [Google Scholar] [CrossRef]
- Webb, R.L.; Kaiser, E.E.; Jurgielewicz, B.J.; Spellicy, S.; Scoville, S.L.; Thompson, T.A.; Swetenburg, R.L.; Hess, D.C.; West, F.D.; Stice, S.L. Human Neural Stem Cell Extracellular Vesicles Improve Recovery in a Porcine Model of Ischemic Stroke. Stroke 2018, 49, 1248–1256. [Google Scholar] [CrossRef] [PubMed]
- Spellicy, S.E.; Kaiser, E.E.; Bowler, M.M.; Jurgielewicz, B.J.; Webb, R.L.; West, F.D.; Stice, S.L. Neural Stem Cell Extracellular Vesicles Disrupt Midline Shift Predictive Outcomes in Porcine Ischemic Stroke Model. Transl. Stroke Res. 2019, 11, 776–788. [Google Scholar] [CrossRef] [PubMed]
- Bernstock, J.D.; Peruzzotti-Jametti, L.; Leonardi, T.; Vicario, N.; Ye, D.; Lee, Y.-j.; Maric, D.; Johnson, K.R.; Mou, Y.; Van Den Bosch, A.; et al. SUMOylation promotes survival and integration of neural stem cell grafts in ischemic stroke. EBioMedicine 2019, 42, 214–224. [Google Scholar] [CrossRef]
- Zhang, K.; Yang, Y.; Ge, H.; Wang, J.; Chen, X.; Lei, X.; Zhong, J.; Zhang, C.; Xian, J.; Lu, Y.; et al. Artesunate promotes the proliferation of neural stem/progenitor cells and alleviates Ischemia-reperfusion Injury through PI3K/Akt/FOXO-3a/p27kip1 signaling pathway. Aging 2020, 12, 8029–8048. [Google Scholar] [CrossRef]
- Luan, Y.; Bao, Y.; Wang, F. Artesunate regulates the proliferation and differentiation of neural stem cells by activating the JAK-2/STAT-3 signaling pathway in ischemic stroke. Exp. Ther. Med. 2022, 25, 2. [Google Scholar] [CrossRef]
- Mitry, M.A.; Laurent, D.; Keith, B.L.; Sira, E.; Eisenberg, C.A.; Eisenberg, L.M.; Joshi, S.; Gupte, S.; Edwards, J.G. Accelerated cardiomyocyte senescence contributes to late-onset doxorubicin-induced cardiotoxicity. Am. J. Physiol. Cell Physiol. 2020, 318, C380–C391. [Google Scholar] [CrossRef]
- Xia, J.; Chen, J.; Vashisth, M.K.; Ge, Y.; Dai, Q.; He, S.; Shi, Y.-l.; Wang, X.-b. Metformin ameliorates 5-fluorouracil-induced intestinal injury by inhibiting cellular senescence, inflammation, and oxidative stress. Int. Immunopharmacol. 2022, 113, 109342. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.J.; Rui Bai, S.; Xia, J.; Yue He, S.; Dai, Q.-L.; Zhou, M.; Wang, X.B. Artesunate ameliorates irinotecan-induced intestinal injury by suppressing cellular senescence and significantly enhances anti-tumor activity. Int. Immunopharmacol. 2023, 119, 110205. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Dai, Q.L.; He, S.; Jia, H.-J.; Liu, X.-G.; Hua, H.; Zhou, M.; Wang, X. Artesunate alleviates 5-fluorouracil-induced intestinal damage by suppressing cellular senescence and enhances its antitumor activity. Discov. Oncol. 2023, 14, 139. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.; Chen, D.; Xia, J.-N.; Wang, W.-Y.; Zhu, G.-Y.; Chen, L.-W.; Zhang, C.; Tan, B.; Li, H.; Li, Y.-W. Artesunate promoted anti-tumor immunity and overcame EGFR-TKI resistance in non-small-cell lung cancer by enhancing oncogenic TAZ degradation. Biomed. Pharmacother. 2022, 155, 113705. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Shan, L.; Tong, P.; Efferth, T. Cardiotoxicity and Cardioprotection by Artesunate in Larval Zebrafish. Dose-Response 2020, 18, 1559325819897180. [Google Scholar] [CrossRef] [PubMed]
- Bessa Santana, P.D.P.; Mota, T.C.; Oliveira Das Mercês, M.; Baia De Souza, E.; Costa De Almeida, N.N.D.; Da Silva Cordeiro, M.; Santos, S.D.S.D.; Bahia, M.D.O.; Dos Santos Miranda, M.; Ohashi, O.M. Artesunate does not affect oocyte maturation and early embryo development of bovine. Drug Chem. Toxicol. 2023, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.-K.; Yu, W.-J.; Lee, J.-S.; Lee, J.-H. Embryotoxicity and Toxicokinetics of the Antimalarial Artesunate in Rats. Toxicol. Res. 2013, 29, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.L.; Arima, A.; Makori, N.; Nakata, Y.; Bernard, F.; Gristwood, W.; Harrell, A.; White, T.E.K.; Wier, P.J. Artesunate: Developmental toxicity and toxicokinetics in monkeys. Birth Defects Res. Part B Dev. Reprod. Toxicol. 2008, 83, 418–434. [Google Scholar] [CrossRef]
- de Moura Carvalho, L.J.; Yin, J.-Y.; Wang, H.-M.; Wang, Q.-J.; Dong, Y.-S.; Han, G.; Guan, Y.-B.; Zhao, K.-Y.; Qu, W.-S.; Yuan, Y.; et al. Subchronic Toxicological Study of Two Artemisinin Derivatives in Dogs. PLoS ONE 2014, 9, e94034. [Google Scholar]
- Stephen Akinsomisoye Olumide, Y.R. Long-term administration of artesunate induces reproductive toxicity in male rats. J. Reprod. Infertil. 2011, 12, 249–260. [Google Scholar]
- Bassi, P.U.; Osakwe, A.I.; Ogar, C.K.; Elagbaje, C.; Nwankwo, B.B.; Balogun, S.T.; Ntadom, G.N.; Isah, A.O. Impact of comorbidity on adverse drug reaction profile in a cohort of patients treated with Artemisinin combination therapies for uncomplicated malaria in Nigeria. Pharmacol. Res. Perspect. 2017, 5, e00302. [Google Scholar] [CrossRef] [PubMed]
- Ismail, M.; Du, Y.; Ling, L.; Li, X. Artesunate-heparin conjugate based nanocapsules with improved pharmacokinetics to combat malaria. Int. J. Pharm. 2019, 562, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Gabriëls, M. Physical and chemical evaluation of liposomes, containing artesunate. J. Pharm. Biomed. Anal. 2003, 31, 655–667. [Google Scholar] [CrossRef] [PubMed]
- Kannan, D.; Yadav, N.; Ahmad, S.; Namdev, P.; Bhattacharjee, S.; Lochab, B.; Singh, S. Pre-clinical study of iron oxide nanoparticles fortified artesunate for efficient targeting of malarial parasite. EBioMedicine 2019, 45, 261–277. [Google Scholar] [CrossRef] [PubMed]
Organ | Types | Routes | Dosage of Administration | Effects | Molecular Mechanisms | Reference |
---|---|---|---|---|---|---|
Brain | In vivo | i.p. | 15, 30 mg/kg | ↓TNF-α, IL-1β, NF-κB | By inhibiting the NF-κB pathway | Liu et al., 2021 [40] |
Brain | In vivo, In vitro | i.p. | 20, 50, 70 mg/kg | ↑AMPK, mTORC1,GPX4 | By inhibiting the AMPK/mTORC1/GPX4 axis | Xie et al., 2023 [50] |
Brain | In vivo | i.p. | 20, 40, 80, 160 mg/kg | ↓TNF-α, IL-6,IL-1β, NF-kB, (TLR)-4, MyD88, MPO | By inhibiting the TLR4/NF-κB pathway | Chen et al., 2021b [43] |
Brain | In vivo | - | 30 mg/kg | ↓TNF-α, IL-6,IL-1β, NF-kB, NLRP3, GFAP, Iba-1 ↑BDNF, GDNF, and NT-3 | By inhibiting the NF-κB- NLRP axis | Gugliandolo et al., 2018 [44] |
Brain | In vivo, In vitro | i.p. | 0.25−2 Μm 0, 5, 15 mg/kg | By inhibiting neuroinflammation and oxidative stress | By regulating antioxidant activity | Huang et al., 2022 [61] |
Brain | In vivo, In vitro | i.v. | 50 μM | modulated Wnt/β-catenin signaling | By regulating the Wnt/β-catenin pathway | Ismail et al., 2022 [94] |
Brain | In vitro | - | 37.5 μM | ↓IL-1β, MCP-1, IP-10, KC, PI3K/Akt and p44/42 MAPK | By disrupting the ROS-AMPK-mTOR axis | Ding et al., 2023 [106] |
Brain | In vivo In vitro | i.p. | 0, 0.4, 0.8, 1.6 μmol/L 150 mg/kg | ↓PI3K, Akt, FOXO3a, p27kip1 | By regulating the PI3K/Akt/FOXO-3a/p27kip1 pathway | Zhang et al., 2020b [119] |
Brain | In vitro | - | 0.25, 0.5, 1, 2 and 4 µmol/L | ↑JAK-2, STAT-3 ↓p-JAK-2, p-STAT-3 | By inhibiting the JAK-2/STAT-3 pathway | Luan et al., 2022 [120] |
Nerve | In vivo | i.p. | 0, 5, 10, or 20 mg/kg | via the ROCK1/ATF3 Axis | By disrupting the ROCK1/ATF3 axis | Wang et al., 2023 [84] |
Nerve | In vivo, In vitro | i.p. | 0.7 mg/mL 0.15 µg/mL, 0.3 µg/mL | ↑p-PI3K, p-AKT, p-mTOR | By regulating the PI3K/AKT/mTOR Axis | Zhang et al., 2023 [88] |
Liver | In vivo | i.g | 27, 54, 108 mg/kg | ↓TNF-α, IL-6,IL-1β, IL-17, NF-kB (p65), (IFN)-γ, ERK, JNK, p38, IkBa, MAPK | By inhibiting the NF-κB and MAPK pathways | Zhao et al., 2017b [45] |
Liver | In vitro | - | 50 μM | ↓TGF-β1, ECM genes ↑matrix-metalloproteinases | By inhibiting the expression of pro-fibrotic genes | Larson et al., 2019 [70] |
Liver | In vivo | p.o. | 28.8 mg/kg | ↓TNF-α,IL-1β, TLR4, ECM, α-SMA, MyD88, TGF-β1, NF-κB p65 | By inhibiting the LPS/TLR4/NF-κB pathway | Lai et al., 2015 [74] |
Liver | In vivo, In vitro | p.o. | 20, 40 mg/kg 40, 80 μM | ↓IL-1β, MCP-1, IP-10, KC, PI3K/Akt and p44/42 MAPK | By inhibiting inflammation and collagen fiber deposition | Yuan et al., 2023b [75] |
Liver | In vivo, In vitro | i.p. | 50 mg/kg | ↑LC3, Atg3, Atg5, Atg6/beclin1, Atg12 ↓p62, FTH1, NCOA4 | Through ferritin autophagy regulation and induction of HSC iron death | Kong et al., 2019 [83] |
Liver | In vivo, In vitro | i.p. | 100 mg/kg | ↓NDUFB8, UQCRC2 | By regulating mitochondrial protein expression | Shen et al., 2021 [85] |
Kidney | In vitro | - | 15 or 30 μg/mL | ↓(TLR)-4, MyD88, NF-kB (p65), NLRP3,ROS, MDA ↑SOD | By inhibiting the TLR4/NF-κB/NLRP3 axis | Sun et al., 2018 [46] |
Kidney | In vitro | - | 0.01, 0.1, 1 µg/mL | ↓TGF-β1, USAG-1, α-SMA ↑BMP-7, E-cadherin | By inhibiting the expression of proteins associated with renal interstitial fibrosis | Zhang et al., 2017b [71] |
Kidney | In vivo | i.g, | 7.5, 15 mg/kg | ↓TNF-α, IL-6,IL-1β, iNOS, NF-kB | By inhibiting the expression of necrosis apoptotic proteins and inflammatory factors | Lei et al., 2021 [95] |
Lung | In vivo, In vitro | i.p. | 25, 50, 100 mg/kg | ↓α-SMA and cyclin D1, TGF-β1, Smad2/3 ↑PPAR-γ, | By regulating the PPAR-γ/TGF-β1/Smad pathway | Pan et al., 2021a [49] |
Lung | In vivo | p.o. | 10, 30, 100 mg/kg | ↓IL-1β, MCP-1, IP-10, KC, PI3K/Akt and p44/42 MAPK ↑NOX2, Nrf2 | By inhibiting the PI3K and p42/22 MAPK pathways | Ng et al., 2014 [51] |
Lung | In vivo | i.p. | 30 mg/kg | ↓TNF-α ↑iNOS, NADPH, Nrf2 | By activating the Nrf2 pathway | Ho et al., 2012 [56] |
Lung | In vivo | i.v. | 20, 40 mg/kg | ↓MDA, MPO, IL-1β, TNFα, CXCL1, MCP-1, Bax, Cleaved-Caspase3 ↑SOD, Bcl-2, AKT and HO-1 | By regulating the levels of genes associated with inflammation, oxidative stress, and apoptosis | Ji et al., 2023 [57] |
Lung | In vivo, In vitro | i.v. | 10, 20, 40 mg/kg | ↓MDA, MPO, IL-1β, TNFα, IL-6 ↑Nrf2 and HO-1 | By activating the Nrf2 and HO-1 pathways | Zhao et al., 2017a [58] |
Lung | In vivo | i.p. | 15 mg/kg | ↓COX-2, TNFα, IL-6, NF-κB ↑Nrf2 and HO-1 | By activating the Nrf2 and HO-1 pathways | Cao et al., 2015 [59] |
Lung | In vitro | - | 0, 5, 10, 50 µM | ↓GLUT1, enzymes hexokinase and lactate dehydrogenase, c-Myc | By regulating glucose metabolism | Zhang et al., 2022d [62] |
Lung | In vivo | i.p. | 100 mg/kg | ↓TGF-β1, Smad2/3 | By reducing the levels of profibrotic molecules | Wang et al., 2015 [72] |
Lung | In vivo, In vitro | i.p. | 8 µg/mL 100 mg/kg | ↓IL-1β, MCP-1, IP-10, KC, PI3K/Akt and p44/42 MAPK | By inhibiting the Notch signaling pathway | Liu et al., 2017 [73] |
Lung | In vivo | i.p. | 15 mg/kg | ↓cl-caspase-3, TNF-α, and IL-6 ↑p-mTOR, p-Akt, and PI3K | By regulating the mTOR/AKT/PI3K pathway | Zhang et al., 2020a [89] |
Lung | In vitro | - | 100 mM | induced apoptosis through a Bak-mediated intrinsic pathway | By inducing apoptosis through a Bak-mediated intrinsic pathway | Zhou et al., 2012 [90] |
Lung | In vivo, In vitro | i.p. | 7.5, 15, 25 mg/kg 5, 10, 20 μg/mL | ↑SIRT1 | By inhibiting apoptosis and neutrophil infiltration | Liu et al., 2023b [91] |
Lung | In vivo In vitro | i.p. | 40 mg/kg 10 μM | ↓TAZ/PD-L1 | By inhibiting the TAZ/PD-L1 signaling pathway | Cao et al., 2022 [125] |
Ocular | In vivo | s.c. | 80 mg/mL | ↓TGF- β1/SMAD2/3 and PI3K/Akt, GPX4 ↑Nrf2 | By inducing mitochondria-dependent iron death | Liu et al., 2023a [81] |
Ocular | In vivo | intravitreal injection | 4 μg/μL | By inhibiting CNV and the accompanying fibrotic scar | By inhibiting choroidal neovascularization and modulating mononuclear phagocyte recruitment | Sheibani et al., 2023 [86] |
Airway | In vivo | i.p. | 30 mg/kg | ↓IL-17, IL-12(p40), MCP-1 and G-CSF | By regulating the expression of metabolites | Ho et al., 2014 [63] |
Artery | In vivo | i.g, | 30 mg/kg | ↓HIF-1α, NF-κB | By correcting dysfunction in crucial metabolic pathways | Wang et al., 2022 [64] |
Artery | In vivo | i.g | 4.5 mg/kg | ↓NF-kB, NLRP3, IL-8, IL-1β, caspase-1 | By inhibiting the NF-κB/NLRP3 axis | Cen et al., 2023 [47] |
Arthrosis | In vitro | - | 0.2, 0.4, 0.8 μM | ↓ROS ↑p62/Nrf2, NQO1 | By activating the p62/Nrf2 pathway | Su et al., 2021 [60] |
Knee | In vivo, In vitro | i.g, | 10 μM 15, 30, 60 mg/kg | ↓IL-1β, MCP-1, IP-10, KC, PI3K/Akt and p44/42 MAPK | By inhibiting mTOR signaling axis | Wan et al., 2019b [104] |
Bone | In vivo, In vitro | i.g | 1.56, 3.125, 6.25, and 12.5 Μm 10 mg/kg | ↓TLR4,TRAF6, PLCγ1-Ca2+-, NFATc1 | By inhibiting the TLR4/TRAF6/PLCγ1-Ca axis | Zeng et al., 2019 [52] |
Bone | In vitro | - | 10 μmol/L | ↑p53, p21waf1/cip1 | By inducing autophagy | Wan et al., 2019a [108] |
Colon | In vivo | i.p. | 30 mg/kg | ↓TNF-α, IL-6,IL-1β, IκBα, NF-kB (p65) ↑IL-10 | By inhibiting the NF-κB pathway | Yin et al., 2020 [48] |
Colorectum | In vivo In vitro | i.p. | 30 mg/kg 2–15 µM | ↓p53, p16, p21, p38MAPK and NF-κB | By suppressing mTOR signaling | Xia et al., 2023 [124] |
Intestinal | In vivo In vitro | i.p. | 30 mg/kg 2–10 μM | ↓mTOR, TNF-α, IL1, and IL6 | By downregulating the expression of inflammatory factors | Jia et al., 2023 [123] |
Salivary gland | In vivo | i.p. | 50 mg/kg | though regulating the PI3K/Akt pathway | By modulating the PI3K/Akt pathway | Zhang et al., 2021 [103] |
Retina | In vivo | i.v. | 2 or 10 μg | ↑Beclin-1, LC3II/I, Beclin-1 expression and LC3II/I ↓p62 | Activation of the AMPK/SIRT1 pathway | Li et al., 2021 [105] |
The whole body | In vivo, In vitro | i.p. | 20 μg/mL 10 mg/kg | ↑CaMKKβ, AMPK, ULK1 | By modulating the CaMKKβ-AMPK cascade | Liu et al., 2020 [107] |
Cervix uterus | In vitro | - | 20 μM | ↑PINK1 | Activation of the PINK1-dependent pathway | Zhang et al., 2018 [109] |
Bladder | In vitro | - | 0, 25 μM, 50 μM | activating AMPK-mTOR-ULK1 axis | By activating the AMPK-mTOR-ULK1 pathway | Zhou et al., 2020 [110] |
Stomach | In vivo | p.o. | 50, 150 mg/kg | ↓TNF-α, IL-6,IL-1β, NF-kB (p65),TBARS and MPO ↑GSH, SOD, | By inhibiting the NF-κB pathway | Verma & Kumar, 2016 [41] |
Pancreas | In vitro | - | 0.2–3.0 uM | via inhibition of the NLRP3/caspase-1/GSDMD | By inhibiting the NLRP3/caspase-1/GSDMD pathway | Yuan et al., 2022 [65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, M.; Wang, Y.; Han, J.; Sun, Y.; Wang, S.; Yang, B.; Wang, Q.; Kuang, H. Artesunate Exerts Organ- and Tissue-Protective Effects by Regulating Oxidative Stress, Inflammation, Autophagy, Apoptosis, and Fibrosis: A Review of Evidence and Mechanisms. Antioxidants 2024, 13, 686. https://doi.org/10.3390/antiox13060686
Zhu M, Wang Y, Han J, Sun Y, Wang S, Yang B, Wang Q, Kuang H. Artesunate Exerts Organ- and Tissue-Protective Effects by Regulating Oxidative Stress, Inflammation, Autophagy, Apoptosis, and Fibrosis: A Review of Evidence and Mechanisms. Antioxidants. 2024; 13(6):686. https://doi.org/10.3390/antiox13060686
Chicago/Turabian StyleZhu, Mingtao, Yu Wang, Jianwei Han, Yanping Sun, Shuang Wang, Bingyou Yang, Qiuhong Wang, and Haixue Kuang. 2024. "Artesunate Exerts Organ- and Tissue-Protective Effects by Regulating Oxidative Stress, Inflammation, Autophagy, Apoptosis, and Fibrosis: A Review of Evidence and Mechanisms" Antioxidants 13, no. 6: 686. https://doi.org/10.3390/antiox13060686