Use of Winemaking By-Products for the Functionalization of Polylactic Acid for Biomedical Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Chemicals
2.2. Producing the Extracts
2.3. Phenolic Characterization of Extracts
2.4. Determination of Extracts’ Bioactivity
2.4.1. Antioxidant Capacity
2.4.2. Anti-Inflammatory Capacity
2.4.3. Antimicrobial Capacity
2.5. Polylactic Acid Impregnation
2.6. Impregnated Samples’ Characterization
2.7. Statistical Analysis
3. Results and Discussion
3.1. Extracts’ Characterization
3.2. Evaluation of the Impregnation Process
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chakka, A.K.; Babu, A.S. Bioactive Compounds of Winery by-products: Extraction Techniques and their Potential Health Benefits. Appl. Food Res. 2022, 2, 100058. [Google Scholar] [CrossRef]
- Beres, C.; Costa, G.N.S.; Cabezudo, I.; da Silva-James, N.K.; Teles, A.S.C.; Cruz, A.P.G.; Mellinger-Silva, C.; Tonon, R.V.; Cabral, L.M.C.; Freitas, S.P. Towards integral utilization of grape pomace from winemaking process: A review. Waste Manag. 2017, 68, 581–594. [Google Scholar] [CrossRef]
- Choleva, M.; Boulougouri, V.; Panara, A.; Panagopoulou, E.; Chiou, A.; Thomaidis, N.S.; Antonopoulou, S.; Fragopoulou, E. Evaluation of anti-platelet activity of grape pomace extracts. Food Funct. 2019, 10, 8069–8080. [Google Scholar] [CrossRef] [PubMed]
- Balea, Ş.S.; Pârvu, A.E.; Pop, N.; Marín, F.Z.; Pârvu, M. Polyphenolic Compounds, Antioxidant, and Cardioprotective Effects of Pomace Extracts from Fetească Neagră Cultivar. Oxidative Med. Cell. Longev. 2018, 2018, 8194721. [Google Scholar] [CrossRef] [PubMed]
- Bocsan, I.C.; Măgureanu, D.C.; Pop, R.M.; Levai, A.M.; Macovei, Ș.O.; Pătrașca, I.M.; Chedea, V.S.; Buzoianu, A.D. Antioxidant and Anti-Inflammatory Actions of Polyphenols from Red and White Grape Pomace in Ischemic Heart Diseases. Biomedicines 2022, 10, 2337. [Google Scholar] [CrossRef]
- Sánchez-Gomar, I.; Benítez-Camacho, J.; Cejudo-Bastante, C.; Casas, L.; Moreno-Luna, R.; Mantell, C.; Durán-Ruiz, M.C. Pro-Angiogenic Effects of Natural Antioxidants Extracted from Mango Leaf, Olive Leaf and Red Grape Pomace over Endothelial Colony-Forming Cells. Antioxidants 2022, 11, 851. [Google Scholar] [CrossRef]
- Caponio, G.R.; Cofano, M.; Lippolis, T.; Gigante, I.; de Nunzio, V.; Difonzo, G.; Noviello, M.; Tarricone, L.; Gambacorta, G.; Giannelli, G.; et al. Anti-Proliferative and Pro-Apoptotic Effects of Digested Aglianico Grape Pomace Extract in Human Colorectal Cancer Cells. Molecules 2022, 27, 6791. [Google Scholar] [CrossRef]
- Champeau, M.; Thomassin, J.M.; Tassaing, T.; Jérôme, C. Current manufacturing processes of drug-eluting sutures. Expert Opin. Drug Deliv. 2017, 14, 1293–1303. [Google Scholar] [CrossRef]
- Coutinho, I.T.; Maia-Obi, L.P.; Champeau, M. Aspirin-Loaded Polymeric Films for Drug Delivery Systems: Comparison between Soaking and Supercritical CO2 Impregnation. Pharmaceutics 2021, 13, 824. [Google Scholar] [CrossRef]
- Tagami, T.; Kuwata, E.; Sakai, N.; Ozeki, T. Drug Incorporation into Polymer Filament Using Simple Soaking Method for Tablet Preparation Using Fused Deposition Modeling. Biol. Pharm. Bull. 2019, 42, 1753–1760. [Google Scholar] [CrossRef] [Green Version]
- Machado, N.D.; Mosquera, J.E.; Martini, R.E.; Goñi, M.L.; Gañán, N.A. Supercritical CO2-assisted impregnation/deposition of polymeric materials with pharmaceutical, nutraceutical, and biomedical applications: A review (2015–2021). J. Supercrit. Fluids 2022, 191, 105763. [Google Scholar] [CrossRef]
- Carvalho, V.S.; Dias, A.L.B.; Rodrigues, K.P.; Hatami, T.; Mei, L.H.I.; Martínez, J.; Viganó, J. Supercritical fluid adsorption of natural extracts: Technical, practical, and theoretical aspects. J. CO2 Util. 2022, 56, 101865. [Google Scholar] [CrossRef]
- Verano Naranjo, L.; Cejudo Bastante, C.; Casas Cardoso, L.; Mantell Serrano, C.; Martínez de la Ossa Fernández, E.J. Supercritical Impregnation of Ketoprofen into Polylactic Acid for Biomedical Application: Analysis and Modeling of the Release Kinetic. Polymers 2021, 13, 1982. [Google Scholar] [CrossRef] [PubMed]
- Rosales, J.M.; Cejudo, C.; Verano, L.; Casas, L.; Mantell, C.; Martínez de la Ossa, E.J. Supercritical Impregnation of PLA Filaments with Mango Leaf Extract to Manufacture Functionalized Biomedical Devices by 3D Printing. Polymers 2021, 13, 2125. [Google Scholar] [CrossRef]
- Machado, N.D.; Cejudo-Bastante, C.; Goñi, M.L.; Gañán, N.A.; Casas-Cardoso, L.; Mantell-Serrano, C. Screening of the Supercritical Impregnation of Olea europaea Leaves Extract into Filaments of Thermoplastic Polyurethane (TPU) and Polylactic Acid (PLA) Intended for Biomedical Applications. Antioxidants 2022, 11, 1170. [Google Scholar] [CrossRef]
- Drosou, C.; Kyriakopoulou, K.; Bimpilas, A.; Tsimogiannis, D.; Krokida, M. A comparative study on different extraction techniques to recover red grape pomace polyphenols from vinification byproducts. Ind. Crop. Prod. 2015, 75B, 141–149. [Google Scholar] [CrossRef]
- Cejudo-Bastante, C.; Arjona-Mudarra, P.; Fernández-Ponce, M.T.; Casas, L.; Mantell, C.; Martínez de la Ossa, E.J.; Pereyra, C. Application of a Natural Antioxidant from Grape Pomace Extract in the Development of Bioactive Jute Fibers for Food Packaging. Antioxidants 2021, 10, 216. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Umapathy, E.; Ndebia, E.J.; Meeme, A.; Adam, B.; Menziwa, P.; Nkeh-Chungag, B.N.; Iputo, J.E. An experimental evaluation of Albuca setosa aqueous extract on membrane stabilization, protein denaturation and white blood cell migration during acute inflammation. J. Med. Plants Res. 2010, 4, 789–795. [Google Scholar]
- Govindappa, M.; Naga, S.S.; Poojashri, M.N.; Sadananda, T.S.; Chandrappa, C.P. Antimicrobial, antioxidant and in vitro anti-inflammatory activity of ethanol extract and active phytochemical screening of Wedelia trilobata (L.) Hitchc. J. Pharmacogn. Phytother. 2011, 3, 43–51. [Google Scholar]
- Chou, C.T. The antiinflammatory effect of an extract of Tripterygium wilfordii hook F on adjuvant-induced paw oedema in rats and inflammatory mediators release. Phytother. Res. 1997, 11, 152–154. [Google Scholar] [CrossRef]
- Gunathilake, K.D.P.P.; Ranaweera, K.K.D.S.; Vasantha Rupasinghe, H.P. In Vitro Anti-Inflammatory Properties of Selected Green Leafy Vegetables. Biomedicines 2018, 6, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinto, M.C.; Tejeda, A.; Duque, A.L.; Macías, P. Determination of Lipoxygenase Activity in Plant Extracts Using a Modified Ferrous Oxidation−Xylenol Orange Assay. J. Agric. Food Chem. 2007, 55, 5956–5959. [Google Scholar] [CrossRef] [PubMed]
- Moussa, S.H.; Tayel, A.A.; Al-Hassan, A.A.; Farouk, A. Tetrazolium/Formazan Test as an Efficient Method to Determine Fungal Chitosan Antimicrobial Activity. J. Mycol. 2013, 2013, 753692. [Google Scholar] [CrossRef] [Green Version]
- Nikitin, L.N.; Gallyamov, M.O.; Vinokur, R.A.; Nikolae, A.Y.; Said-Galiyev, E.E.; Khokhlov, A.R.; Jespersen, H.T.; Schaumburg, K. Swelling and impregnation of polystyrene using supercritical carbon dioxide. J. Supercrit. Fluids 2003, 26, 263–273. [Google Scholar] [CrossRef]
- Seabra, I.J.; Braga, M.E.M.; Batista, M.T.; de Sousa, H.C. Effect of solvent (CO2/ethanol/H2O) on the fractionated enhanced solvent extraction of anthocyanins from elderberry pomace. J. Supercrit. Fluids 2010, 54, 145–152. [Google Scholar] [CrossRef]
- Türker, N.; Erdoğdu, F. Effects of pH and temperature of extraction medium on effective diffusion coefficient of anthocynanin pigments of black carrot (Daucus carota var. L.). J. Food Eng. 2006, 76, 579–583. [Google Scholar] [CrossRef]
- Mantell, C.; Rodríguez, M.; de la Ossa, E.M. Measurement of the diffusion coefficient of a model food dye (malvidin 3,5-diglucoside) in a high pressure CO2 + methanol system by the chromatographic peak-broadening technique. J. Supercrit. Fluids 2003, 25, 57–68. [Google Scholar] [CrossRef]
- Gutiérrez-Escobar, R.; Aliaño-González, M.J.; Cantos-Villar, E. Wine Polyphenol Content and Its Influence on Wine Quality and Properties: A Review. Molecules 2021, 26, 718. [Google Scholar] [CrossRef]
- Asensio-Regalado, C.; Alonso-Salces, R.M.; Gallo, B.; Berrueta, L.A.; Era, B.; Pintus, F.; Caddeo, C. Tempranillo Grape Extract in Transfersomes: A Nanoproduct with Antioxidant Activity. Nanomaterials 2022, 12, 746. [Google Scholar] [CrossRef] [PubMed]
- Bosso, A.; Guaita, M.; Petrozziello, M. Influence of solvents on the composition of condensed tannins in grape pomace seed extracts. Food Chem. 2016, 207, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Otero-Pareja, M.J.; Casas, L.; Fernández-Ponce, M.T.; Mantell, C.; de La Ossa, E.J.M. Green Extraction of Antioxidants from Different Varieties of Red Grape Pomace. Molecules 2015, 20, 9686–9702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pietta, P.-G. Flavonoids as Antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Plumb, G.W.; de Pascual-Teresa, S.; Santos-Buelga, C.; Cheynier, V.; Williamson, G. Antioxidant properties of catechins and proanthocyanidins: Effect of polymerisation, galloylation and glycosylation. Free. Radic. Res. 2009, 29, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Esteban-Muñoz, A.; Sánchez-Hernández, S.; Samaniego-Sánchez, C.; Giménez-Martínez, R.; Olalla-Herrera, M. Differences in the phenolic profile by uplc coupled to high resolution mass spectrometry and antioxidant capacity of two diospyros kaki varieties. Antioxidants 2021, 10, 31. [Google Scholar] [CrossRef]
- Floegel, A.; Kim, D.O.; Chung, S.J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Chandra, S.; Chatterjee, P.; Dey, P.; Bhattacharya, S. Evaluation of in vitro anti-inflammatory activity of coffee against the denaturation of protein. Asian Pac. J. Trop. Biomed. 2012, 2, S178–S180. [Google Scholar] [CrossRef]
- Osei Akoto, C.; Acheampong, A.; Boakye, Y.D.; Naazo, A.A.; Adomah, D.H. Anti-Inflammatory, Antioxidant, and Anthelmintic Activities of Ocimum basilicum (Sweet Basil) Fruits. J. Chem. 2020, 2020, 2153534. [Google Scholar] [CrossRef]
- Ramadwa, T.E.; Dzoyem, J.P.; Adebayo, S.A.; Eloff, J.N. Ptaeroxylon obliquum leaf extracts, fractions and isolated compounds as potential inhibitors of 15-lipoxygenase and lipopolysaccharide-induced nitric oxide production in RAW 264.7 macrophage cells. South Afr. J. Bot. 2022, 147, 192–196. [Google Scholar] [CrossRef]
- Silva, A.; Silva, V.; Igrejas, G.; Gaivão, I.; Aires, A.; Klibi, N.; Enes Dapkevicius, M.d.L.; Valentão, P.; Falco, V.; Poeta, P. Valorization of Winemaking By-Products as a Novel Source of Antibacterial Properties: New Strategies to Fight Antibiotic Resistance. Molecules 2021, 26, 2331. [Google Scholar] [CrossRef]
- Oliveira, D.A.; Salvador, A.A.; Smânia, A.; Smânia, E.F.A.; Maraschin, M.; Ferreira, S.R.S. Antimicrobial activity and composition profile of grape (Vitis vinifera) pomace extracts obtained by supercritical fluids. J. Biotechnol. 2013, 164, 423–432. [Google Scholar] [CrossRef]
- Oliveira, W.F.; Silva, P.M.S.; Silva, R.C.S.; Silva, G.M.M.; Machado, G.; Coelho, L.C.B.B.; Correia, M.T.S. Staphylococcus aureus and Staphylococcus epidermidis infections on implants. J. Hosp. Infect. 2018, 98, 111–117. [Google Scholar] [CrossRef]
- Poveda, J.M.; Loarce, L.; Alarcón, M.; Díaz-Maroto, M.C.; Alañón, M.E. Revalorization of winery by-products as source of natural preservatives obtained by means of green extraction techniques. Ind. Crop. Prod. 2018, 112, 617–625. [Google Scholar] [CrossRef]
- Sanhueza, L.; Melo, R.; Montero, R.; Maisey, K.; Mendoza, L.; Wilkens, M. Synergistic interactions between phenolic compounds identified in grape pomace extract with antibiotics of different classes against Staphylococcus aureus and Escherichia coli. PLoS ONE 2017, 12, e0172273. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Farhatnia, Y.; Kalaskar, D.M.; Zhang, Y.; Bulter, P.E.M.; Seifalian, A.M. The influence of porosity on the hemocompatibility of polyhedral oligomeric silsesquioxane poly (caprolactone-urea) urethane. Int. J. Biochem. Cell Biol. 2015, 68, 176–186. [Google Scholar] [CrossRef]
- Ren, Q.; Zhu, X.; Li, W.; Wu, M.; Cui, S.; Ling, Y.; Ma, X.; Wang, G.; Wang, L.; Zheng, W. Fabrication of super-hydrophilic and highly open-porous poly (lactic acid) scaffolds using supercritical carbon dioxide foaming. Int. J. Biol. Macromol. 2022, 205, 740–748. [Google Scholar] [CrossRef] [PubMed]
- Champeau, M.; Coutinho, I.T.; Thomassin, J.M.; Tassaing, T.; Jérôme, C. Tuning the release profile of ketoprofen from poly(L-lactic acid) suture using supercritical CO2 impregnation process. J. Drug Deliv. Sci. Technol. 2020, 55, 101468. [Google Scholar] [CrossRef]
- Iñiguez-Franco, F.; Auras, R.; Burgess, G.; Holmes, D.; Fang, X.; Rubino, M.; Soto-Valdez, H. Concurrent solvent induced crystallization and hydrolytic degradation of PLA by water-ethanol solutions. Polymer 2016, 99, 315–323. [Google Scholar] [CrossRef] [Green Version]
- Cháfer, A.; Berna, A.; Montón, J.B.; Muñoz, R. High-pressure solubility data of system ethanol (1)+epicatechin (2)+CO2 (3). J. Supercrit. Fluids 2002, 24, 103–109. [Google Scholar] [CrossRef]
Use | Reagent | Supplier |
---|---|---|
Extraction and impregnation | CO2 (99%) Partially denatured ethanol (97%) | Abelló Linde (Barcelona, Spain) Alcoholes del Sur (Córdoba, Spain) |
Liquid chromatography | Acetonitrile (HPLC grade) Methanol (HPLC grade) | Panreac Química (Barcelona, Spain) |
(+)-Catechin, Quercetin, and Cyanidin chloride (analytical standards) | Sigma-Aldrich (Steinheim, Germany) | |
Antioxidant activity | 2,2-diphenyl-1-picrylhydrazyl (DPPH) 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) Potassium persulfate (K2S2O8) (±)-6-Hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (Trolox) | Sigma-Aldrich (Steinheim, Germany) |
Anti-inflammatory tests | Albumin from chicken egg (lyophilized powder) Lipoxidase from Glycine max (soybean) Linoleic acid Xylenol orange disodium salt | Sigma-Aldrich (Steinheim, Germany) |
Antimicrobial activity | Staphylococcus aureus (ATCC 6538) | Microbiologics (Saint Cloud, MN, USA) |
Tryptic Soy Broth (TSB) 2,3,5,-triphenyltetrazoliumchloride (TTC) | Sigma-Aldrich (Steinheim, Germany) |
Analyzed Compound (Group of Compounds) | Calibration Line |
---|---|
Catechin (Flavanols and proanthocyanidins) | |
Quercetin (Flavonols) | |
Cyanidin (Anthocyanins) |
Variable | Levels | ||
---|---|---|---|
Low | Medium | High | |
Pressure (A) | 100 bar | 250 bar | 400 bar |
Temperature (B) | 35 °C | - | 55 °C |
Extract (C) | Hydroethanolic GPE | - | Ethanolic GPE |
Impregnation method (D) | SSI | - | PSI |
RT | m[M-H]− | [E-GPE] | [HE-GPE] | |
---|---|---|---|---|
Flavanols | ||||
Procyanidin B1 (C30H26O12) | 2.38 | 577.135 | n.d. | 7.6 ± 1.1 |
Procyanidin B2 (C30H26O12) | 2.75 | 577.135 | 1.4 ± 0.2 | 6.6 ± 1.0 |
Procyanidin B3 (C30H26O12) | 3.60 | 577.135 | 0.9 ± 0.1 | 3.8 ± 0.6 |
Procyanidin B4 (C30H26O12) | 3.88 | 577.135 | 1.0 ± 0.1 | 3.9 ± 0.7 |
Catechin (C15H14O6) | 3.06 | 289.072 | 11.0 ± 2.1 | 37.7 ± 7.5 |
Epicatechin (C15H14O6) | 4.32 | 289.072 | 5.9 ± 1.1 | 33.4 ± 6.7 |
Flavonols | ||||
Quercetin-3-O-galactoside (C21H20O12) | 6.04 | 463.088 | 0.5 ± 0.1 | 1.9 ± 0.4 |
Quercetin-3-O-glucuronide (C21H18O13) | 6.10 | 477.067 | 2.8 ± 0.4 | 2.5 ± 0.5 |
Quercetin-3-O-glucoside (C2 1H20O12) | 6.18 | 463.088 | 3.0 ± 0.6 | 8.7 ± 1.7 |
Quercetin-3-O-rhamnoside (C21H20O11) | 6.38 | 447.093 | 0.1 ± 0.0 | 0.3 ± 0.0 |
Kaempherol-3-O-galactoside (C21H20O11) | 6.60 | 447.093 | 0.4 ± 0.1 | 0.6 ± 0.1 |
Kaempherol-3-O-glucoside (C21H20O11) | 6.86 | 447.093 | 1.1 ± 0.2 | 2.1 ± 0.3 |
Isorhamnetin-3-O-galactoside (C21H18O13) | 6.95 | 477.103 | 0.9 ± 0.1 | 0.5 ± 0.1 |
Isorhamnetin-3-O-glucoside (C21H18O13) | 7.08 | 477.103 | 2.6 ± 0.5 | 5.0 ± 0.7 |
RT | m [M]+ | [E-GPE] | [HE-GPE] | |
---|---|---|---|---|
Malvidin 3-O-glucoside (C23H25O12+) | 5.77 | 493.135 | 148.9 ± 22.3 | 587.8 ± 88.2 |
Delphinidin-3-O-glucoside (C21H21O12+) | 6.68 | 465.103 | 91.0 ± 13.7 | 265.5 ± 39.8 |
Malvidin-3-O-(6-O-acetyl)glucoside (C25H27O13+) | 6.81 | 535.145 | 188.2 ± 28.2 | 558.1 ± 83.7 |
Malvidin-3-O-(6-O-caffeoyl)glucoside (C32H31O15+) | 7.05 | 655.166 | 43.6 ± 6.5 | 105.3 ± 15.8 |
Cyanidin-3-O-glucoside (C21H21O11+) | 7.12 | 449.108 | 36.0 ± 5.4 | 75.7 ± 11.3 |
Petunidin-3-O-glucoside (C22H23O12+) | 7.22 | 479.119 | 54.1 ± 8.1 | 132.7 ± 19.9 |
Malvidin-3-(6-O-coumaroyl)glucoside (C32H31O14+) | 7.51 | 639.171 | 177.1 ± 26.6 | 401.2 ± 60.2 |
Ethanolic GPE | Hydroethanolic GPE | |
---|---|---|
Antioxidant capacity | ||
DPPH Assay (mg TE/g dry extract) | 0.24 ± 0.03 | 0.50 ± 0.03 |
IC50 (µg/mL) | 168.2 ± 14.2 | 77.6 ± 4.0 |
ABTS Assay (mg TE/g dry extract) | 0.31 ± 0.01 | 0.66 ± 0.06 |
IC50 (µg/mL) | 100.9 ± 1.8 | 46.3 ± 1.0 |
Anti-inflammatory capacity | ||
Protein denaturation inhibition IC50 (µg/mL) | 2126 ± 201 | 1015 ± 65 |
Lipoxygenase activity inhibition IC50 (µg/mL) | 473 ± 35 | 1350 ± 20 |
Antibacterial capacity | ||
S. aureus MIC (IC90) (µg/mL) | 17.0 ± 1.7 | 18.2 ± 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verano-Naranjo, L.; Cejudo-Bastante, C.; Casas, L.; Martínez de la Ossa, E.; Mantell, C. Use of Winemaking By-Products for the Functionalization of Polylactic Acid for Biomedical Applications. Antioxidants 2023, 12, 1416. https://doi.org/10.3390/antiox12071416
Verano-Naranjo L, Cejudo-Bastante C, Casas L, Martínez de la Ossa E, Mantell C. Use of Winemaking By-Products for the Functionalization of Polylactic Acid for Biomedical Applications. Antioxidants. 2023; 12(7):1416. https://doi.org/10.3390/antiox12071416
Chicago/Turabian StyleVerano-Naranjo, Lidia, Cristina Cejudo-Bastante, Lourdes Casas, Enrique Martínez de la Ossa, and Casimiro Mantell. 2023. "Use of Winemaking By-Products for the Functionalization of Polylactic Acid for Biomedical Applications" Antioxidants 12, no. 7: 1416. https://doi.org/10.3390/antiox12071416
APA StyleVerano-Naranjo, L., Cejudo-Bastante, C., Casas, L., Martínez de la Ossa, E., & Mantell, C. (2023). Use of Winemaking By-Products for the Functionalization of Polylactic Acid for Biomedical Applications. Antioxidants, 12(7), 1416. https://doi.org/10.3390/antiox12071416