Evaluating the Antioxidant Properties of the Leaves and Stems of Alpinia oxyphylla In Vitro and Its Growth-Promoting, Muscle Composition Change, and Antioxidative Stress Function on Juvenile Litopenaeus vannamei
Abstract
:1. Introduction
2. Materials and Method
2.1. Materials
2.2. Plant Sample Extraction and Experimental Diets Preparation
2.3. Experimental Diets Preparation
2.4. Main Chemical Constituents Isolation and Identification
2.4.1. LC-MS Analysis of AOE
2.4.2. Main Chemical Constituents Isolation and Identification
2.5. Antioxidant Activities Assay of AOE and the Main Compounds In Vitro
2.5.1. DPPH Radical Scavenging Activity Assay
2.5.2. ABTS Radical Scavenging Activity Assay
2.6. L. vannamei Feeding Supplement Experiment
2.7. Acute Ammonia Nitrogen Stress Test
2.8. Shrimp Samples Collection
2.9. Growth Performance
2.10. Proximate Composition
2.11. Antioxidative Stress Function In Vivo
2.11.1. Enzymes Activity Assay
2.11.2. RNA Extraction and Gene Expression
2.12. Statistical Analysis
3. Results and Discussion
3.1. Main Chemical Constituents Identification
3.2. Antioxidant Activities of AOE and Its Main Chemical Constituents In Vitro
3.3. The Functions of AOE as Additive in Shrimp
3.3.1. Growth Performance and Survival Rate
3.3.2. Muscle Proximate Composition
3.3.3. Effects of AOE on Antioxidant Activity in L. vannamei
AOE Additive Affected on Activities of CAT, GSH-Px, SOD, and T-AOC as well as the Content of MDA in Shrimp
AOE Additive Effect on the Levels of Antioxidant-Related Genes Expression in Liver of L. vannamei
3.3.4. Effects of AOE on Antioxidant Activity in L. vannamei after Acute Ammonia Nitrogen Stress Test
AOE Additive Effects on Activities of CAT, GSH-Px, SOD, and T-AOC as well as the Content of MDA in Shrimp after Acute Ammonia Nitrogen Stress Test
AOE Additive Effect on the Levels of Antioxidant Related Genes Expression in Liver of L. vannamei after Acute Ammonia Nitrogen Stress Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef] [PubMed]
- Finkel, T.; Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Habtemariam, S. Modulation of reactive oxygen species in health and disease. Antioxidants 2019, 8, 513. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.; Mai, Y.; Li, H.; Wang, Z.; Xu, J.; He, X. Health benefits of the flavonoids from onion: Constituents and their pronounced antioxidant and anti-neuroinflammatory capacities. J. Agric. Food Chem. 2020, 68, 799–807. [Google Scholar] [CrossRef]
- Lee, L.S.; Choi, E.J.; Kim, C.H.; Sung, J.M.; Kim, Y.B.; Seo, D.H.; Choi, H.W.; Choi, Y.S.; Kum, J.S.; Park, J.D. Contribution of flavonoids to the antioxidant properties of common and tertary buckwheat. J. Cereal Sci. 2016, 68, 181–186. [Google Scholar] [CrossRef]
- Sochorova, L.; Prusava, B.; Jurikova, T.; Mlcek, J.; Adamkova, A.; Baron, M.; Sochor, J. The study of antioxidant components in grape seeds. Molecules 2020, 25, 3736. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Z.; Xue, Q.; Zhen, L.; Wang, Y.; Cao, J.; Liu, Y.; Khan, A.; Zhao, T.; Cheng, G. Effect of ultra-high pressure pretreatment on the phenolic profiles, antioxidative activity and cytoprotective capacity of different phenolic fractions from Que Zui Tea. Food Chem. 2022, 40, 135271–135283. [Google Scholar] [CrossRef]
- Sanjeewani, K.; Lee, K.J. Dietary riboflavin requirement of pacific white shrimp (Litopenaeus vannamei). Aquacult Nutr. 2023, 2023, 6685592. [Google Scholar] [CrossRef]
- Yang, S.; Luo, J.; Huang, Y.; Yuan, Y.; Cai, S. Effect of sub-lethal ammonia and nitrite stress on autophagy and apoptosis in hepatopancreas of Pacific whiteleg shrimp Litopenaeus vannamei. Fish Shellfish Immun. 2022, 130, 72–78. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, P.; Gao, C.; Yin, Y.; Wang, N.; Li, Y. Effect of vitamin C on lead-induced cell viability levels, oxidative stress, and immune-related gene expression in grass carp kidney cells. N. Am. J. Aquac. 2021, 83, 218–227. [Google Scholar] [CrossRef]
- Xie, S.; Zheng, L.; Wan, M.; Niu, J.; Liu, Y.; Tian, L. Effect of deoxynivalenol on growth performance, histological morphology, anti-oxidative ability and immue response of juvenile Pacific white shrimp, Litopenaeus vannamei. Fish Shellfish Immun. 2018, 82, 442–452. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zheng, Y.; Hu, X.; Hu, X.; Lv, W.; Lv, D.; Chen, J.; Wu, M.; Song, Q.; Shentu, J. Ethnopharmacological uses, phytochemistry, biological activities, and therapeutic applications of Alpinia oxyphylla Miquel: A review. J. Ethnopharmacol. 2018, 224, 149–168. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Zhou, M.; Qin, Q.; Li, T.; Yao, X.; Geng, J.; Yu, Y. Structurally diverse new eudesmane sesquiterpenoids with anti-inflammatory activity from the fruits of Alpinia oxyphylla. Bioorg. Chem. 2023, 134, 106431–106441. [Google Scholar] [CrossRef] [PubMed]
- Qiu, C.; Mu, L.; Wang, J.; Tang, R.; Hou, B.; Hu, W.; Zhang, R.; Chen, X. Sesquiterpenoids from the fruits of Alpinia oxyphylla Miq. and their neuroprotective effect. Phytochemistry 2023, 211, 113680–113692. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Mu, T.; Sun, H. Profiling of phenolic acids and flavonoids in sweet potato (Ipomoea batatas L.) leaves and evaluation of their anti-oxidant and hypoglycemic activities. Food Biosci. 2020, 39, 100108–100118. [Google Scholar] [CrossRef]
- Ngoc, H.N.; Mair, L.; Nghiem, D.T.; Thien, K.L.; Gostner, J.M.; Stuppner, H.; Ganzera, M. Phenolic compounds from the stems of Fissistigma polyanthoides and their anti-oxidant activities. Fitoterapia 2019, 137, 104252–104257. [Google Scholar] [CrossRef]
- Ying, L.; Wang, D.; Du, G. Analysis of bioactive components in the fruits, roots, and leaves of Alpinia oxyphylla by UPLC-MS/MS. Evid.-Based Complement. Altern. Med. 2021, 2021, 5592518. [Google Scholar] [CrossRef]
- Hu, H.B.; Liang, H.P.; Li, H.M.; Yuan, R.N.; Sun, J.; Zhang, L.L.; Han, M.H.; Wu, Y. Isolation, purification, characterization and antioxidant activity of polysaccharides from the stem barks of Acanthopanax leucorrhizus. Carbohyd. Polym. 2018, 196, 359–367. [Google Scholar] [CrossRef]
- Payet, B.; Sing, A.S.C.; Smadja, J. Assessment of antioxidant activity of cane brown sugars by ABTS and DPPH radical scavenging assays: Determination of their polyphenolic and volatile constituents. J. Agric. Food Chem. 2005, 53, 10074–10079. [Google Scholar] [CrossRef]
- Gabriel, N.N.; Qiang, J.; He, J.; Ma, X.Y.; Kpundeh, M.D.; Xu, P. Dietary Aloe vera supplementation on growth performance, some haematobiochemical parameters and disease resistance against Streptococcus iniae in tilapia (GIFT). Fish Shellfish Immun. 2015, 44, 504–514. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1995. [Google Scholar]
- Hussein, G.; Nakamura, N.; Meselhy, M.R.; Hattori, M. Phenolic from Maytenus senegalensis. Phytochemistry 1999, 50, 689–694. [Google Scholar] [CrossRef]
- Lin, L.G.; Ke, C.Q.; Ye, Y. Chemical constituents from roots of Breynia fruticosa. Chin. Trad. Herb. Drugs 2013, 44, 3119–3122. [Google Scholar]
- Shen, N.; Wang, T.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022, 383, 132531. [Google Scholar] [CrossRef] [PubMed]
- Qing, Y.; Xiang, X.; Li, S.; Wang, M.; Liang, Z.; Ren, J. Integrated evaluation the antioxidant activity of epicatechin from cell dynamics. Biotechnol. Progr. 2023, 39, e3328. [Google Scholar] [CrossRef]
- Azadnasab, R.; Kalantar, H.; Khorsandi, L.; Kalantari, H.; Khodayar, M.J. Epicaechin ameliorative effects on methotrexate-induced hepatotoxicity in mice. Hum. Exp. Toxicol. 2021, 40, S603–S610. [Google Scholar] [CrossRef]
- Keller, A.C.; Hull, S.E.; Knaub, L.; Johnston, A.; Reusch, J.E. Epicatechin modulates vasoreactivity and mitochondrial function in endothelium. Diabetes 2018, 67, 1494-p. [Google Scholar] [CrossRef]
- Si, H.; Lai, C.Q.; Liu, D. Dietary epicatechin, a novel anti-aging bioactive small molecule. Curr. Med. Chem. 2021, 28, 3–18. [Google Scholar] [CrossRef]
- Omer, H.A.A.; Ibrahim, S.A.M.; Abedo, A.A.; Ali, F.A.F. Growth performance of rabbits fed diets containing different levels of energy and mixture of some medicinal plants. J. Agric. Sci. 2012, 4, 201–212. [Google Scholar] [CrossRef]
- Alagawany, M.; Elnesr, S.S.; Farag, M.R.; EI-Hack, M.E.; Khafaga, A.F.; Taha, A.E.; Tiwari, R.; Yatoo, M.I.; Bhatt, R.; Marappan, G.; et al. Use of licorice (Glycyrrhiza glabra) herb as a feed addtive in poultry: Current knowledge and prospects. Animals 2015, 9, 536. [Google Scholar] [CrossRef]
- Swelum, A.A.; Hashem, N.M.; Abdelnour, S.A.; Taha, A.E.; Ohran, H.; Khafaga, A.F.; EI-Tarabily, K.A.; EI-Hack, M.E.A. Effects of phytogenic feed additives on the reproductive performance of animals. Saudi J. Biol. Sci. 2021, 28, 5816–5822. [Google Scholar] [CrossRef]
- Zheng, Z.L.; Tan, J.Y.W.; Liu, H.Y.; Zhou, H.Y.; Xiang, X.; Wang, K.Y. Evaluation of oregano essential oil (Origanum heracleoticum L.) on growth, antioxidant effect and resistance against Aeromonas hydrophila in channel catfish (Ictalurus punctatus). Aquaculture 2009, 292, 214–218. [Google Scholar] [CrossRef]
- Xia, Y.T.; Cheng, E.H.C.; Zheng, B.Z.Y.; Wu, Q.Y.; Dong, T.T.X.; Duan, R.; Qin, Q.W.; Wang, W.X.; Tsim, K.W.K. Feeding containing the aerial part of Scutellaria baicalensis promotes the growth and nutritive value of rabbit fish Siganus fuscescens. Food Sci. Nutr. 2021, 9, 4827–4838. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.; Zhu, Y.; Yu, H.; Wang, X.; Azm, F.R.A.; Yuan, J.; Tan, Q. Effect of dietary vitamin C on the growth performance, nonspecific immunity and antioxidant ability of red swamp crayfish (Procambarus clarkii). Aquaculture 2021, 541, 736785–736794. [Google Scholar] [CrossRef]
- Maldonado-Garcia, M.; Angulo, C.; Vazquez-Martinez, J.; Sanzhez, V.; Lopez, M.G.; Reyes-Becerril, M. Antioxidant and immunostimulant potentials of Chenopodium ambrosioides L. in Pacific red snapper (Lutjanus peru). Aquaculture 2019, 513, 734414. [Google Scholar] [CrossRef]
- Li, M.; Zhu, X.; Tian, J.; Liu, M.; Wang, G. Dietary flavonoids from Allium mongolicum Regel promotes growth, improves immune, antioxidant status, immune-related signaling molecules and disease resistance in juvenile northern snakehead fish (Channa argus). Aquaculture 2019, 501, 473–481. [Google Scholar] [CrossRef]
- Chai, Y.; Peng, R.; Jiang, M.; Jiang, X.; Han, Q.; Han, Z. Effects of ammonia nitrogen stress on the blood cell immunity and liver antioxidant function of Sepia pharaonis. Aquaculture 2022, 546, 737417–737425. [Google Scholar] [CrossRef]
- Ge, H.; Ni, Q.; Liu, J.; Dong, Z.; Chen, S. Effect of chronic ammonia nitrogen stress on the SOD activity and interferon-induced transmembrane protein 1 expression in the clam Cyclina sinensis. Front. Mar. Sci. 2022, 9, 1034152. [Google Scholar] [CrossRef]
- Popovic, N.; Pajovic, B.S.; Stojiljkvic, V.; Todorovic, A.; Pejic, S.; Pavlovic, I.; Gavrilovic, L. Increased activity of hippocampal antioxidant enzymes as an important adaptive phenomenon of the antioxidant defense system in chronically stressed rats. Acta Vet. Beogr. 2017, 67, 540–550. [Google Scholar] [CrossRef]
- Rodriguez, C.; Mayo, J.C.; Sainz, R.M.; Antolin, I.; Herrera, F.; Martin, V.; Reiter, R.J. Regulation of antioxidant enzymes: A significant role for melanin. J. Pineal Res. 2004, 36, 1–9. [Google Scholar] [CrossRef]
- Busch, C.J.; Binder, C.J. Malondialdehyde epitopes as mediators of sterile inflammation. Biochim. Biophys. Acta 2017, 1862, 398–406. [Google Scholar] [CrossRef]
DPPH Radical Scavenging Activity | ABTS Radical Scavenging Activity | |||
---|---|---|---|---|
Inhibitory Rate (%) a | IC50 (μg/mL) | Inhibitory Rate (%) a | IC50 (μg/mL) | |
AOE | 58.59 ± 0.52 * | 92.78 ± 0.43 | ||
1 | 50.12 ± 0.01 * | 12.00 ± 0.12 * | 90.44 ± 0.01 * | 14.72 ± 0.25 * |
2 | 80.69 ± 1.24 | 2.53 ± 0.15 * | 92.39 ± 0.27 | 2.53 ± 0.03 * |
vitamin C b | 85.44 ± 0.34 | 6.20 ± 0.41 | ||
trolox b | 92.69 ± 0.03 | 31.61 ± 0.60 |
0 | 100 mg/Kg | 200 mg/Kg | 300 mg/Kg | 500 mg/Kg | 700 mg/Kg | |
---|---|---|---|---|---|---|
Initial body weight, IW (g) | 2.06 ± 0.01 | 2.05 ± 0.02 | 2.04 ± 0.01 | 2.09 ± 0.01 | 2.09 ± 0.01 | 2.08 ± 0.00 |
Final body weight, FW (g) | 4.02 ± 0.11 | 4.35 ± 0.48 | 4.29 ± 0.16 | 4.37 ± 0.28 | 4.04 ± 0.38 | 4.25 ± 0.25 |
Weight gain rate, WGR (%) | 95.30 ± 3.00 a | 114.81 ± 13.52 b | 117.73 ± 5.77 b | 114.03 ± 12.93 b | 103.00 ± 2.14 ab | 98.24 ± 18.46 a |
Initial body length, IL (cm) | 4.98 ± 0.16 | 4.88 ± 0.14 | 4.86 ± 0.07 | 4.91 ± 0.12 | 4.98 ± 0.11 | 4.94 ± 0.11 |
Final body length, FL (cm) | 8.38 ± 0.92 | 9.12 ± 0.67 | 8.94 ± 0.76 | 9.14 ± 0.67 | 8.86 ± 0.84 | 8.55 ± 0.91 |
Length gain rate, LGR (%) | 74.76 ± 10.08 a | 80.27 ± 7.09 b | 84.90 ± 3.85 b | 84.54 ± 12.73 b | 79.95 ± 4.59 b | 74.09 ± 3.33 a |
Specific growth rate, SGR (%) | 1.20 ± 0.01 a | 1.37 ± 0.05 b | 1.39 ± 0.00 b | 1.36 ± 0.05 b | 1.27 ± 0.01 ab | 1.22 ± 0.08 a |
Survival rate, SR (%) | 77.78 ± 5.09 | 80.00 ± 6.67 | 81.11 ± 5.09 | 75.56 ± 11.71 | 81.11 ± 1.92 | 78.89 ± 3.85 |
Feed efficiency ration, FER (%) | 40.48 ± 5.83 a | 47.81 ± 2.70 b | 48.30 ± 1.17 b | 46.47 ± 3.32 ab | 43.95 ± 0.80 ab | 41.24 ± 3.13 a |
Moisture, % | Ash, % | Crude Protein, % | Crude Lipid, % | |
---|---|---|---|---|
0 mg/Kg | 77.46 ± 0.26 | 6.50 ± 0.04 | 88.06 ± 0.34 a | 13.88 ± 0.15 b |
100 mg/Kg | 76.85 ± 0.21 | 6.29 ± 0.11 | 88.85 ± 0.85 ab | 11.05 ± 0.16 ab |
200 mg/Kg | 76.81 ± 0.23 | 6.23 ± 0.06 | 90.57 ± 1.13 b | 8.37 ± 0.07 a |
300 mg/Kg | 77.04 ± 0.18 | 6.38 ± 0.11 | 89.90 ± 0.61 ab | 13.27 ± 1.74 b |
500 mg/Kg | 77.34 ± 0.38 | 6.46 ± 0.01 | 88.41 ± 1.05 ab | 14.44 ± 0.07 b |
700 mg/Kg | 77.20 ± 0.13 | 6.46 ± 0.00 | 88.51 ± 0.60 ab | 13.53 ± 0.18 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.-T.; Zhao, Y.-H.; Lv, Y.; Su, X.; Mei, W.-L.; Lu, Y.-P.; Zheng, P.-H.; Zhang, Z.-L.; Zhang, X.-X.; Chen, H.-Q.; et al. Evaluating the Antioxidant Properties of the Leaves and Stems of Alpinia oxyphylla In Vitro and Its Growth-Promoting, Muscle Composition Change, and Antioxidative Stress Function on Juvenile Litopenaeus vannamei. Antioxidants 2023, 12, 1802. https://doi.org/10.3390/antiox12101802
Li J-T, Zhao Y-H, Lv Y, Su X, Mei W-L, Lu Y-P, Zheng P-H, Zhang Z-L, Zhang X-X, Chen H-Q, et al. Evaluating the Antioxidant Properties of the Leaves and Stems of Alpinia oxyphylla In Vitro and Its Growth-Promoting, Muscle Composition Change, and Antioxidative Stress Function on Juvenile Litopenaeus vannamei. Antioxidants. 2023; 12(10):1802. https://doi.org/10.3390/antiox12101802
Chicago/Turabian StyleLi, Jun-Tao, Yu-Hua Zhao, Yuan Lv, Xin Su, Wen-Li Mei, Yao-Peng Lu, Pei-Hua Zheng, Ze-Long Zhang, Xiu-Xia Zhang, Hui-Qin Chen, and et al. 2023. "Evaluating the Antioxidant Properties of the Leaves and Stems of Alpinia oxyphylla In Vitro and Its Growth-Promoting, Muscle Composition Change, and Antioxidative Stress Function on Juvenile Litopenaeus vannamei" Antioxidants 12, no. 10: 1802. https://doi.org/10.3390/antiox12101802
APA StyleLi, J.-T., Zhao, Y.-H., Lv, Y., Su, X., Mei, W.-L., Lu, Y.-P., Zheng, P.-H., Zhang, Z.-L., Zhang, X.-X., Chen, H.-Q., Dai, H.-F., & Xian, J.-A. (2023). Evaluating the Antioxidant Properties of the Leaves and Stems of Alpinia oxyphylla In Vitro and Its Growth-Promoting, Muscle Composition Change, and Antioxidative Stress Function on Juvenile Litopenaeus vannamei. Antioxidants, 12(10), 1802. https://doi.org/10.3390/antiox12101802