The Addition of Reishi and Lion’s Mane Mushroom Powder to Pasta Influences the Content of Bioactive Compounds and the Antioxidant, Potential Anti-Inflammatory, and Anticancer Properties of Pasta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Pasta
2.2. Content of Some Bioactive Compounds
2.2.1. Determination of Phenolic Compounds
Determination of Phenolic Acid Content (PAC)
Determination of Total Flavonoid Content (TFC)
Determination of Total Phenolic Content (TPC)
Qualitative–Quantitative Analysis of Phenolic Compounds Using the LC-MS/MS Technique
2.2.2. Determination of Glucans
2.3. Preparation of Extracts
2.3.1. Ethanolic Extracts
2.3.2. PBS Extracts
2.3.3. In Vitro Digestion
2.4. Antioxidant Activities
2.4.1. Free Radical Scavenging Assays
2.4.2. Ferric-Reducing Antioxidant Power
2.4.3. Chelating Power
2.5. Determination of Potential Anti-Inflammatory Properties
2.5.1. LOX Inhibitory Activity
2.5.2. COX2 Inhibitory Activity
2.6. Determination of Potential Anticancer Properties
2.7. Statistical Analysis
3. Results
3.1. Content of Bioactive Compounds
3.2. Antioxidant Activity
3.3. Potential Anti-Inflammatory Properties
3.4. Potential Anticancer Properties
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonneville, S.; Delpomdor, F.; Preat, A.; Chevalier, C.; Araki, T.; Kazemian, M.; Steele, A.; Schreiber, A.; Wirth, R.; Benning, L.G. Molecular identification of fungi microfossils in a Neoproterozoic shale rock. Sci. Adv. 2020, 6, eaax7599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, S.; Rathore, H.; Sharma, S.; Yadav, A.S. Medicinal Mushrooms as a Source of Novel Functional Food. Int. J. Food Sci. Nutr. Diet. 2015, 04, 221–225. [Google Scholar] [CrossRef]
- Reis, F.S.; Martins, A.; Vasconcelos, M.H.; Morales, P.; Ferreira, I.C.F.R. Functional foods based on extracts or compounds derived from mushrooms. Trends Food Sci. Technol. 2017, 66, 48–62. [Google Scholar] [CrossRef]
- Szydłowska-Tutaj, M.; Złotek, U.; Wójtowicz, A.; Combrzyński, M. The effect of the addition of various species of mushrooms on the physicochemical and sensory properties of semolina pasta. Food Funct. 2022, 13, 8425–8435. [Google Scholar] [CrossRef]
- Obodai, M.; Mensah, D.L.N.; Fernandes, Â.; Kortei, N.K.; Dzomeku, M.; Teegarden, M.; Schwartz, S.J.; Barros, L.; Prempeh, J.; Takli, R.K.; et al. Chemical characterization and antioxidant potential of wild ganoderma species from Ghana. Molecules 2017, 22, 196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, M. Chemistry, Nutrition, and Health-Promoting Properties of Hericium erinaceus (Lion’s Mane) Mushroom Fruiting Bodies and Mycelia and Their Bioactive Compounds. J. Agric. Food Chem. 2015, 63, 7108–7123. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.J.; Shen, J.W.; Yu, H.Y.; Ruan, Y.; Wu, T.T.; Zhao, X. Hericenones and erinacines: Stimulators of nerve growth factor (NGF) biosynthesis in Hericium erinaceus. Mycology 2010, 1, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Tachabenjarong, N.; Rungsardthong, V.; Ruktanonchi, U.; Poodchakarn, S.; Thumthanaruk, B.; Vatanyoopaisarn, S.; Suttisintong, K.; Iempridee, T.; Uttapap, D. Bioactive compounds and antioxidant activity of Lion’s Mane mushroom (Hericium erinaceus) from different growth periods. E3S Web Conf. 2022, 355, 02016. [Google Scholar] [CrossRef]
- Khan, M.A.; Tania, M.; Liu, R.; Rahman, M.M. Hericium erinaceus: An edible mushroom with medicinal values. J. Complement. Integr. Med. 2013, 10, 253–258. [Google Scholar] [CrossRef]
- Szydłowska-Tutaj, M.; Złotek, U.; Combrzyński, M. Influence of addition of mushroom powder to semolina on proximate composition, physicochemical properties and some safety parameters of material for pasta production. LWT 2021, 151, 112235. [Google Scholar] [CrossRef]
- Cessak, G. Polish Pharmacopoeia, 12th ed.; Polish Pharmaceutical Society: Warsaw, Poland, 2020. [Google Scholar]
- Lamaison, J.L.; Carnart, A. Teneurs en principaux flavonoids des fleurs de Crataegeus monogyna Jacq et de Crataegeus laevigata (Poiret D. C) en fonction de la vegetation. Plantes Med. Phytother. 1990, 25, 315–320. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Zuchowski, J.; Kapusta, I.; Szajwaj, B.; Jończyk, K.; Oleszek, W. Phenolic acid content of organic and conventionally grown winter wheat. Cereal Res. Commun. 2009, 37, 189–197. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food—An international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [Green Version]
- Sȩczyk, Ł.; Świeca, M.; Gawlik-Dziki, U.; Luty, M.; Czyz, J. Effect of fortification with parsley (Petroselinum crispum Mill.) leaves on the nutraceutical and nutritional quality of wheat pasta. Food Chem. 2016, 190, 419–428. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free. Radic. Biol. Med. 1999, 26, 1231–13237. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. Diet. 1986, 44, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Harnedy, P.A.; Li, B.; Hou, H.; Zhang, Z.; Zhao, X.; FitzGerald, R.J. Food protein-derived chelating peptides: Biofunctional ingredients for dietary mineral bioavailability enhancement. Trends Food Sci. Technol. 2014, 37, 92–105. [Google Scholar] [CrossRef]
- Szymanowska, U.; Karaś, M.; Złotek, U.; Jakubczyk, A. Effect of fortification with raspberry juice on the antioxidant and potentially anti-inflammatory activity of wafers subjected to in vitro digestion. Foods 2021, 10, 791. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Liu, H.; Li, J.; Wang, Y. Research Progress on Elements of Wild Edible Mushrooms. J. Fungi 2022, 8, 964. [Google Scholar] [CrossRef]
- Kumar, K.; Mehra, R.; Guiné, R.P.F.; Lima, M.J.; Kumar, N.; Kaushik, R.; Ahmed, N.; Yadav, A.N.; Kumar, H. Edible mushrooms: A comprehensive review on bioactive compounds with health benefits and processing aspects. Foods 2021, 10, 2996. [Google Scholar] [CrossRef]
- Rangel-Vargas, E.; Rodriguez, J.A.; Domínguez, R.; Lorenzo, J.M.; Sosa, M.E.; Andrés, S.C.; Rosmini, M.; Pérez-Alvarez, J.A.; Teixeira, A.; Santos, E.M. Edible mushrooms as a natural source of food ingredient/additive replacer. Foods 2021, 10, 2687. [Google Scholar] [CrossRef] [PubMed]
- Naeem, M.Y.; Ugur, S.; Rani, S. Emerging Role of Edible Mushrooms in Food Industry and Its Nutritional and Medicinal Consequences. Eurasian J. Food Sci. Technol. 2020, 4, 6–23. [Google Scholar]
- Das, A.K.; Nanda, P.K.; Dandapat, P.; Bandyopadhyay, S.; Gullón, P.; Sivaraman, G.K.; McClements, D.J.; Gullón, B.; Lorenzo, J.M. Edible mushrooms as functional ingredients for development of healthier and more sustainable muscle foods: A flexitarian approach. Molecules 2021, 26, 2463. [Google Scholar] [CrossRef]
- You, S.W.; Hoskin, R.T.; Komarnytsky, S.; Moncada, M. Mushrooms as Functional and Nutritious Food Ingredients for Multiple Applications. ACS Food Sci. Technol. 2022, 2, 1184–1195. [Google Scholar] [CrossRef]
- Sheikha, A.F. El Nutritional Profile and Health Benefits of Ganoderma lucidum “Lingzhi, Reishi, or Mannentake” as Functional Foods: Current Scenario and Future Perspectives. Foods 2022, 11, 1030. [Google Scholar] [CrossRef] [PubMed]
- Salehi, F. Characterization of different mushrooms powder and its application in bakery products: A review. Int. J. Food Prop. 2019, 22, 1375–1385. [Google Scholar] [CrossRef]
- Kolniak-Ostek, J.; Oszmiański, J.; Szyjka, A.; Moreira, H.; Barg, E. Anticancer and Antioxidant Activities in Ganoderma lucidum Wild Mushrooms in Poland, as Well as Their Phenolic and Triterpenoid Compounds. Int. J. Mol. Sci. 2022, 23, 9359. [Google Scholar] [CrossRef]
- Veljović, S.; Veljović, M.; Nikićević, N.; Despotović, S.; Radulović, S.; Nikšić, M.; Filipović, L. Chemical composition, antiproliferative and antioxidant activity of differently processed Ganoderma lucidum ethanol extracts. J. Food Sci. Technol. 2017, 54, 1312–1320. [Google Scholar] [CrossRef] [Green Version]
- McCleary, B.V.; Draga, A. Measurement of β-Glucan in mushrooms and mycelial products. J. AOAC Int. 2016, 99, 364–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gąsecka, M.; Mleczek, M.; Siwulski, M.; Niedzielski, P.; Kozak, L. Phenolic and flavonoid content in hericium erinaceus, ganoderma lucidum, and agrocybe aegerita under selenium addition. Acta Aliment. 2016, 45, 300–308. [Google Scholar] [CrossRef] [Green Version]
- Heleno, S.A.; Barros, L.; Martins, A.; Queiroz, M.J.R.P.; Morales, P.; Fernández-Ruiz, V.; Ferreira, I.C.F.R. Chemical composition, antioxidant activity and bioaccessibility studies in phenolic extracts of two Hericium wild edible species. LWT 2015, 63, 475–481. [Google Scholar] [CrossRef] [Green Version]
- Asim, S.; Bacha, S.; Ali, S.; Li, Y.; Rehman, H.; Farooq, S. Lion’s mane mushroom; new addition to food and natural bounty for human wellness: A review. Int. J. Biosci. 2018, 13, 396–402. [Google Scholar] [CrossRef]
- Taofiq, O.; Heleno, S.A.; Calhelha, R.C.; Alves, M.J.; Barros, L.; González-Paramás, A.M.; Barreiro, M.F.; Ferreira, I.C.F.R. The potential of Ganoderma lucidum extracts as bioactive ingredients in topical formulations, beyond its nutritional benefits. Food Chem. Toxicol. 2017, 108, 139–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gąsecka, M.; Siwulski, M.; Magdziak, Z.; Budzyńska, S.; Stuper-Szablewska, K.; Niedzielski, P.; Mleczek, M. The effect of drying temperature on bioactive compounds and antioxidant activity of Leccinum scabrum (Bull.) Gray and Hericium erinaceus (Bull.) Pers. J. Food Sci. Technol. 2020, 57, 513–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, X.; Brennan, M.A.; Serventi, L.; Liu, J.; Guan, W.; Brennan, C.S. Addition of mushroom powder to pasta enhances the antioxidant content and modulates the predictive glycaemic response of pasta. Food Chem. 2018, 264, 199–209. [Google Scholar] [CrossRef]
- Melini, V.; Melini, F.; Acquistucci, R. Phenolic compounds and bioaccessibility thereof in functional pasta. Antioxidants 2020, 9, 343. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Brennan, M.A.; Serventi, L.; Brennan, C.S. Incorporation of mushroom powder into bread dough—Effects on dough rheology and bread properties. Cereal Chem. 2018, 95, 418–427. [Google Scholar] [CrossRef]
- Ibrahim, R.M.; Ali, M.I.K.; Abdel-Salam, F.F. Nutritional and Quality Characteristics of Some Foods Fortified with Dried Mushroom Powder as a Source of Vitamin D. Int. J. Food Sci. 2022, 2022, 2792084. [Google Scholar] [CrossRef]
- Dong, Q.; He, D.; Ni, X.; Zhou, H.; Yang, H. Comparative study on phenolic compounds, triterpenoids, and antioxidant activity of Ganoderma lucidum affected by different drying methods. J. Food Meas. Charact. 2019, 13, 3198–3205. [Google Scholar] [CrossRef]
- Saltarelli, R.; Ceccaroli, P.; Buffalini, M.; Vallorani, L.; Casadei, L.; Zambonelli, A.; Iotti, M.; Badalyan, S.; Stocchi, V. Biochemical characterization and antioxidant and antiproliferative activities of different ganoderma collections. J. Mol. Microbiol. Biotechnol. 2015, 25, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Taofiq, O.; Calhelha, R.C.; Heleno, S.; Barros, L.; Martins, A.; Santos-Buelga, C.; Queiroz, M.J.R.P.; Ferreira, I.C.F.R. The contribution of phenolic acids to the anti-inflammatory activity of mushrooms: Screening in phenolic extracts, individual parent molecules and synthesized glucuronated and methylated derivatives. Food Res. Int. 2015, 76, 821–827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosa, S.I.G.; Rios-Santos, F.; Balogun, S.O.; Martins, D.T.D.O. Vitexin reduces neutrophil migration to inflammatory focus by down-regulating pro-inflammatory mediators via inhibition of p38, ERK1/2 and JNK pathway. Phytomedicine 2016, 23, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Sȩczyk, Ł.; Świeca, M.; Gawlik-Dziki, U. Effect of carob (Ceratonia siliqua L.) flour on the antioxidant potential, nutritional quality, and sensory characteristics of fortified durum wheat pasta. Food Chem. 2016, 194, 637–642. [Google Scholar] [CrossRef] [PubMed]
- Złotek, U. Antioxidative, potentially anti-inflammatory, and antidiabetic properties, as well as oxidative stability and acceptability, of cakes supplemented with elicited basil. Food Chem. 2018, 243, 168–174. [Google Scholar] [CrossRef]
- Harhaji Trajkovic, L.M.; Mijatovic, S.A.; Maksimovic-Ivanic, D.D.; Stojanovic, I.D.; Momcilovic, M.B.; Tufegdzic, S.J.; Maksimovic, V.M.; Marjanovi, Z.S.; Stosic-Grujicic, S.D. Anticancer properties of ganoderma lucidum methanol extracts in vitro and in vivo. Nutr. Cancer 2009, 61, 696–707. [Google Scholar] [CrossRef]
- Reis, F.S.; Lima, R.T.; Morales, P.; Ferreira, I.C.F.R.; Vasconcelos, M.H. Methanolic extract of ganoderma lucidum induces autophagy of AGS human gastric tumor cells. Molecules 2015, 20, 17872–17882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, M.; Reis, F.S.; Sousa, D.; Tavares, C.; Lima, R.T.; Ferreira, I.C.F.R.; Dos Santos, T.; Vasconcelos, M.H. A methanolic extract of Ganoderma lucidum fruiting body inhibits the growth of a gastric cancer cell line and affects cellular autophagy and cell cycle. Food Funct. 2014, 5, 1389–1394. [Google Scholar] [CrossRef]
- Li, W.; Zhou, W.; Kim, E.J.; Shim, S.H.; Kang, H.K.; Kim, Y.H. Isolation and identification of aromatic compounds in Lion’s Mane Mushroom and their anticancer activities. Food Chem. 2015, 170, 336–342. [Google Scholar] [CrossRef]
- Hetland, G.; Tangen, J.; Mahmood, F.; Mirlashari, M.R.; Tjønnfjord, G.E.; Johnson, E. Related Medicinal Basidiomycetes Mushrooms, Preclinical and Clinical Studies. Nutrients 2020, 12, 1339. [Google Scholar] [CrossRef] [PubMed]
Samples | PAC (µg/g DW) | TFC (mg/g DW) | TPC (mg/g DW) | ||||||
---|---|---|---|---|---|---|---|---|---|
ETOH | PBS | GID | ETOH | PBS | GID | ETOH | PBS | GID | |
C | 0.17 ± 0.01 a | 1.33 ± 0.02 a | 3.11 ± 0.33 a | 0.17 ± 0.12 a | 0.04 ± 0.04 a | 4.45 ± 0.08 a | 0.60 ± 0.06 a | 0.55 ± 0.10 a | 5.27 ± 0.30 a |
R2.5 | 0.20 ± 0.03 a | 1.36 ± 0.07 a | 3.07 ± 0.30 a | 0.48 ± 0.13 a | 0.38 ± 0.08 a | 4.19 ± 0.28 a | 0.77 ± 0.21 a | 0.81 ± 0.05 a | 5.35 ± 0.70 a |
R5 | 0.20 ± 0.01 a | 1.41 ± 0.07 a | 3.21 ± 0.08 a | 0.82 ± 0.35 a | 0.64 ± 0.13 a | 5.08 ± 0.38 a | 1.01 ± 0.18 a | 1.08 ± 0.11 a | 5.45 ± 0.83 a |
L2.5 | 0.17 ± 0.01 a | 1.29 ± 0.08 a | 3.13 ± 0.06 a | 0.73 ± 0.62 a | 0.04 ± 0.02 a | 4.84 ± 0.44 a | 0.67 ± 0.23 a | 0.66 ± 0.07 a | 5.37 ± 0.47 a |
L5 | 0.18 ± 0.01 a | 1.28 ± 0.07 a | 3.00 ± 0.02 a | 0.80 ± 0.47 a | 0.10 ± 0.07 a | 4.44 ± 0.56 a | 0.64 ± 0.09 a | 0.70 ± 0.12 a | 5.20 ± 0.42 a |
p-value | 0.0928 | 0.4169 | 0.1329 | 0.1361 | 0.0708 | 0.0994 | 0.1870 | 0.0617 | 0.9339 |
Name of Polyphenolic Compound | Polyphenolic Compound (μg/g DW) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3,4-Dihydroxy -Benzoic Acid | Caffeic Acid | Syringic Acid | Daidzin | Rutin | Ellagic Acid | p-Coumaric Acid | Salicylic Acid | Vanillin | Ferulic Acid | Sinapic Acid | Rosmarinic Acid | t-Cinnamic Acid | Genistein | Naringenin | |
C | <0.5 | <0.5 | <0.5 | n.d | <0.5 | n.d | 1.67 ± 0.03 ab | <0.5 | 0.56 ± 0.11 a | 154.13 ± 13.21 a | 27.59 ± 1.24 ab | <0.5 | <0.5 | n.d | n.d |
R2.5 | <0.5 | <0.5 | 0.87 ± 0.02 a | <0.5 | <0.5 | <0.5 | 1.96 ± 0.13 ab | <0.5 | 0.70 ± 0.03 ab | 140.91 ± 3.88 a | 29.01 ± 0.69 ab | <0.5 | <0.5 | <0.5 | <0.5 |
R5 | <0.5 | <0.5 | 1.55 ± 0.05 a | <0.5 | < 0.5 | <0.5 | 1.60 ± 0.23 a | <0.5 | 0.74 ± 0.15 ab | 142.10 ± 7.19 a | 31.32 ± 0.92 ab | <0.5 | <0.5 | <0.5 | <0.5 |
L2.5 | <0.5 | <0.5 | < 0.5 | n.d | <0.5 | <0.5 | 2.14 ± 0.08 ab | <0.5 | 0.72 ± 0.10 ab | 145.70 ± 7.71 a | 25.65 ± 0.90 a | <0.5 | <0.5 | n.d | n.d |
L5 | <0.5 | <0.5 | < 0.5 | n.d. | < 0.5 | <0.5 | 2.55 ± 0.15 b | <0.5 | 0.89 ± 0.07 b | 158.29 ± 9.35 a | 33.03 ± 1.99 b | <0.5 | <0.5 | n.d | n.d |
p-value | - | - | 0.0809 | - | - | - | 0.0164 | - | 0.0349 | 0.1824 | 0.0125 | - | - | - | - |
Sample | Total Glucan (g/100 g) | α-Glucan (g/100 g) | β-Glucan (g/100 g) |
---|---|---|---|
C | 0.28 ± 0.01 a | 0.10 ± 0.01 ab | 0.18 ± 0.01 a |
R2.5 | 0.29 ± 0.01 a | 0.10 ± 0.01 ab | 0.19 ± 0.01 a |
R5 | 0.28 ± 0.01 a | 0.10 ± 0.01 ab | 0.18 ± 0.01 a |
L2.5 | 0.28 ± 0.01 a | 0.10 ± 0.01 a | 0.18 ± 0.01 a |
L5 | 0.28 ± 0.01 a | 0.09 ± 0.01 b | 0.18 ± 0.01 a |
p-value | 0.4846 | 0.0248 | 0.8148 |
Samples | ABTS (mg TE/gDW) | DPPH (mg TE/gDW) | CHP (mg EDTA/gDW) | RP (mgTE/gDW) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ETOH | PBS | GID | ETOH | PBS | GID | ETOH | PBS | GID | ETOH | PBS | GID | |
C | 0.68 ± 0.04 b | 1.15 ± 0.11 ab | 12.47 ± 1.34 a | n.a. | 0.25 ± 0.01 a | 4.05 ± 0.08 a | 0.26 ± 0.16 ab | n.a. | 217.94 ± 53.82 a | 0.20 ± 0.02 a | 0.20 ± 0.08 a | 1.13 ± 0.06 a |
R2.5 | 0.88 ± 0.04 ab | 1.35 ± 0.12 a | 12.15 ± 0.37 a | 0.06 ± 0.05 a | 0.09 ± 0.10 a | 3.71 ± 0.35 a | 0.36 ± 0.11 a | n.a. | 92.53 ± 5.65 ab | 0.45 ± 0.02 ab | 0.38 ± 0.07 ab | 1.12 ± 0.14 a |
R5 | 1.04 ± 0.08 a | 0.91 ± 0.09 b | 12.26 ± 0.23 a | 0.08 ± 0.04 a | 0.25 ± 0.11 a | 3.81 ± 0.34 a | n.a. | n.a. | 77.41 ± 66.90 b | 0.66 ± 0.03 b | 0.73 ± 0.16 b | 1.52 ± 0.24 a |
L2.5 | 0.68 ± 0.10 b | 0.95 ± 0.08 b | 12.40 ± 0.20 a | n.a. | 0.16 ± 0.04 a | 3.44 ± 0.71 a | 0.14 ± 0.02 b | n.a. | 115.50 ± 45.93 ab | 0.25 ± 0.04 a | 0.21 ± 0.07 a | 1.06 ± 0.19 a |
L5 | 0.71 ± 0.09 ab | 1.02 ± 0.04 ab | 12.49 ± 0.41 a | n.a. | 0.20 ± 0.17 a | 3.28 ± 0.80 a | n.a. | n.a. | 125.47 ± 17.53 ab | 0.30 ± 0.05 ab | 0.21 ± 0.09 ab | 1.17 ± 0.09 a |
p-value | 0.005 | 0.0036 | 0.6939 | 0.4705 | 0.1463 | 0.1050 | 0.0194 | - | 0.0265 | 0.0016 | 0.0079 | 0.0911 |
Samples | LOXI (EC50 mg/mL) | COX2I (EC50 mg/mL) | ||||
---|---|---|---|---|---|---|
ETOH | PBS | GID | ETOH | PBS | GID | |
C | 0.52 ± 0.13 a | n.a. | 0.10 ± 0.01 a | 0.25 ± 0.05 a | n.a. | 0.22 ± 0.03 a |
R2.5 | 0.19 ± 0.04 ab | 0.35 ± 0.08 a | 0.10 ± 0.01 a | 0.52 ± 0.20 a | n.a. | 0.21 ± 0.05 a |
R5 | 0.18 ± 0.04 ab | 0.37 ± 0.04 a | 0.10 ± 0.01 a | 0.24 ± 0.03 a | n.a. | 0.19 ± 0.01 a |
L2.5 | 0.18 ± 0.03 ab | 0.37 ± 0.08 a | 0.10 ± 0.01 a | 0.36 ± 0.06 a | n.a. | 0.18 ± 0.01 a |
L5 | 0.16 ± 0.02 b | 0.42 ± 0.05 a | 0.10 ± 0.01 a | 0.41 ± 0.11 a | n.a. | 0.20 ± 0.01 a |
p-value | 0.0349 | 0.5160 | 0.2610 | 0.0587 | - | 0.1377 |
Samples | Anticancer Properties EC50 (mg/mL) | |
---|---|---|
GD | GID | |
C | 0.18 ± 0.01 a | 0.07 ± 0.01 ab |
R2.5 | 0.15 ± 0.01 a | 0.08 ± 0.01 a |
R5 | 0.28 ± 0.01 a | 0.08 ± 0.01 b |
L2.5 | 0.16 ± 0.01 a | 0.08 ± 0.01 ab |
L5 | 0.20 ± 0.02 a | 0.08 ± 0.01 ab |
p-value | 0.0811 | 0.0255 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szydłowska-Tutaj, M.; Szymanowska, U.; Tutaj, K.; Domagała, D.; Złotek, U. The Addition of Reishi and Lion’s Mane Mushroom Powder to Pasta Influences the Content of Bioactive Compounds and the Antioxidant, Potential Anti-Inflammatory, and Anticancer Properties of Pasta. Antioxidants 2023, 12, 738. https://doi.org/10.3390/antiox12030738
Szydłowska-Tutaj M, Szymanowska U, Tutaj K, Domagała D, Złotek U. The Addition of Reishi and Lion’s Mane Mushroom Powder to Pasta Influences the Content of Bioactive Compounds and the Antioxidant, Potential Anti-Inflammatory, and Anticancer Properties of Pasta. Antioxidants. 2023; 12(3):738. https://doi.org/10.3390/antiox12030738
Chicago/Turabian StyleSzydłowska-Tutaj, Magdalena, Urszula Szymanowska, Krzysztof Tutaj, Dorota Domagała, and Urszula Złotek. 2023. "The Addition of Reishi and Lion’s Mane Mushroom Powder to Pasta Influences the Content of Bioactive Compounds and the Antioxidant, Potential Anti-Inflammatory, and Anticancer Properties of Pasta" Antioxidants 12, no. 3: 738. https://doi.org/10.3390/antiox12030738