Neuroprotective Effects of Nano-Curcumin against Cypermethrin Associated Oxidative Stress and Up-Regulation of Apoptotic and Inflammatory Gene Expression in Rat Brains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Experimental Animals
2.3. Preparation of Nano-Curcumin, Particle Size, Polydispersity Index and Zeta Potential
2.4. Study Design
2.5. Sample Preparation for Oxidative Stress and ELISA Assay
2.6. Determination of Oxidative Stress
2.7. Determination of Neurotoxicity Markers
2.8. Assay of Inflammatory Cytokine (IL-6, IL-1β and TNF-α) and Apoptosis Markers (Caspase-3 and -9)
2.9. RNA Isolation and cDNA Preparation
2.10. Immunohistochemical Staining
2.11. DNA Isolation and Fragmentation Assay
2.12. Brain Histology
2.13. Statistical Study
3. Results
3.1. Particle Size, Polydispersity Index and Zeta Potential
3.2. Effect of NC and CPM Treatment on Oxidative Stress Markers
3.3. Effect of NC on CPM-Induced Neurotoxicity
3.4. Role of NC on CPM-Induced Proinflammatory Cytokines
3.5. Role of NC on CPM-Induced Apoptosis
3.6. Role of NC on RNA Expression Levels
3.7. NC Suppresses CPM-Induced 4-HNE, Bax, and NF-kB Expression
3.8. NC Treatment Protect CPM-Induced DNA Fragmentation
3.9. NC Protects CPM-Induced Histopathological Changes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hassouna, I. Transplacental neurotoxicity of cypermethrin induced astrogliosis, microgliosis and depletion of let-7 miRNAs expression in the developing rat cerebral cortex. Toxicol Rep. 2020, 7, 1608–1615. [Google Scholar] [CrossRef]
- Abd El-Moneim Ibrahim, K.; Mohamed Abdelrahman, S.K.A.; Elhakim, H.; Ali Ragab, E. Single or combined exposure to chlorpyrifos and cypermethrin provoke oxidative stress and downregulation in monoamine oxidase and acetylcholinesterase gene expression of the rat’s brain. Environ. Sci. Pollut. Res. Int. 2020, 27, 12692–12703. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.F.H.; El-Sayed, N.M.; Khodeer, D.M.; Ahmed, A.A.M.; Hanna, P.A.; Moustafa, Y.M.A. Nano selenium ameliorates oxidative stress and inflammatory response associated with cypermethrin-induced neurotoxicity in rats. Ecotoxicol. Environ. Saf. 2020, 195, 110479. [Google Scholar] [CrossRef] [PubMed]
- Bradberry, S.M.; Cage, S.A.; Proudfoot, A.T.; Vale, J.A. Poisoning due to pyrethroids. Toxicol. Rev. 2005, 24, 93–106. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Wang, Y.; Zhao, H.; Yin, K.; Liu, Y.; Wang, D.; Zong, H.; Xing, M. Oxidative stress is involved in the activation of NF-kappaB signal pathway and immune inflammatory response in grass carp gill induced by cypermethrin and/or sulfamethoxazole. Environ. Sci. Pollut. Res. Int. 2022, 29, 19594–19607. [Google Scholar] [CrossRef]
- Rajput, C.; Sarkar, A.; Singh, M.P. Involvement of Peroxiredoxin-3, Thioredoxin-2, and Protein Deglycase-1 in Cypermethrin-Induced Parkinsonism. Mol. Neurobiol. 2021, 58, 4745–4757. [Google Scholar] [CrossRef]
- Hołynska-Iwan, I.; Szewczyk-Golec, K. Pyrethroids: How They Affect Human and Animal Health? Medicina 2020, 56, 582. [Google Scholar] [CrossRef]
- Ileriturk, M.; Kandemir, O.; Kandemir, F.M. Evaluation of protective effects of quercetin against cypermethrin-induced lung toxicity in rats via oxidative stress, inflammation, apoptosis, autophagy, and endoplasmic reticulum stress pathway. Environ. Toxicol. 2022, 37, 2639–2650. [Google Scholar] [CrossRef]
- Khan, M.M.; Ishrat, T.; Ahmad, A.; Hoda, M.N.; Khan, M.B.; Khuwaja, G.; Srivastava, P.; Raza, S.S.; Islam, F.; Ahmad, S. Sesamin attenuates behavioral, biochemical and histological alterations induced by reversible middle cerebral artery occlusion in the rats. Chem. Biol. Interact. 2010, 183, 255–263. [Google Scholar] [CrossRef]
- Taha, M.A.I.; Badawy, M.E.I.; Abdel-Razik, R.K.; Younis, H.M.; Abo-El-Saad, M.M. Mitochondrial dysfunction and oxidative stress in liver of male albino rats after exposing to sub-chronic intoxication of chlorpyrifos, cypermethrin, and imidacloprid. Pestic. Biochem. Physiol. 2021, 178, 104938. [Google Scholar] [CrossRef]
- Guo, J.; Cao, X.; Hu, X.; Li, S.; Wang, J. The anti-apoptotic, antioxidant and anti-inflammatory effects of curcumin on acrylamide-induced neurotoxicity in rats. BMC Pharmacol. Toxicol. 2020, 21, 62. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Sun, B.X.; Wang, D.L.; Liu, Y.; Qi, J.J.; Nie, X.W.; Bai, C.Y.; Zhang, J.B.; Liang, S. Melatonin ameliorates cypermethrin-induced impairments by regulating oxidative stress, DNA damage and apoptosis in porcine Sertoli cells. Theriogenology 2021, 167, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Pearson-Smith, J.N.; Patel, M. Antioxidant drug therapy as a neuroprotective countermeasure of nerve agent toxicity. Neurobiol. Dis. 2020, 133, 104457. [Google Scholar] [CrossRef] [PubMed]
- Mohey Issa, N.; Al-Gholam, M.A. The effect of N-acetylcysteine on the sensory retina of male albino rats exposed prenatally to cypermethrin. Folia Morphol. 2021, 80, 140–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.; Wang, Y.; Liu, Y.; Yin, K.; Wang, D.; Li, B.; Yu, H.; Xing, M. ROS-Induced Hepatotoxicity under Cypermethrin: Involvement of the Crosstalk between Nrf2/Keap1 and NF-κB/iκB-α Pathways Regulated by Proteasome. Environ. Sci. Technol. 2021, 55, 6171–6183. [Google Scholar] [CrossRef] [PubMed]
- Hussien, H.M.; Abdou, H.M.; Yousef, M.I. Cypermethrin induced damage in genomic DNA and histopathological changes in brain and haematotoxicity in rats: The protective effect of sesame oil. Brain Res. Bull. 2013, 92, 76–83. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Swelum, A.A.; Arif, M.; Abo Ghanima, M.M.; Shukry, M.; Noreldin, A.; Taha, A.E.; El-Tarabily, K.A. Curcumin, the active substance of turmeric: Its effects on health and ways to improve its bioavailability. J. Sci. Food Agric. 2021, 101, 5747–5762. [Google Scholar] [CrossRef]
- Baj, T.; Seth, R. Role of Curcumin in Regulation of TNF-alpha Mediated Brain Inflammatory Responses. Recent Pat. Inflamm. Allergy Drug Discov. 2018, 12, 69–77. [Google Scholar] [CrossRef]
- Farkhondeh, T.; Samarghandian, S.; Roshanravan, B.; Peivasteh-Roudsari, L. Impact of Curcumin on Traumatic Brain Injury and Involved Molecular Signaling Pathways. Recent Pat. Food Nutr. Agric. 2020, 11, 137–144. [Google Scholar] [CrossRef]
- Shaikh, N.I.; Sethi, R.S. Impairment of apoptosis pathway via Apaf1 downregulation during chlorpyrifos and/or cypermethrin induced lung damage. Anim. Biotechnol. 2021, 24, 1–8. [Google Scholar] [CrossRef]
- Askarizadeh, A.; Barreto, G.E.; Henney, N.C.; Majeed, M.; Sahebkar, A. Neuroprotection by curcumin: A review on brain delivery strategies. Int. J. Pharm. 2020, 585, 119476. [Google Scholar] [CrossRef] [PubMed]
- Ashafaq, M.; Alam, M.I.; Khan, A.; Islam, F.; Khuwaja, G.; Hussain, S.; Ali, R.; Alshahrani, S.; Makeen, H.A.; Alhazmi, H.A.; et al. Nanoparticles of resveratrol attenuates oxidative stress and inflammation after ischemic stroke in rats. Int. Immunopharmacol. 2021, 94, 107494. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Ashafaq, M.; Alshahrani, S.; Bokar, I.A.; Siddiqui, R.; Alam, M.I.; Taha, M.M.E.; Almoshari, Y.; Alqahtani, S.S.; Ahmed, R.A.; et al. Hepatoprotective Effect of Curcumin Nano-Lipid Carrier against Cypermethrin Toxicity by Countering the Oxidative, Inflammatory, and Apoptotic Changes in Wistar Rats. Molecules 2023, 28, 881. [Google Scholar] [CrossRef] [PubMed]
- Katragadda, V.; Adem, M.; Mohammad, R.A.; Bhasyam, S.S.; Battini, K. Testosterone recuperates deteriorated male fertility in cypermethrin intoxicated rats. Toxicol. Res. 2021, 37, 125–134. [Google Scholar] [CrossRef]
- Sangha, G.K.; Kaur, K.P.; Khera, K.S.; Singh, B. Toxicological Effects of Cypermethrin on Female Albino Rats. Toxicol. Int. 2011, 18, 5–8. [Google Scholar] [CrossRef] [Green Version]
- Utley, H.C.; Bernheim, F.; Hochslein, P. Effect of sulfhydryl reagent on peroxidation in microsome. Arch. Biochem. Biophys. 1967, 260, 521–531. [Google Scholar] [CrossRef]
- Hussain, S.; Ashafaq, M.; Alshahrani, S.; Siddiqui, R.; Ahmed, R.A.; Khuwaja, G.; Islam, F. Cinnamon oil against acetaminophen-induced acute liver toxicity by attenuating inflammation, oxidative stress and apoptosis. Toxicol. Rep. 2020, 7, 1296–1304. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosenbrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Chaudhary, S.; Parvez, S. Valproic Acid Induced Neurotoxicological Manifestations and its Mitigation by Melatonin in Rat Brain Synaptosomes. Arch. Med. Res. 2018, 49, 441–450. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Omotoso, G.; Oloyede, O.; Lawal, S.; Gbadamosi, I.; Mutholib, N.; Abdulsalam, F.; Bature, A.; Babalola, A.; Ayeni, B.; Amedu, N. Permethrin exposure affects neurobehavior and cellular characterization in rats’ brain. Environ. Anal. Health Toxicol. 2020, 35, e2020022. [Google Scholar] [CrossRef] [PubMed]
- Seven, B.; Kultigin; Çavuşoglu; Yalcin, E.; Acar, A. Investigation of cypermethrin toxicity in Swiss albino mice with physiological, genetic and biochemical approaches. Sci. Rep. 2022, 12, 11439. [Google Scholar] [CrossRef] [PubMed]
- El-Demerdash, F.M. Lipid peroxidation, oxidative stress and acetylcholinesterase in rat brain exposed to organophosphate and pyrethroid insecticides. Food Chem. Toxicol. 2011, 49, 1346–1352. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, M.N.; Singh, A.K.; Ahmad, I.; Upadhyay, G.; Singh, D.; Patel, D.K.; Singh, C.; Prakash, O.; Singh, M.P. Effects of cypermethrin on monoamine transporters, xenobiotic metabolizing enzymes and lipid peroxidation in the rat nigrostriatal system. Free Radic. Res. 2010, 44, 1416–1424. [Google Scholar] [CrossRef]
- Elsawy, H.; Al-Omair, M.A.; Sedky, A.; Al-Otaibi, L. Protective effect of α-lipoic acid against α-cypermethrin-induced changes in rat cerebellum. J. Chem. Neuroanat. 2017, 86, 52–58. [Google Scholar] [CrossRef]
- Raszewski, G.; Lemieszek, M.K.; Łukawski, K.; Juszczak, M.; Rzeski, W. Chlorpyrifos and cypermethrin induce apoptosis in human neuroblastoma cell line SH-SY5Y. Basic Clin. Pharmacol. Toxicol. 2015, 116, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Kakko, I.; Toimela, T.; Tähti, H. The synaptosomal membrane bound ATPase as a target for the neurotoxic effects of pyrethroids, permethrin and cypermethrin. Chemosphere 2003, 51, 475–480. [Google Scholar] [CrossRef]
- Zaki, S.M.; Algaleel, W.A.A.; Imam, R.A.; Soliman, G.F.; Ghoneim, F.M. Nano-curcumin versus curcumin in amelioration of deltamethrin-induced hippocampal damage. Histochem. Cell Biol. 2020, 154, 157–175. [Google Scholar] [CrossRef]
- Arslan, H.; Ozdemir, S.; Altun, S. Cypermethrin toxication leads to histopathological lesions and induces inflammation and apoptosis in common carp (Cyprinus carpio L.). Chemosphere 2017, 180, 491–499. [Google Scholar] [CrossRef]
- Tiwari, M.N.; Singh, A.K.; Agrawal, S.; Gupta, S.P.; Jyoti, A.; Shanker, R.; Prakash, O.; Singh, M.P. Cypermethrin alters the expression profile of mRNAs in the adult rat striatum: A putative mechanism of postnatal pre-exposure followed by adulthood re-exposure-enhanced neurodegeneration. Neurotox. Res. 2012, 22, 321–334. [Google Scholar] [CrossRef]
- Zhou, L.; Chang, J.; Zhao, W.; Gao, Y. Proanthocyanidins regulate the Nrf2/ARE signaling pathway and protect neurons from cypermethrin-induced oxidative stress and apoptosis. Pestic. Biochem. Physiol. 2021, 177, 104898. [Google Scholar] [CrossRef] [PubMed]
- Promthep, K.; Nopparat, C.; Mukda, S.; Pannengpetch, S.; Wisomka, P.; Chantadul, V.; Phanchana, M.; Panmanee, J. Proteomic profiling reveals neuronal ion channel dysregulation and cellular responses to DNA damage-induced cell cycle arrest and senescence in human neuroblastoma SH-SY5Y cells exposed to cypermethrin. Neurotoxicology 2022, 93, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.; Tandon, A.; Seth, B.; Goyal, S.; Singh, S.J.; Tiwari, S.K.; Agarwal, S.; Nair, S.; Chaturvedi, R.K. Cypermethrin Impairs Hippocampal Neurogenesis and Cognitive Functions by Altering Neural Fate Decisions in the Rat Brain. Mol. Neurobiol. 2021, 58, 263–280. [Google Scholar] [CrossRef] [PubMed]
Oligo | Primer Sequences | Tm (c) | Gene Accession Number |
---|---|---|---|
TNF-α | 5′-CCACCACGCTCTTCTGTCTAC-3′ Forward 5′-ACCACCAGTTGGTTGTCTTTG-3′ Reverse | 63.3 59.4 | NC_051355 |
NF-kB | 5′-CATGAAGAGAAGACACTGACC-3′ Forward 5′-TGGATAGAGGCTAAGTGTAGA-3′ Reverse | 59.4 57.4 | NM_001415012 |
Bax | 5′-GCCTCCTTTCCTACTTCGGG-3′ Forward 5′-CTTTCCCCGTTCCCCATTCA-3′ Reverse | 62.5 60.5 | S76511 |
Caspase-3 | 5′-GCTACGATCCACCAGCATTT-3′ Forward 5′-ATGCCACCTCTCCTTTCCTT-3′ Reverse | 58.4 58.4 | NM_012922 |
Beta actin | 5′-CAACCTTCTTGCAGCTCCTC-3′ Forward 5′-TTCTGACCCATACCCACCAT-3′ Reverse | 60.5 58.4 | AA955227 |
Groups | TBARS (nmol/g Tissue) | GSH (DTNB Conjugate Formed/mg Protein) | SOD (nmol Epinephrine Protected from Oxidation/min/mg Protein) | CAT (nmol of H2O2 Consumed/min/mg Protein) |
---|---|---|---|---|
Control | 1.89 ± 0.26 | 10.71 ± 1.02 | 210.61 ± 3.17 | 8.72 ± 0.14 |
CPM | 3.47 ± 0.91 *** (83.59) a | 3.89 ± 0.44 *** (−63.67) a | 127.39 ± 2.79 *** (−65.32) a | 4.04 ± 0.66 ** (−51.44) a |
CPM+NC2.5 | 2.56 ± 0.21 # (−26.22) b | 5.64 ± 0.98 ## (44.98) b | 159.20 ± 2.86 # (24.97) b | 6.33 ± 0.21 ## (56.68) b |
CPM+NC5 | 1.98 ± 0.09 ## (−42.93) b | 6.93 ± 0.77 ### (78.14) b | 192.05 ± 5.28 ## (50.75) b | 7.39 ± 0.47 ### (82.92) b |
NC5 | 1.88 ± 0.32 (−0.52) | 11.03 ± 1.26 (2.98) | 213.11 ± 4.09 (67.28) | 9.12 ± 0.57 (9.61) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashafaq, M.; Hussain, S.; Alshahrani, S.; Siddiqui, R.; Alam, M.I.; Elhassan Taha, M.M.; Almoshari, Y.; Alqahtani, S.S.; Jali, A.M.; Aljohani, H.M. Neuroprotective Effects of Nano-Curcumin against Cypermethrin Associated Oxidative Stress and Up-Regulation of Apoptotic and Inflammatory Gene Expression in Rat Brains. Antioxidants 2023, 12, 644. https://doi.org/10.3390/antiox12030644
Ashafaq M, Hussain S, Alshahrani S, Siddiqui R, Alam MI, Elhassan Taha MM, Almoshari Y, Alqahtani SS, Jali AM, Aljohani HM. Neuroprotective Effects of Nano-Curcumin against Cypermethrin Associated Oxidative Stress and Up-Regulation of Apoptotic and Inflammatory Gene Expression in Rat Brains. Antioxidants. 2023; 12(3):644. https://doi.org/10.3390/antiox12030644
Chicago/Turabian StyleAshafaq, Mohammad, Sohail Hussain, Saeed Alshahrani, Rahimullah Siddiqui, Mohammad Intakhab Alam, Manal Mohamed Elhassan Taha, Yosif Almoshari, Saad S. Alqahtani, Abdulmajeed M. Jali, and Hashim M. Aljohani. 2023. "Neuroprotective Effects of Nano-Curcumin against Cypermethrin Associated Oxidative Stress and Up-Regulation of Apoptotic and Inflammatory Gene Expression in Rat Brains" Antioxidants 12, no. 3: 644. https://doi.org/10.3390/antiox12030644
APA StyleAshafaq, M., Hussain, S., Alshahrani, S., Siddiqui, R., Alam, M. I., Elhassan Taha, M. M., Almoshari, Y., Alqahtani, S. S., Jali, A. M., & Aljohani, H. M. (2023). Neuroprotective Effects of Nano-Curcumin against Cypermethrin Associated Oxidative Stress and Up-Regulation of Apoptotic and Inflammatory Gene Expression in Rat Brains. Antioxidants, 12(3), 644. https://doi.org/10.3390/antiox12030644