Development of Dairy Products Fortified with Plant Extracts: Antioxidant and Phenolic Content Characterization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Extract Preparation
2.2. Determination of Antioxidant Capacity and Phenolic Content of Sample Extracts
2.2.1. Total Antioxidant Activity by Ferric Reducing Antioxidant Power Assay
2.2.2. Total Phenolic Content by Folin–Ciocalteu Assay
2.3. Phenolic Profile Determination
2.3.1. Sample Preparation for Phenolic Profile Determination
2.3.2. Determination of Phenolic Profile with LC-MS/QToF Analysis
2.4. In Vitro Digestion Analysis
2.4.1. In Vitro Digestion Reagents and Chemicals
2.4.2. In Vitro Gastrointestinal Digestion (GI)
2.5. Development and Analysis of Fortified Dairy Products with Herbal and Plant Byproduct Extracts
2.6. Sensory Evaluation and Organoleptic Characteristics
2.7. Statistical Analysis
3. Results
3.1. Estimation of Antioxidant and Phenolic Content before and after In Vitro Digestion
3.2. Determination of Phytochemical Profile of Aqueous Plant Byproduct and Herbal Extracts
3.3. Estimation of Total Antioxidant and Phenolic Content in Fortified Foods after In Vitro Digestion
3.4. Evaluation of the Organoleptic Characteristics of the Fortified Food Products
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef] [Green Version]
- Jokar, N.K.; Noorhosseini, S.A.; Allahyari, M.S.; Damalas, C.A. Consumers’ Acceptance of Medicinal Herbs: An Application of the Technology Acceptance Model (TAM). J. Ethnopharmacol. 2017, 207, 203–210. [Google Scholar] [CrossRef]
- Chaboud, G.; Daviron, B. Food Losses and Waste: Navigating the Inconsistencies. Glob. Food Secur. 2017, 12, 1–7. [Google Scholar] [CrossRef]
- Kummu, M.; de Moel, H.; Porkka, M.; Siebert, S.; Varis, O.; Ward, P.J. Lost Food, Wasted Resources: Global Food Supply Chain Losses and Their Impacts on Freshwater, Cropland, and Fertiliser Use. Sci. Total Environ. 2012, 438, 477–489. [Google Scholar] [CrossRef]
- Galanakis, C.M. Recovery of High Added-Value Components from Food Wastes: Conventional, Emerging Technologies and Commercialized Applications. Trends Food Sci. Technol. 2012, 26, 68–87. [Google Scholar] [CrossRef]
- Sagar, N.A.; Pareek, S.; Sharma, S.; Yahia, E.M.; Lobo, M.G. Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization: Fruit and Vegetable Waste. Compr. Rev. Food Sci. Food Saf. 2018, 17, 512–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marinelli, V.; Spinelli, S.; Angiolillo, L.; Del Nobile, M.A.; Conte, A. Emerging Techniques Applied to By-Products for Food Fortification. J. Food Sci. Technol. 2020, 57, 905–914. [Google Scholar] [CrossRef] [PubMed]
- Picciotti, U.; Massaro, A.; Galiano, A.; Garganese, F. Cheese Fortification: Review and Possible Improvements. Food Rev. Int. 2021, 38, 474–500. [Google Scholar] [CrossRef]
- Brown, L.; Poudyal, H.; Panchal, S.K. Functional Foods as Potential Therapeutic Options for Metabolic Syndrome: Foods as the Treatment of Obesity. Obes. Rev. 2015, 16, 914–941. [Google Scholar] [CrossRef] [PubMed]
- Elmaliklis, I.N.; Miserli, E.; Filipatou, M.; Tsikouras, I.; Dimou, C.; Koutelidakis, A. Association of Mediterranean Diet Adherence, Functional Food Consumption and Anthropometric Characteristics with Anxiety and Depression Indexes in a Sample of Healthy Greek Adults: A Cross-Sectional Study. Psychiatry Int. 2020, 1, 135–149. [Google Scholar] [CrossRef]
- Konstantinidi, M.; Koutelidakis, A.E. Functional Foods and Bioactive Compounds: A Review of Its Possible Role on Weight Management and Obesity’s Metabolic Consequences. Medicines 2019, 6, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kandyliari, A.; Elmaliklis, I.-N.; Kontopoulou, O.; Tsafkopoulou, M.; Komninos, G.; Ntzatha, C.; Petsas, A.; Karantonis, H.C.; Koutelidakis, A.E. An Epidemiological Study Report on the Antioxidant and Phenolic Content of Selected Mediterranean Functional Foods, Their Consumption Association with the Body Mass Index, and Consumers Purchasing Behavior in a Sample of Healthy Greek Adults. Appl. Sci. 2021, 11, 7818. [Google Scholar] [CrossRef]
- Bishnoi, S. Herbs as Functional Foods. In Functional Foods: Sources and Health Benefits; Mudgil, D., Barak, S., Eds.; Scientific Publishers: Jodhpur, India, 2016; pp. 141–172. [Google Scholar]
- Paswan, V.K.; Rose, H.; Singh, C.S.; Yamini, S.; Rathaur, A. Herbs and Spices Fortified Functional Dairy Products; IntechOpen: London, UK, 2021; ISBN 978-1-83969-609-1. [Google Scholar]
- Alenisan, M.A.; Alqattan, H.H.; Tolbah, L.S.; Shori, A.B. Antioxidant Properties of Dairy Products Fortified with Natural Additives: A Review. J. Assoc. Arab. Univ. Basic Appl. Sci. 2017, 24, 101–106. [Google Scholar] [CrossRef]
- Meng, X.; Chen, S.; Wang, X. [Dao-di herbs and its change of cultivated origin place]. Zhongguo Zhong Yao Za Zhi 2011, 36, 1687–1692. [Google Scholar]
- Luca, V.S.; Stan, A.-M.; Trifan, A.; Miron, A.; Aprotosoaie, A.C. Catechins profile, caffeine content and antioxidant activity of camellia sinensis teas commercialized in romania. Rev. Med. Chir. Soc. Med. Nat. Iasi 2016, 120, 457–463. [Google Scholar]
- Komes, D.; Belščak-Cvitanović, A.; Horžić, D.; Rusak, G.; Likić, S.; Berendika, M. Phenolic Composition and Antioxidant Properties of Some Traditionally Used Medicinal Plants Affected by the Extraction Time and Hydrolysis. Phytochem. Anal. 2011, 22, 172–180. [Google Scholar] [CrossRef]
- Martins, N.; Oliveira, M.B.P.P.; Ferreira, I.C.F.R. Development of Functional Dairy Foods. In Bioactive Molecules in Food; Mérillon, J.M., Ramawat, K.G., Eds.; Reference Series in Phytochemistry; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–19. ISBN 978-3-319-54528-8. [Google Scholar]
- Granato, D.; Branco, G.F.; Cruz, A.G.; de Faria, J.A.F.; Shah, N.P. Probiotic Dairy Products as Functional Foods. Compr. Rev. Food Sci. Food Saf. 2010, 9, 455–470. [Google Scholar] [CrossRef]
- Mahmoudi, R.; Fakhri, O.; Farhoodi, A.; Kaboudari, A.; Pir-Mahalleh, S.; Tahapour, K.; Khayyati, M.; Chegini, R. A Review on Probiotic Dairy Products as Functional Foods Reported from Iran. Int. J. Food Nutr. Saf. 2015, 6, 94–105. [Google Scholar]
- Granato, D.; Santos, J.S.; Salem, R.D.; Mortazavian, A.M.; Rocha, R.S.; Cruz, A.G. Effects of Herbal Extracts on Quality Traits of Yogurts, Cheeses, Fermented Milks, and Ice Creams: A Technological Perspective. Curr. Opin. Food Sci. 2018, 19, 1–7. [Google Scholar] [CrossRef]
- Dabija, A.; Codină, G.G.; Ropciuc, S.; Gâtlan, A.-M.; Rusu, L. Assessment of the Antioxidant Activity and Quality Attributes of Yogurt Enhanced with Wild Herbs Extracts. J. Food Qual. 2018, 2018, 1–12. [Google Scholar] [CrossRef]
- Marinho, M.T.; Zielinski, A.A.F.; Demiate, I.M.; dos Bersot, L.S.; Granato, D.; Nogueira, A. Ripened Semihard Cheese Covered with Lard and Dehydrated Rosemary (Rosmarinus officinalis L.) Leaves: Processing, Characterization, and Quality Traits: Marinho et al. J. Food Sci. 2015, 80, S2045–S2054. [Google Scholar] [CrossRef] [PubMed]
- Aiello, F.; Restuccia, D.; Spizzirri, U.G.; Carullo, G.; Leporini, M.; Loizzo, M.R. Improving Kefir Bioactive Properties by Functional Enrichment with Plant and Agro-Food Waste Extracts. Fermentation 2020, 6, 83. [Google Scholar] [CrossRef]
- Topolska, K.; Florkiewicz, A.; Filipiak-Florkiewicz, A. Functional Food—Consumer Motivations and Expectations. Int. J. Environ. Res. Public Health 2021, 18, 5327. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, S.M.; Youssef, A.M. Potential Application of Herbs and Spices and Their Effects in Functional Dairy Products. Heliyon 2019, 5, e01989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shori, A.B.; Muniandy, P.; Baba, A.S. Changes in Phenolic Compounds Profiles in Tea Extracts and the Composition of These Phenolic Compounds in Yogurt. Recent Patents Food Nutr. Agric. 2021, 12, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Gruskiene, R.; Bockuviene, A.; Sereikaite, J. Microencapsulation of Bioactive Ingredients for Their Delivery into Fermented Milk Products: A Review. Molecules 2021, 26, 4601. [Google Scholar] [CrossRef]
- El-Messery, T.M.; El-Said, M.M.; Demircan, E.; Ozçelik, B. Microencapsulation of Natural Polyphenolic Compounds Extracted from Apple Peel and Its Application in Yoghurt. Acta Sci. Pol. Technol. Aliment. 2019, 18, 25–34. [Google Scholar] [CrossRef]
- Šeregelj, V.; Tumbas Šaponjac, V.; Lević, S.; Kalušević, A.; Ćetković, G.; Čanadanović-Brunet, J.; Nedović, V.; Stajčić, S.; Vulić, J.; Vidaković, A. Application of Encapsulated Natural Bioactive Compounds from Red Pepper Waste in Yogurt. J. Microencapsul. 2019, 36, 704–714. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Cao, G.; Prior, R.L. Comparison of Different Analytical Methods for Assessing Total Antioxidant Capacity of Human Serum. Clin. Chem. 1998, 44, 1309–1315. [Google Scholar] [CrossRef]
- Kapsokefalou, M.; Zhu, L.; Miller, D.D. Adding Iron to Green Tea May Decrease Its Antioxidant Capacity in Rats after an Oral Dose of the Mixture. Nutr. Res. 2006, 26, 480–485. [Google Scholar] [CrossRef]
- Spanos, G.A.; Wrolstad, R.E. Influence of Variety, Maturity, Processing and Storage on the Phenolic Composition of Pear Juice. J. Agric. Food Chem. 1990, 38, 817–824. [Google Scholar] [CrossRef]
- Ropkins, K.; Beck, A.J. Application of hazard analysis critical control points (HACCP) to organic chemical contaminants in food. Crit Rev Food Sci Nutr. 2002, 2, 123–149. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191–2194. [CrossRef] [Green Version]
- Gayoso, L.; Roxo, M.; Cavero, R.Y.; Calvo, M.I.; Ansorena, D.; Astiasarán, I.; Wink, M. Bioaccessibility and Biological Activity of Melissa Officinalis, Lavandula Latifolia and Origanum Vulgare Extracts: Influence of an in Vitro Gastrointestinal Digestion. J. Funct. Foods 2018, 44, 146–154. [Google Scholar] [CrossRef] [Green Version]
- Dias, M.I.; Barros, L.; Sousa, M.J.; Ferreira, I.C.F.R. Systematic Comparison of Nutraceuticals and Antioxidant Potential of Cultivated, in Vitro Cultured and Commercial Melissa Officinalis Samples. Food Chem. Toxicol. 2012, 50, 1866–1873. [Google Scholar] [CrossRef] [PubMed]
- Spiridon, I.; Colceru, S.; Anghel, N.; Teaca, C.A.; Bodirlau, R.; Armatu, A. Antioxidant Capacity and Total Phenolic Contents of Oregano (Origanum vulgare), Lavender (Lavandula angustifolia) and Lemon Balm (Melissa officinalis) from Romania. Nat. Prod. Res. 2011, 25, 1657–1661. [Google Scholar] [CrossRef] [PubMed]
- Møller, J.K.S.; Lindberg Madsen, H.; Aaltonen, T.; Skibsted, L.H. Dittany (Origanum Dictamnus) as a Source of Water-Extractable Antioxidants. Food Chem. 1999, 64, 215–219. [Google Scholar] [CrossRef]
- Oztürk, N.; Tunçel, M.; Potoğlu-Erkara, İ. Phenolic Compounds and Antioxidant Activities of Some Hypericum Species: A Comparative Study with H. Perforatum. Pharm. Biol. 2009, 47, 120–127. [Google Scholar] [CrossRef]
- Teixeira, B.; Marques, A.; Ramos, C.; Batista, I.; Serrano, C.; Matos, O.; Neng, N.R.; Nogueira, J.M.F.; Saraiva, J.A.; Nunes, M.L. European Pennyroyal (Mentha pulegium) from Portugal: Chemical Composition of Essential Oil and Antioxidant and Antimicrobial Properties of Extracts and Essential Oil. Ind. Crops Prod. 2012, 36, 81–87. [Google Scholar] [CrossRef]
- Kaloteraki, C.; Almpounioti, K.; Potsaki, P.; Bousdouni, P.; Kandyliari, A.; Koutelidakis, A.E. Total Antioxidant Capacity and Phenolic Content of 17 Mediterranean Functional Herbs and Wild Green Extracts from North Aegean, Greece. Biol. Life Sci. Forum 2021, 6, 43. [Google Scholar] [CrossRef]
- Chen, G.L.; Chen, S.G.; Xie, Y.Q.; Chen, F.; Zhao, Y.Y.; Luo, C.X.; Gao, Y.Q. Total Phenolic, Flavonoid and Antioxidant Activity of 23 Edible Flowers Subjected to in Vitro Digestion. J. Funct. Foods 2015, 17, 243–259. [Google Scholar] [CrossRef]
- Kara, M.; Sahin, H.; Turumtay, H.; Dinc, S.; Gumuscu, A. The Phenolic Composition and Antioxidant Activity of Tea with Different Parts of Sideritis Condensate at Different Steeping Conditions. J. Food Nutr. Res. 2014, 2, 258–262. [Google Scholar] [CrossRef] [Green Version]
- Linardaki, Z.I.; Vasilopoulou, C.G.; Constantinou, C.; Iatrou, G.; Lamari, F.N.; Margarity, M. Differential Antioxidant Effects of Consuming Tea from Sideritis Clandestina Subsp. Peloponnesiaca on Cerebral Regions of Adult Mice. J. Med. Food 2011, 14, 1060–1064. [Google Scholar] [CrossRef]
- de la Puerta, R.; Fernández-Arche, M.A.; Lopez-Lazaro, M.; Garcia, M.D. Antioxidant and Cytotoxic Activities of Sideritis Perezlarae (Borja) Roselló, Stübing and Peris. Nat. Prod. Res. 2013, 27, 1602–1606. [Google Scholar] [CrossRef] [PubMed]
- Jabri Karoui, I.; Marzouk, B. Characterization of Bioactive Compounds in Tunisian Bitter Orange (Citrus aurantium L.) Peel and Juice and Determination of Their Antioxidant Activities. BioMed Res. Int. 2013, 2013, e345415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farahmandfar, R.; Tirgarian, B.; Dehghan, B.; Nemati, A. Comparison of Different Drying Methods on Bitter Orange (Citrus aurantium L.) Peel Waste: Changes in Physical (Density and Color) and Essential Oil (Yield, Composition, Antioxidant and Antibacterial) Properties of Powders. J. Food Meas. Charact. 2020, 14, 862–875. [Google Scholar] [CrossRef]
- Rahman, N.F.A.; Shamsudin, R.; Ismail, A.; Shah, N.N.A.K.; Varith, J. Effects of Drying Methods on Total Phenolic Contents and Antioxidant Capacity of the Pomelo (Citrus grandis (L.) Osbeck) Peels. Innov. Food Sci. Emerg. Technol. 2018, 50, 217–225. [Google Scholar] [CrossRef]
- Dong, X.; Hu, Y.; Li, Y.; Zhou, Z. The Maturity Degree, Phenolic Compounds and Antioxidant Activity of Eureka Lemon [Citrus limon (L.) Burm. f.]: A Negative Correlation between Total Phenolic Content, Antioxidant Capacity and Soluble Solid Content. Sci. Hortic. 2019, 243, 281–289. [Google Scholar] [CrossRef]
- Casquete, R.; Castro, S.M.; Martín, A.; Ruiz-Moyano, S.; Saraiva, J.A.; Córdoba, M.G.; Teixeira, P. Evaluation of the Effect of High Pressure on Total Phenolic Content, Antioxidant and Antimicrobial Activity of Citrus Peels. Innov. Food Sci. Emerg. Technol. 2015, 31, 37–44. [Google Scholar] [CrossRef]
- Aladedunye, F.; Kersting, H.J.; Matthäus, B. Phenolic Extract from Wild Rose Hip with Seed: Composition, Antioxidant Activity, and Performance in Canola Oil. Eur. J. Lipid Sci. Technol. 2014, 116, 1025–1034. [Google Scholar] [CrossRef]
- Tabaszewska, M.; Najgebauer-Lejko, D. The Content of Selected Phytochemicals and in Vitro Antioxidant Properties of Rose Hip (Rosa canina L.) Tinctures. NFS J. 2020, 21, 50–56. [Google Scholar] [CrossRef]
- Agourram, A.; Ghirardello, D.; Rantsiou, K.; Zeppa, G.; Belviso, S.; Romane, A.; Oufdou, K.; Giordano, M. Phenolic Content, Antioxidant Potential, and Antimicrobial Activities of Fruit and Vegetable By-Product Extracts. Int. J. Food Prop. 2013, 16, 1092–1104. [Google Scholar] [CrossRef]
- Koczka, N.; Stefanovits-Bányai, É.; Ombódi, A. Total Polyphenol Content and Antioxidant Capacity of Rosehips of Some Rosa Species. Medicines 2018, 5, 84. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, S.; Moreira, E.; Andrade, P.B.; Valentão, P.; Romano, A. Effect of in Vitro Gastrointestinal Digestion on the Total Phenolic Contents and Antioxidant Activity of Wild Mediterranean Edible Plant Extracts. Eur. Food Res. Technol. 2019, 245, 753–762. [Google Scholar] [CrossRef]
- Silva, B.N.; Cadavez, V.; Ferreira-Santos, P.; Alves, M.J.; Ferreira, I.C.F.R.; Barros, L.; Teixeira, J.A.; Gonzales-Barron, U. Chemical Profile and Bioactivities of Extracts from Edible Plants Readily Available in Portugal. Foods 2021, 10, 673. [Google Scholar] [CrossRef]
- Farhat, M.B.; Chaouch-Hamada, R.; Sotomayor, J.A.; Landoulsi, A.; Jordán, M.J. Antioxidant Potential of Salvia Officinalis L. Residues as Affected by the Harvesting Time. Ind. Crops Prod. 2014, 54, 78–85. [Google Scholar] [CrossRef]
- Erdogan-Orhan, I.; Baki, E.; Şenol, S.; Yilmaz, G. Sage-Called Plant Species Sold in Turkey and Their Antioxidant Activities. J. Serb. Chem. Soc. 2010, 75, 1491–1501. [Google Scholar] [CrossRef]
- Yesiloglu, Y.; Sit, L.; Kilic, I. In Vitro Antioxidant Activity and Total Phenolic Content of Various Extracts of Satureja Hortensis L. Collected from Turkey. Asian J. Chem. 2013, 25, 8311–8316. [Google Scholar] [CrossRef]
- Gunathilake, K.D.P.P.; Ranaweera, K.K.D.S.; Rupasinghe, H.P.V. Change of Phenolics, Carotenoids, and Antioxidant Capacity Following Simulated Gastrointestinal Digestion and Dialysis of Selected Edible Green Leaves. Food Chem. 2018, 245, 371–379. [Google Scholar] [CrossRef]
- Bouayed, J.; Hoffmann, L.; Bohn, T. Total Phenolics, Flavonoids, Anthocyanins and Antioxidant Activity Following Simulated Gastro-Intestinal Digestion and Dialysis of Apple Varieties: Bioaccessibility and Potential Uptake. Food Chem. 2011, 128, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Tagliazucchi, D.; Verzelloni, E.; Bertolini, D.; Conte, A. In Vitro Bio-Accessibility and Antioxidant Activity of Grape Polyphenols. Food Chem. 2010, 120, 599–606. [Google Scholar] [CrossRef]
- Adebooye, O.C.; Alashi, A.M.; Aluko, R.E. A Brief Review on Emerging Trends in Global Polyphenol Research. J. Food Biochem. 2018, 42, e12519. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food Sources and Bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Archivio, M.; Filesi, C.; Di Benedetto, R.; Gargiulo, R.; Giovannini, C.; Masella, R. Polyphenols, Dietary Sources and Bioavailability. Ann. Ist. Super. Sanita. 2007, 43, 348–361. [Google Scholar]
- Urpi-Sarda, M.; Garrido, I.; Monagas, M.; Gómez-Cordovés, C.; Medina-Remón, A.; Andres-Lacueva, C.; Bartolomé, B. Profile of Plasma and Urine Metabolites after the Intake of Almond [Prunus Dulcis (Mill.) D.A. Webb] Polyphenols in Humans. J. Agric. Food Chem. 2009, 57, 10134–10142. [Google Scholar] [CrossRef]
- Jacobs, D.M.; Gaudier, E.; van Duynhoven, J.; Vaughan, E.E. Non-Digestible Food Ingredients, Colonic Microbiota and the Impact on Gut Health and Immunity: A Role for Metabolomics. Curr. Drug. Metab. 2009, 10, 41–54. [Google Scholar] [CrossRef] [Green Version]
- Tomás-Barberán, F.A.; Selma, M.V.; Espín, J.C. Interactions of Gut Microbiota with Dietary Polyphenols and Consequences to Human Health. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 471–476. [Google Scholar] [CrossRef]
- Cardona, F.; Andrés-Lacueva, C.; Tulipani, S.; Tinahones, F.J.; Queipo-Ortuño, M.I. Benefits of Polyphenols on Gut Microbiota and Implications in Human Health. J. Nutr. Biochem. 2013, 24, 1415–1422. [Google Scholar] [CrossRef] [Green Version]
- Piao, X.L.; Kim, H.Y.; Yokozawa, T.; Lee, Y.A.; Piao, X.S.; Cho, E.J. Protective Effects of Broccoli (Brassica oleracea) and Its Active Components against Radical-Induced Oxidative Damage. J. Nutr. Sci. Vitaminol. 2005, 51, 142–147. [Google Scholar] [CrossRef]
- Chien, L.H.; Wu, C.T.; Deng, J.S.; Jiang, W.P.; Huang, W.C.; Huang, G.J. Salvianolic Acid C Protects against Cisplatin-Induced Acute Kidney Injury through Attenuation of Inflammation, Oxidative Stress and Apoptotic Effects and Activation of the CaMKK–AMPK–Sirt1-Associated Signaling Pathway in Mouse Models. Antioxidants 2021, 10, 1620. [Google Scholar] [CrossRef] [PubMed]
- Shiraiwa, M.; Kitakaze, T.; Yamashita, Y.; Ukawa, Y.; Mukai, K.; Ashida, H. Pectolinarigenin Induces Antioxidant Enzymes through Nrf2/ARE Pathway in HepG2 Cells. Antioxidants 2022, 11, 675. [Google Scholar] [CrossRef] [PubMed]
- Cherkas, A.; Holota, S.; Mdzinarashvili, T.; Gabbianelli, R.; Zarkovic, N. Glucose as a Major Antioxidant: When, What for and Why It Fails? Antioxidants 2020, 9, 140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cádiz-Gurrea, M.d.l.L.; Pinto, D.; Delerue-Matos, C.; Rodrigues, F. Olive Fruit and Leaf Wastes as Bioactive Ingredients for Cosmetics—A Preliminary Study. Antioxidants 2021, 10, 245. [Google Scholar] [CrossRef] [PubMed]
- Lue, B.; Sørensen, A.M.; Jacobsen, C.; Guo, Z.; Xu, X. Antioxidant Efficacies of Rutin and Rutin Esters in Bulk Oil and Oil-in-water Emulsion. Eur. J. Lipid Sci. Technol. 2017, 119, 1600049. [Google Scholar] [CrossRef]
- Plumb, G.W.; Price, K.R.; Modes, M.J.C.; Williamson, G. Antioxidant Properties of the Major Polyphenolic Compounds in Broccoli. Free. Radic. Res. 1997, 27, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Razavi, S.M.; Zahri, S.; Zarrini, G.; Nazemiyeh, H.; Mohammadi, S. Biological Activity of Quercetin-3-O-Glucoside, a Known Plant Flavonoid. Russ. J. Bioorganic Chem. 2009, 35, 376–378. [Google Scholar] [CrossRef]
- Rehecho, S.; Hidalgo, O.; García-Iñiguez de Cirano, M.; Navarro, I.; Astiasarán, I.; Ansorena, D.; Cavero, R.Y.; Calvo, M.I. Chemical Composition, Mineral Content and Antioxidant Activity of Verbena officinalis L. LWT—Food Sci. Technol. 2011, 44, 875–882. [Google Scholar] [CrossRef]
- Cho, Y.-C.; Park, J.; Cho, S. Anti-Inflammatory and Anti-Oxidative Effects of Luteolin-7-O-Glucuronide in LPS-Stimulated Murine Macrophages through TAK1 Inhibition and Nrf2 Activation. Int. J. Mol. Sci. 2020, 21, 2007. [Google Scholar] [CrossRef] [Green Version]
- Sprenger, R.d.F.; Cass, Q.B. Characterization of Four Phyllanthus Species Using Liquid Chromatography Coupled to Tandem Mass Spectrometry. J. Chromatogr. A 2013, 1291, 97–103. [Google Scholar] [CrossRef]
- Ulewicz-Magulska, B.; Wesolowski, M. Total Phenolic Contents and Antioxidant Potential of Herbs Used for Medical and Culinary Purposes. Plant Foods Hum. Nutr. 2019, 74, 61–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markosyan, A.; McCluskey, J.J.; Wahl, T.I. Consumer Response to Information about a Functional Food Product: Apples Enriched with Antioxidants. Can. J. Agric. Econ. Can. d’agroeconomie 2009, 57, 325–341. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A.; Cimpeanu, C.; Predoi, G. Antioxidant Capacity Determination in Plants and Plant-Derived Products: A Review. Oxidative Med. Cell. Longev. 2016, 2016, 9130976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schofield, P.; Mbugua, D.M.; Pell, A.N. Analysis of Condensed Tannins: A Review. Anim. Feed. Sci. Technol. 2001, 91, 21–40. [Google Scholar] [CrossRef]
- Blainski, A.; Lopes, G.C.; de Mello, J.C.P. Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium brasiliense L. Molecules 2013, 18, 6852–6865. [Google Scholar] [CrossRef] [Green Version]
- Everette, J.D.; Bryant, Q.M.; Green, A.M.; Abbey, Y.A.; Wangila, G.W.; Walker, R.B. Thorough Study of Reactivity of Various Compound Classes toward the Folin-Ciocalteu Reagent. J. Agric. Food Chem. 2010, 58, 8139–8144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singleton, V.L.; Orthofer, R.; Lamuela Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Methods in Enzymology; Oxidants and Antioxidants Part A; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Cosentino, C.; Colonna, M.A.; Musto, M.; Dimotta, A.; Freschi, P.; Tarricone, S.; Ragni, M.; Paolino, R. Effects of Dietary Supplementation with Extruded Linseed and Oregano in Autochthonous Goat Breeds on the Fatty Acid Profile of Milk and Quality of Padraccio Cheese. J. Dairy Sci. 2021, 104, 1445–1453. [Google Scholar] [CrossRef]
- Granato, D.; Barba, F.J.; Bursać Kovačević, D.; Lorenzo, J.M.; Cruz, A.G.; Putnik, P. Functional Foods: Product Development, Technological Trends, Efficacy Testing, and Safety. Annu. Rev. Food Sci. Technol. 2020, 11, 93–118. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.; Hwang, E.S. Quality Characteristics and Antioxidant Activity of Yogurt Supplemented with Aronia (Aronia melanocarpa) Juice. Prev. Nutr. Food Sci. 2016, 21, 330–337. [Google Scholar] [CrossRef]
- Malongane, F.; McGaw, L.J.; Mudau, F.N. The Synergistic Potential of Various Teas, Herbs and Therapeutic Drugs in Health Improvement: A Review. J. Sci. Food Agric 2017, 97, 4679–4689. [Google Scholar] [CrossRef]
- Zhang, D.; Ivane, N.M.A.; Haruna, S.A.; Zekrumah, M.; Elysé, F.K.R.; Tahir, H.E.; Wang, G.; Wang, C.; Zou, X. Recent Trends in the Micro-Encapsulation of Plant-Derived Compounds and Their Specific Application in Meat as Antioxidants and Antimicrobials. Meat Sci. 2022, 191, 108842. [Google Scholar] [CrossRef]
- Najafi-Soulari, S.; Shekarchizadeh, H.; Kadivar, M. Encapsulation Optimization of Lemon Balm Antioxidants in Calcium Alginate Hydrogels. J. Biomater. Sci. Polym. Ed. 2016, 27, 1631–1644. [Google Scholar] [CrossRef] [PubMed]
- Nanditha, B.; Prabhasankar, P. Antioxidants in Bakery Products: A Review. Crit. Rev. Food Sci. Nutr. 2009, 49, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Ozkan, G.; Franco, P.; De Marco, I.; Xiao, J.; Capanoglu, E. A Review of Microencapsulation Methods for Food Antioxidants: Principles, Advantages, Drawbacks and Applications. Food Chem. 2019, 272, 494–506. [Google Scholar] [CrossRef] [PubMed]
- Genevois, C.E.; Castellanos Fuentes, A.P.; Flores, S.K.; de Escalada Pla, M.F. The Functional and Organoleptic Characterization of a Dairy-Free Dessert Containing a Novel Probiotic Food Ingredient. Food Funct. 2018, 9, 5697–5706. [Google Scholar] [CrossRef]
- De Santis, D.; Giacinti, G.; Chemello, G.; Frangipane, M.T. Improvement of the Sensory Characteristics of Goat Milk Yogurt. J. Food Sci. 2019, 84, 2289–2296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, R.G.; Beltrão Filho, E.M.; de Sousa, S.; da Cruz, G.R.B.; de Queiroga, R.C.R.; da Cruz, E.N. Physicochemical and Sensory Characteristics of Yoghurts Made from Goat and Cow Milk. Anim. Sci. J. 2016, 87, 703–709. [Google Scholar] [CrossRef]
- Kristensen, K.; David-Rogeat, N.; Alshammari, N.; Liu, Q.; Muleya, M.; Muttakin, S.; Marciani, L.; Bakalis, S.; Foster, T.J.; Gouseti, O. Chapter 10—Food Digestion Engineering. In Sustainable Food Processing and Engineering Challenges; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 343–368. ISBN 978-0-12-822714-5. [Google Scholar]
Before Digestion | After Digestion | |||||||
---|---|---|---|---|---|---|---|---|
Sample | Frap (mmol Fe2+/L) | Folin–Ciocalteu (mg GAE/g) | Frap (mmol Fe2+/L) | Folin–Ciocalteu (mg GAE/g) | Frap BAvI % | Folin BAvI% | P1 | P2 |
Byproduct extracts | ||||||||
Bitter orange peel | 3.89 ± 0.35 a | 7.16 ± 2.56 a | 1.62 ± 0.11 agh | 6.96 ± 3.22 abcdef | 42% | 55% | >0.05 | >0.05 |
Lemon peel | 2.15 ± 0.17 a | 4.31 ± 0.54 a | 0.83 ± 0.24 a | 5.87 ± 3.87 abcegh | 36% | 68% | <0.05 | >0.05 |
Rosehip seeds | 2.85 ± 0.21 a | 5.08 ± 0.52 a | 0.71 ± 0.15 a | 3.24 ± 2.43 abcdegh | 23% | 62% | >0.05 | >0.05 |
Herbal extracts | ||||||||
Mountain tea | 4.72 ± 0.60 a | 10.27 ± 1.37 ab | 0.96 ± 0.63 abg | 2.48 ± 0.98 acdef | 15% | 22% | <0.01 | >0.05 |
St. John’s Wort | 8.76 ± 1.87 b | 23.33 ± 4.93 cf | 3.00 ± 0.63 cdhij | 3.23 ± 2.55 abcdefh | 31% | 13% | >0.05 | >0.05 |
Dittany | 12.81 ± 1.94 b | 23.93 ± 6.33 cf | 3.60 ± 1.15 chij | 2.32 ± 1.54 acdef | 30% | 12% | >0.05 | <0.05 |
Lemon balm | 46.61 ± 7.22 c | 82.97 ± 4.29 d | 10.71 ± 1.20 e | 9.68 ± 4.31 bcgh | 23% | 13% | >0.05 | >0.05 |
Spearmint | 22.81 ± 1.40 d | 39.97 ± 15.36 efh | 4.75 ± 1.00 fij | 1.33 ± 0.55 adef | 21% | 4% | >0.05 | >0.05 |
Lavender | 9.68 ± 1.19 bb | 18.30 ± 7.45 bcf | 1.98 ± 0.38 abdgh | 2.02 ± 0.99 abcdef | 19% | 7% | <0.01 | >0.05 |
Combination extracts | ||||||||
St. John’s Wort and Mountain tea | 11.80 ± 1.45 b | 29.39 ± 5.85 cef | 2.70 ± 0.23 acdghij | 3.84 ± 0.42 abcdefh | 24% | 14% | >0.05 | >0.05 |
Bitter orange peel and Rosehip seed | 21.87 ± 1.41 d | 67.07 ± 1.67 g | 3.70 ± 0.50 cdfhij | 5.95 ± 2.69 abcdegh | 18% | 10% | >0.05 | >0.05 |
Bitter orange peel and Lemon peel | 12.11 ± 0.41 b | 47.92 ± 2.10 eh | 3.85 ± 0.35 cfhij | 7.42 ± 2.75 bcegh | 32% | 15% | >0.05 | >0.05 |
Food Sample | Origin of Sample | FRAP Assay (mmol Fe2+/g) | Folin–Ciocalteau (mg GAE/g) | Study |
---|---|---|---|---|
Melissa oficcinalis | Spain | 9.21 | 382.05 | [38] |
Portugal | - | 293.32–959.54 | [39] | |
Romania | - | 54.9 | [40] | |
Greece | 2.33 | 82.97 | Present study | |
Ditanny | Greece | - | 6.7–21.7 | [41] |
Greece | 0.64 | 23.93 | Present study | |
St John’s Wort | Turkey | - | 104–451.33 | [42] |
Greece | 0.44 | 23.33 | Present study | |
Pennyroyal | Portugal | 0.01 | 13.3 | [43] |
Greece | 0.5 | 27.65 | Present study | |
Spearmint | Greece | 1.98 | 29.67 | [44] |
Greece | 1.14 | 39.97 | Present study | |
Levander | Romania | - | 50.6 | [40] |
China | - | 36.87 | [45] | |
Greece | 0.48 | 18.30 | Present study | |
Mountain tea | Turkey | - | 0.507–12.99 | [46] |
Greece | 0.2 | 819.03 | [44] | |
Greece | 0.27 × 10−6– 4.84 × 10−6 | 23.7 × 10−6 −45.6 × 10−6 | [47] | |
Spain | - | 102.54 | [48] | |
Greece | 0.24 | 10.27 | Present study | |
Bitter orange peel | Tunisia | - | 5.23 | [49] |
Iran | 27.63–55.13 | 5.06 | [50] | |
Greece | 0.04 | 7.16 | Present study | |
Lemon peel | Malaysia | 4.34 | 1267.87–1336.77 | [51] |
China | - | 3.49 | [52] | |
Portugal | - | 222.76 | [53] | |
Greece | 0.02 | 4.31 | Present study | |
Wild rose seeds | Canada | - | 481 | [54] |
Poland | 127 | - | [55] | |
Italy | - | 166.3–212.3 | [56] | |
Hungary | 123.8–314.4 | 150.8–299.2 | [57] | |
Greece | 0.03 | 5.08 | Present study |
Phytochemicals | Identification Frequency * |
---|---|
Luteolin 7-O-diglucuronide | 11 |
Salvianolic acid B | 9 |
Rutin | 9 |
Acteoside | 8 |
Nicotiflorin | 8 |
Chrysoeriol 7-O-apiosyl-glucoside | 8 |
Pinoresinol-4-O-Beta-Monoglycoside | 7 |
Naringenin-4′,5-diglucuronide | 7 |
Cirsilineol | 7 |
Hexose | 7 |
Vanillylmandelic acid | 7 |
3,4-Dicaffeoylquinic Acid | 6 |
Luteolin 4′-glucoside | 6 |
Lithospermic acid B | 6 |
Apigenin-7-O-glucoside | 6 |
Caffeoyl tartaric acid | 6 |
Isoscutellarein 7-O-[6‴-O-acetyl-β-d-allopyranosyl-(1→2)]-β-d-glucopyranoside | 6 |
Rosmarinic acid | 6 |
Sucrose | 6 |
Scutellarin | 6 |
Quercetin 3-arabinoside | 5 |
Orientin | 5 |
5-Feruloylquinic acid | 5 |
Ferulic acid-4′-O-glucoside | 5 |
Luteolin | 5 |
Hesperidin | 5 |
Leucosceptoside A | 5 |
Chicoric acid | 5 |
Diosmin | 5 |
Oleuropein | 5 |
Astilbin | 5 |
Luteolin-3-O-glucuronide | 5 |
Kaempferol 3-O-sophoroside | 5 |
Isorhamnetin 3-O-galactoside | 5 |
Phytochemicals | Identification Frequency * |
---|---|
Luteolin 7-O-diglucuronide | 9 |
Acteoside | 8 |
Vanillylmandelic acid | 7 |
Scutellarin | 6 |
Salvianolic acid B | 6 |
Lithospermic acid B | 6 |
Rosmarinic acid | 5 |
3,4-Dicaffeoylquinic Acid | 5 |
Luteolin | 5 |
Chicoric acid | 4 |
5-Feruloylquinic acid | 4 |
Apigenin-7-O-glucoside | 4 |
Nicotiflorin | 4 |
Pinoresinol-4-O-Beta-Monoglycoside | 4 |
Leucosceptoside A | 4 |
Pectolinarigenin | 3 |
Silybin | 3 |
Rutin | 3 |
Hesperidin | 3 |
Oleuropein | 3 |
1,3-Dicaffeoylquinic acid | 3 |
Diosmin | 3 |
kaempferol 3-O-rutinoside | 3 |
Salvianolic acid C | 3 |
Cirsilineol | 3 |
Theaflavin 3-O-gallate | 3 |
Luteolin 7-O-glucoside | 3 |
Cynarin | 3 |
Phytochemicals | Identification Frequency * |
---|---|
Rutin | 4 |
Limonin | 4 |
Eriocitrin_1 | 4 |
Isorhamnetin-3-O-rutinoside | 3 |
Nicotiflorin | 3 |
Orientin | 3 |
Kaempferol 3-O-sophoroside | 2 |
Isorhamnetin 3-O-galactoside | 2 |
Citric acid | 2 |
Didymin | 2 |
Cirsimaritin | 2 |
Pinoresinol-4-O-Beta-Monoglycoside | 2 |
Astilbin | 2 |
Nobiletin | 2 |
D-(+)-Mannose | 2 |
Azadirachtin | 2 |
Quercetin-3-O-glucoside | 2 |
Allobetonicoside | 2 |
Rhoifolin | 2 |
Eupatilin | 2 |
1,2-Disinapoylgentiobiose | 2 |
Hesperidin | 2 |
Sample | Concentration of Extract (mL/100 g of Diary Product) | FRAP (mmol Fe2+/L) | Folin–Ciocalteu (mg GAE/g) |
---|---|---|---|
Kefir | |||
Control * | 0 | 0.09 ± 0.10 a | 0.39 ± 0.71 a |
Bitter orange peel | 27 | 0.53 ± 0.23 a | 1.92 ± 0.59 a |
Bitter orange and lemon peels | 10 and 17, respectively | 0.57 ± 0.06 b | 1.22 ± 0.48 a |
Bitter orange and rosehip seed | 10 and 17, respectively | 0.68 ± 0.06 b | 1.39 ± 0.44 a |
Cream cheese | |||
Control * | 0 | 0.24 ± 0.10 a | 2.02 ± 0.39 a |
Mountain tea | 35 | 0.34 ± 0.11 ab | 2.28 ± 0.65 abc |
St. John’s Wort | 35 | 0.53 ± 0.16 c | 2.82 ± 0.36 bc |
Mountain tea and St. John’s Wort | 25 and 10, respectively | 0.44 ± 0.13 bc | 2.07 ± 0.75 a |
Yogurt | |||
Control * | 0 | 0.18 ± 0.06 a | 0.91 ± 0.37 a |
Dittany | 34 | 0.41 ± 0.04 bc | 0.92 ± 0.53 a |
St. John’s Wort | 50 | 0.40 ± 0.05 bcd | 1.04 ± 0.46 a |
Lemon balm | 32 | 1.21 ± 0.12 e | 0.92 ± 0.64 a |
Vegan yogurt | |||
Control * | 0 | 0.09 ± 0.02 a | 1.57 ± 0.44 a |
Spearmint | 20 | 0.32 ± 0.04 b | 2.00 ± 0.41 b |
Lavender | 20 | 0.20 ± 0.04 c | 2.01 ± 0.40 b |
Product | Extract | Color | Aroma | Texture | Flavor | Total Acceptability |
---|---|---|---|---|---|---|
Kefir | Control | 3.8 ± 1.2 a | 3.4 ± 0.8 a | 3.4 ± 1.0 a | 3.0 ± 1.3 a | 3.2 ± 1.1 a |
Bitter orange peel | 3.8 ± 1.0 a | 3.3 ± 0.8 a | 3.5 ± 1.2 a | 3.0 ± 1.2 a | 2.9 ± 1.1 a | |
Bitter orange and Lemon peels | 3.6 ± 1.0 a | 3.4 ± 0.9 a | 3.4 ± 1.2 a | 2.3 ± 1.5 a | 2.6 ± 1.2 a | |
Bitter orange peel and Rosehip seed | 3.6 ± 1.2 a | 3.5 ± 0.9 a | 3.6 ± 1.0 a | 3.3 ± 1.1 a | 3.2 ± 0.9 a | |
Cream cheese | Control | 3.9 ± 1.2 a | 3.8 ± 1.2 a | 4.1 ± 1.2 a | 4.3 ± 1.0 a | 4.0 ± 1.1 a |
St. John’s Wort | 3.1 ± 1.1 a | 3.0 ± 1.1 a | 3.4 ± 1,0 a | 3.2 ± 1.2 b | 3.2 ± 0.9 b | |
Mountain tea | 3.6 ± 1.0 a | 3.1 ± 1.2 a | 3.2 ± 1.2 b | 2.3 ± 1.3 c | 2.6 ± 1.0 b | |
St. John’s Wort and Mountain tea | 3.7 ± 1.1 a | 3.1 ± 1.0 a | 2.9 ± 1.2 b | 2.9 ± 1.1 bc | 3.1 ± 1.1 b | |
Yogurt | Control | 4.1 ± 0.8 a | 3.9 ± 0.9 a | 4.3 ± 0.8 a | 3.9 ± 0.8 a | 3.9 ± 0.8 a |
Dittany | 3.8 ± 0.9 ab | 3.6 ± 1.0 a | 3.2 ± 1.1 bc | 2.9 ± 1.2 b | 3.2 ± 0.9 ab | |
St. John’s Wort | 3.9 ± 1.1 b | 3.1 ± 0.9 a | 2.8 ± 0.8 c | 2.6 ± 0.9 b | 2.8 ± 0.8 b | |
Lemon balm | 3.6 ± 0.8 ab | 3.3 ± 1.0 a | 3.8 ± 0.7 ab | 3.1 ± 1.3 ab | 3.2 ± 1.1 ab | |
Vegan yogurt | Control | 3.4 ± 1.1 a | 3.4 ± 1.0 a | 3.5 ± 1.1 a | 2.8 ± 1.2 a | 2.8 ± 1.2 a |
Lavender | 3.3 ± 1.1 a | 3.1 ± 1.1 a | 2.7 ± 1.0 ab | 2.4 ± 1.0 a | 2.4 ± 1.1 a | |
Spearmint | 2.9 ± 1.0 a | 3.1 ± 0.9 a | 2.7 ± 0.9 b | 2.5 ± 1.1 a | 2.6 ± 1.0 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kandyliari, A.; Potsaki, P.; Bousdouni, P.; Kaloteraki, C.; Christofilea, M.; Almpounioti, K.; Moutsou, A.; Fasoulis, C.K.; Polychronis, L.V.; Gkalpinos, V.K.; et al. Development of Dairy Products Fortified with Plant Extracts: Antioxidant and Phenolic Content Characterization. Antioxidants 2023, 12, 500. https://doi.org/10.3390/antiox12020500
Kandyliari A, Potsaki P, Bousdouni P, Kaloteraki C, Christofilea M, Almpounioti K, Moutsou A, Fasoulis CK, Polychronis LV, Gkalpinos VK, et al. Development of Dairy Products Fortified with Plant Extracts: Antioxidant and Phenolic Content Characterization. Antioxidants. 2023; 12(2):500. https://doi.org/10.3390/antiox12020500
Chicago/Turabian StyleKandyliari, Aikaterini, Panagiota Potsaki, Panoraia Bousdouni, Chrysoula Kaloteraki, Martha Christofilea, Kalliopi Almpounioti, Andreani Moutsou, Chistodoulos K. Fasoulis, Leandros V. Polychronis, Vasileios K. Gkalpinos, and et al. 2023. "Development of Dairy Products Fortified with Plant Extracts: Antioxidant and Phenolic Content Characterization" Antioxidants 12, no. 2: 500. https://doi.org/10.3390/antiox12020500