Apitherapy and Periodontal Disease: Insights into In Vitro, In Vivo, and Clinical Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
- (i)
- Studies that did not have full text available.
- (ii)
- Clinical trials that do not follow ethical guidelines.
- (iii)
- Published studies in local languages except for English.
- (iv)
- Nonrelevant studies (apitherapy in the treatment of other oral pathologies).
- (v)
- Systematic reviews.
- (i)
- In vitro, in vivo, and clinical studies evaluating the efficiency of honey, propolis, and royal jelly in the treatment of periodontal diseases.
- (ii)
- Findings published in English.
- (iii)
- Findings published within the period from 2016 to 2021.
- (iv)
- Randomized and nonrandomized clinical trials.
3. Results
3.1. Study Selection
3.2. Scientific Studies Evaluating Honeybee Products in Periodontal Disease Treatment
3.2.1. Antimicrobial Studies
3.2.2. Anti-Inflammatory Activity
3.3. Safety of Honeybee Products in Periodontal Disease Treatment
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Peres, M.A.; Macpherson, L.M.D.; Weyant, R.J.; Daly, B.; Venturelli, R.; Mathur, M.R.; Listl, S.; Celeste, R.K.; Guarnizo-Herreño, C.C.; Kearns, C.; et al. Oral diseases: A global public health challenge. Lancet 2019, 394, 249–260. [Google Scholar] [CrossRef]
- Oral Health. Available online: https://www.who.int/news-room/fact-sheets/detail/oral-health (accessed on 11 February 2022).
- Prakash, S.; Radha; Kumar, M.; Kumari, N.; Thakur, M.; Rathour, S.; Pundir, A.; Sharma, A.K.; Bangar, S.P.; Dhumal, S.; et al. Plant-Based Antioxidant Extracts and Compounds in the Management of Oral Cancer. Antioxidants 2021, 10, 1358. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Prakash, S.; Radha; Kumari, N.; Pundir, A.; Punia, S.; Saurabh, V.; Choudhary, P.; Changan, S.; Dhumal, S.; et al. Beneficial role of antioxidant secondary metabolites from medicinal plants in maintaining oral health. Antioxidants 2021, 10, 1061. [Google Scholar] [CrossRef] [PubMed]
- Sasi, M.; Kumar, S.; Kumar, M.; Thapa, S.; Prajapati, U.; Tak, Y.; Changan, S.; Saurabh, V.; Kumari, S.; Kumar, A.; et al. Garlic (Allium sativum L.) bioactives and its role in alleviating oral pathologies. Antioxidants 2021, 10, 1847. [Google Scholar] [CrossRef]
- Kurek-Górecka, A.; Walczyńska-Dragon, K.; Felitti, R.; Nitecka-Buchta, A.; Baron, S.; Olczyk, P. The Influence of Propolis on Dental Plaque Reduction and the Correlation between Dental Plaque and Severity of COVID-19 Complications-A Literature Review. Molecules 2021, 26, 5516. [Google Scholar] [CrossRef]
- Ali, A.M.; Kunugi, H. Propolis, Bee Honey, and Their Components Protect against Coronavirus Disease 2019 (COVID-19): A Review of In Silico, In vitro, and Clinical Studies. Molecules 2021, 26, 1232. [Google Scholar] [CrossRef]
- Elmahallawy, E.K.; Mohamed, Y.; Abdo, W.; El-Gohary, F.A.; Ahmed Awad Ali, S.; Yanai, T. New Insights into Potential Benefits of Bioactive Compounds of Bee Products on COVID-19: A Review and Assessment of Recent Research. Front. Mol. Biosci. 2021, 7, 513. [Google Scholar] [CrossRef]
- López-Valverde, N.; Pardal-Peláez, B.; López-Valverde, A.; Flores-Fraile, J.; Herrero-Hernández, S.; Macedo-De-sousa, B.; Herrero-Payo, J.; Ramírez, J.M. Effectiveness of Propolis in the Treatment of Periodontal Disease: Updated Systematic Review with Meta-Analysis. Antioxidants 2021, 10, 269. [Google Scholar] [CrossRef]
- Pan, W.; Wang, Q.; Chen, Q. The cytokine network involved in the host immune response to periodontitis. Int. J. Oral Sci. 2019, 11, 30. [Google Scholar] [CrossRef] [Green Version]
- Madianos, P.N.; Bobetsis, Y.A.; Offenbacher, S. Adverse pregnancy outcomes (APOs) and periodontal disease: Pathogenic mechanisms. J. Clin. Periodontol. 2013, 40 (Suppl. S14), S170–S180. [Google Scholar] [CrossRef]
- Lundberg, K.; Wegner, N.; Yucel-Lindberg, T.; Venables, P.J. Periodontitis in RA-the citrullinated enolase connection. Nat. Rev. Rheumatol. 2010, 6, 727–730. [Google Scholar] [CrossRef] [PubMed]
- Lalla, E.; Papapanou, P.N. Diabetes mellitus and periodontitis: A tale of two common interrelated diseases. Nat. Rev. Endocrinol. 2011, 7, 738–748. [Google Scholar] [CrossRef] [PubMed]
- Kebschull, M.; Demmer, R.T.; Papapanou, P.N. “Gum Bug, Leave My Heart Alone!”—Epidemiologic and Mechanistic Evidence Linking Periodontal Infections and Atherosclerosis. J. Dent. Res. 2010, 89, 879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Genco, R.J.; Van Dyke, T.E. Prevention: Reducing the risk of CVD in patients with periodontitis. Nat. Rev. Cardiol. 2010, 7, 479–480. [Google Scholar] [CrossRef] [PubMed]
- Darveau, R.P. Periodontitis: A polymicrobial disruption of host homeostasis. Nat. Rev. Microbiol. 2010, 8, 481–490. [Google Scholar] [CrossRef]
- Eley, B.M. Antibacterial agents in the control of supragingival plaque--a review. Br. Dent. J. 1999, 186, 286–296. [Google Scholar] [CrossRef]
- Kim, E.H.; Kim, S.; Kim, H.J.; Jeong, H.O.; Lee, J.; Jang, J.; Joo, J.Y.; Shin, Y.; Kang, J.; Park, A.K.; et al. Prediction of Chronic Periodontitis Severity Using Machine Learning Models Based on Salivary Bacterial Copy Number. Front. Cell. Infect. Microbiol. 2020, 10, 698. [Google Scholar] [CrossRef]
- Abusleme, L.; Dupuy, A.K.; Dutzan, N.; Silva, N.; Burleson, J.A.; Strausbaugh, L.D.; Gamonal, J.; Diaz, P.I. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. ISME J. 2013, 7, 1016–1025. [Google Scholar] [CrossRef] [Green Version]
- Jiao, Y.; Darzi, Y.; Tawaratsumida, K.; Marchesan, J.T.; Hasegawa, M.; Moon, H.; Chen, G.Y.; Núñez, G.; Giannobile, W.V.; Raes, J.; et al. Induction of bone loss by pathobiont-mediated Nod1 signaling in the oral cavity. Cell Host Microbe 2013, 13, 595–601. [Google Scholar] [CrossRef] [Green Version]
- Hajishengallis, G.; Liang, S.; Payne, M.A.; Hashim, A.; Jotwani, R.; Eskan, M.A.; McIntosh, M.L.; Alsam, A.; Kirkwood, K.L.; Lambris, J.D.; et al. A Low-Abundance Biofilm Species Orchestrates Inflammatory Periodontal Disease through the Commensal Microbiota and the Complement Pathway. Cell Host Microbe 2011, 10, 497. [Google Scholar] [CrossRef] [Green Version]
- Settem, R.P.; El-Hassan, A.T.; Honma, K.; Stafford, G.P.; Sharma, A. Fusobacterium nucleatum and Tannerella forsythia Induce Synergistic Alveolar Bone Loss in a Mouse Periodontitis Model. Infect. Immun. 2012, 80, 2436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orth, R.K.H.; O’Brien-Simpson, N.M.; Dashper, S.G.; Reynolds, E.C. Synergistic virulence of Porphyromonas gingivalis and Treponema denticola in a murine periodontitis model. Mol. Oral Microbiol. 2011, 26, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Kinane, D.F.; Stathopoulou, P.G.; Papapanou, P.N. Periodontal diseases. Nat. Rev. Dis. Prim. 2017, 3, 17038. [Google Scholar] [CrossRef] [PubMed]
- Dikilitas, A.; Karaaslan, F.; Aydin, E.Ö.; Yigit, U.; Ertugrul, A.S. Granulocyte-macrophage colony-stimulating factor (GM-CSF) in subjects with different stages of periodontitis according to the new classification. J. Appl. Oral Sci. 2022, 30, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Nędzi-Góra, M.; Kowalski, J.; Górska, R. The Immune Response in Periodontal Tissues. Arch. Immunol. Ther. Exp. 2017, 65, 421–429. [Google Scholar] [CrossRef]
- Sochalska, M.; Potempa, J. Manipulation of Neutrophils by Porphyromonas gingivalis in the Development of Periodontitis. Front. Cell. Infect. Microbiol. 2017, 7, 197. [Google Scholar] [CrossRef] [Green Version]
- Tsantikos, E.; Lau, M.; Castelino, C.M.N.; Maxwell, M.J.; Passey, S.L.; Hansen, M.J.; McGregor, N.E.; Sims, N.A.; Steinfort, D.P.; Irving, L.B.; et al. Granulocyte-CSF links destructive inflammation and comorbidities in obstructive lung disease. J. Clin. Investig. 2018, 128, 2406–2418. [Google Scholar] [CrossRef]
- Pendyala, G.; Thomas, B.; Kumari, S. The challenge of antioxidants to free radicals in periodontitis. J. Indian Soc. Periodontol. 2008, 12, 79. [Google Scholar] [CrossRef]
- Borges, I.; Machado Moreira, E.A.; Filho, D.W.; De Oliveira, T.B.; Da Silva, M.B.S.; Fröde, T.S. Proinflammatory and Oxidative Stress Markers in Patients with Periodontal Disease. Mediat. Inflamm. 2007, 2007, 045794. [Google Scholar] [CrossRef]
- Abou Sulaiman, A.E.; Shehadeh, R.M.H. Assessment of Total Antioxidant Capacity and the Use of Vitamin C in the Treatment of Non-Smokers with Chronic Periodontitis. J. Periodontol. 2010, 81, 1547–1554. [Google Scholar] [CrossRef]
- Wang, Y.; Andrukhov, O.; Rausch-Fan, X. Oxidative Stress and Antioxidant System in Periodontitis. Front. Physiol. 2017, 8, 910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ara, S.A.; Ashraf, S.; Arora, V.; Rampure, P. Use of Apitherapy as a Novel Practice in the Management of Oral Diseases: A Review of Literature. J. Contemp. Dent. 2013, 3, 25–31. [Google Scholar] [CrossRef]
- Singh, R.P.; Prakash, S.; Bhatia, R.; Negi, M.; Singh, J.; Bishnoi, M.; Kondepudi, K.K. Generation of structurally diverse pectin oligosaccharides having prebiotic attributes. Food Hydrocoll. 2020, 108, 105988. [Google Scholar] [CrossRef]
- Kumar, M.; Radha; Devi, H.; Prakash, S.; Rathore, S.; Thakur, M.; Puri, S.; Pundir, A.; Bangar, S.P.; Changan, S.; et al. Ethnomedicinal plants used in the health care system: Survey of the mid hills of solan district, Himachal Pradesh, India. Plants 2021, 10, 1842. [Google Scholar] [CrossRef]
- Hellner, M.; Winter, D.; Von Georgi, R.; Münstedt, K. Apitherapy: Usage and Experience in German Beekeepers. Evid. Based Complement. Altern. Med. 2008, 5, 475. [Google Scholar] [CrossRef] [Green Version]
- Nabavi, S.M.; Silva, A.S. (Eds.) Nonvitamin and Nonmineral Nutritional Supplements; Academic Press: Cambridge, MA, USA, 2018; pp. 1–552. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, L.; Zhang, W.; Cui, X.; Wang, H.; Xu, B. Comparison of the nutrient composition of royal jelly and worker jelly of honeybees (Apis mellifera). Apidologie 2016, 47, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Melliou, E.; Chinou, I. Chemistry and Bioactivities of Royal Jelly. Stud. Nat. Prod. Chem. 2014, 43, 261–290. [Google Scholar] [CrossRef]
- Ahmad, S.; Campos, M.G.; Fratini, F.; Altaye, S.Z.; Li, J. New Insights into the Biological and Pharmaceutical Properties of Royal Jelly. Int. J. Mol. Sci. 2020, 21, 382. [Google Scholar] [CrossRef] [Green Version]
- Bălan, A.; Moga, M.A.; Dima, L.; Toma, S.; Neculau, A.E.; Anastasiu, C.V. Royal Jelly—A traditional and natural remedy for postmenopausal symptoms and aging-related pathologies. Molecules 2020, 25, 3291. [Google Scholar] [CrossRef]
- Fratini, F.; Cilia, G.; Mancini, S.; Felicioli, A. Royal Jelly: An ancient remedy with remarkable antibacterial properties. Microbiol. Res. 2016, 192, 130–141. [Google Scholar] [CrossRef]
- Abd El-Wahed, A.A.; Khalifa, S.A.M.; Sheikh, B.Y.; Farag, M.A.; Saeed, A.; Larik, F.A.; Koca-Caliskan, U.; AlAjmi, M.F.; Hassan, M.; Wahabi, H.A.; et al. Bee Venom Composition: From Chemistry to Biological Activity. Stud. Nat. Prod. Chem. 2019, 60, 459–484. [Google Scholar] [CrossRef]
- Wehbe, R.; Frangieh, J.; Rima, M.; El Obeid, D.; Sabatier, J.M.; Fajloun, Z. Bee Venom: Overview of Main Compounds and Bioactivities for Therapeutic Interests. Molecules 2019, 24, 2997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fratellone, P.M.; Tsimis, F.; Fratellone, G. Apitherapy products for medicinal use. J. Altern. Complement. Med. 2016, 22, 1020–1022. [Google Scholar] [CrossRef] [PubMed]
- Tanuğur-Samanc, A.E.; Kekeçoğlu, M. An evaluation of the chemical content and microbiological contamination of Anatolian bee venom. PLoS ONE 2021, 16, e0255161. [Google Scholar] [CrossRef] [PubMed]
- El-Seedi, H.R.; Eid, N.; Abd El-Wahed, A.A.; Rateb, M.E.; Afifi, H.S.; Algethami, A.F.; Zhao, C.; Al Naggar, Y.; Alsharif, S.M.; Tahir, H.E.; et al. Honeybee Products: Preclinical and Clinical Studies of Their Anti-inflammatory and Immunomodulatory Properties. Front. Nutr. 2022, 8, 1109. [Google Scholar] [CrossRef]
- Wagh, V.D. Propolis: A Wonder Bees Product and Its Pharmacological Potentials. Adv. Pharmacol. Sci. 2013, 2013, 11. [Google Scholar] [CrossRef] [Green Version]
- Toreti, V.C.; Sato, H.H.; Pastore, G.M.; Park, Y.K. Recent progress of propolis for its biological and chemical compositions and its botanical origin. Evid.-Based Complement. Altern. Med. 2013, 2013, 697390. [Google Scholar] [CrossRef]
- Anjum, S.I.; Ullah, A.; Khan, K.A.; Attaullah, M.; Khan, H.; Ali, H.; Bashir, M.A.; Tahir, M.; Ansari, M.J.; Ghramh, H.A.; et al. Composition and functional properties of propolis (bee glue): A review. Saudi J. Biol. Sci. 2019, 26, 1695–1703. [Google Scholar] [CrossRef]
- da Silva Barboza, A.; Aitken-Saavedra, J.P.; Ferreira, M.L.; Fábio Aranha, A.M.; Lund, R.G. Are propolis extracts potential pharmacological agents in human oral health? -A scoping review and technology prospecting. J. Ethnopharmacol. 2021, 271, 113846. [Google Scholar] [CrossRef]
- Elnakady, Y.A.; Rushdi, A.I.; Franke, R.; Abutaha, N.; Ebaid, H.; Baabbad, M.; Omar, M.O.M.; Al Ghamdi, A.A. Characteristics, chemical compositions and biological activities of propolis from Al-Bahah, Saudi Arabia. Sci. Rep. 2017, 7, 41453. [Google Scholar] [CrossRef] [Green Version]
- Kocot, J.; Kiełczykowska, M.; Luchowska-Kocot, D.; Kurzepa, J.; Musik, I. Antioxidant Potential of Propolis, Bee Pollen, and Royal Jelly: Possible Medical Application. Oxid. Med. Cell. Longev. 2018, 2018, 7074209. [Google Scholar] [CrossRef] [PubMed]
- El Adham, E.K.; Hassan, A.I.; Dawoud, M.M.A. Evaluating the role of propolis and bee venom on the oxidative stress induced by gamma rays in rats. Sci. Rep. 2022, 12, 2656. [Google Scholar] [CrossRef] [PubMed]
- Sawicki, T.; Starowicz, M.; Kłębukowska, L.; Hanus, P. The Profile of Polyphenolic Compounds, Contents of Total Phenolics and Flavonoids, and Antioxidant and Antimicrobial Properties of Bee Products. Molecules 2022, 27, 1301. [Google Scholar] [CrossRef] [PubMed]
- Berretta, A.A.; Silveira, M.A.D.; Cóndor Capcha, J.M.; De Jong, D. Propolis and its potential against SARS-CoV-2 infection mechanisms and COVID-19 disease: Running title: Propolis against SARS-CoV-2 infection and COVID-19. Biomed. Pharmacother. 2020, 131, 110622. [Google Scholar] [CrossRef]
- Ripari, N.; Sartori, A.A.; Honorio, M.D.S.; Conte, F.L.; Tasca, K.I.; Santiago, K.B.; Sforcin, J.M. Propolis antiviral and immunomodulatory activity: A review and perspectives for COVID-19 treatment. J. Pharm. Pharmacol. 2021, 73, 281–299. [Google Scholar] [CrossRef]
- Dodwad, V.; Kukreja, B. Propolis mouthwash: A new beginning. J. Indian Soc. Periodontol. 2011, 15, 121. [Google Scholar] [CrossRef]
- Halboub, E.; Al-Maweri, S.A.; Al-Wesabi, M.; Al-Kamel, A.; Shamala, A.; Al-Sharani, A.; Koppolu, P. Efficacy of propolis-based mouthwashes on dental plaque and gingival inflammation: A systematic review. BMC Oral Health 2020, 20, 198. [Google Scholar] [CrossRef]
- Coutinho, A. Honeybee propolis extract in periodontal treatment: A clinical and microbiological study of propolis in periodontal treatment. Indian J. Dent. Res. 2012, 23, 294. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 105906. [Google Scholar] [CrossRef]
- Shabbir, A.; Rashid, M.; Tipu, H.N. Propolis, A Hope for the Future in Treating Resistant Periodontal Pathogens. Cureus 2016, 8, e682. [Google Scholar] [CrossRef] [Green Version]
- Yoshimasu, Y.; Ikeda, T.; Sakai, N.; Yagi, A.; Hirayama, S.; Morinaga, Y.; Furukawa, S.; Nakao, R. Rapid Bactericidal Action of Propolis against Porphyromonas gingivalis. J. Dent. Res. 2018, 97, 928–936. [Google Scholar] [CrossRef] [PubMed]
- Tambur, Z.; Miljkovic-Selimovic, B.; Opacic, D.; Vukovic, B.; Malesevic, A.; Ivancajic, L.; Aleksic, E. Inhibitory effects of propolis and essential oils on oral bacteria. J. Infect. Dev. Ctries. 2021, 15, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Mary George, R.; Kasliwal, A.V. Effectiveness of Propolis, Probiotics and Chlorhexidine on Streptococcus Mutans and Candida Albicans: An In-Vitro Study. IOSR J. Dent. Med. Sci. 2017, 16, 15–18. [Google Scholar] [CrossRef]
- Gómez, P.A.; Jon, L.Y.; Torres, D.J.; Amaranto, R.E.; Díaz, I.E.; Medina, C.A. Antibacterial, antibiofilm, and cytotoxic activities and chemical compositions of Peruvian propolis in an In vitro oral biofilm. F1000Research 2021, 10, 1093. [Google Scholar] [CrossRef] [PubMed]
- Miranda, S.L.F.; Damasceno, J.T.; Faveri, M.; Figueiredo, L.; da Silva, H.D.; de Alencar Alencar, S.M.; Rosalen, P.L.; Feres, M.; Bueno-Silva, B. Brazilian red propolis reduces orange-complex periodontopathogens growing in multispecies biofilms. Biofouling 2019, 35, 308–319. [Google Scholar] [CrossRef] [PubMed]
- De Figueiredo, K.A.; Da Silva, H.D.P.; Miranda, S.L.F.; Gonçalves, F.J.D.S.; de Sousa, A.P.; de Figueiredo, L.C.; Feres, M.; Bueno-Silva, B. Brazilian Red Propolis Is as Effective as Amoxicillin in Controlling Red-Complex of Multispecies Subgingival Mature Biofilm In vitro. Antibiotics 2020, 9, 432. [Google Scholar] [CrossRef] [PubMed]
- Stähli, A.; Schröter, H.; Bullitta, S.; Serralutzu, F.; Dore, A.; Nietzsche, S.; Milia, E.; Sculean, A.; Eick, S. In vitro Activity of Propolis on Oral Microorganisms and Biofilms. Antibiotics 2021, 10, 1045. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, A.B.S.; de Araújo Rodriguez, L.R.N.; Santos, R.K.B.; Marinho, R.R.B.; Abreu, S.; Peixoto, R.F.; de Vasconcelos Gurgel, B.C. Antifungal activity of propolis against Candida species isolated from cases of chronic periodontitis. Braz. Oral Res. 2015, 29, 1–6. [Google Scholar] [CrossRef]
- Nakajima, M.; Arimatsu, K.; Minagawa, T.; Matsuda, Y.; Sato, K.; Takahashi, N.; Nakajima, T.; Yamazaki, K. Brazilian propolis mitigates impaired glucose and lipid metabolism in experimental periodontitis in mice. BMC Complement. Altern. Med. 2016, 16, 329. [Google Scholar] [CrossRef] [Green Version]
- Soekanto, S.A.; Safitri, Y.N.; Zeid, H.; Gultom, F.P.; Djais, A.A.; Darwita, R.R.; Sahlan, M. Effectiveness of propolis gel on Mus musculus (Swiss Webster) periodontitis model with ligature silk thread application. AIP Conf. Proc. 2021, 2344, 040008. [Google Scholar] [CrossRef]
- Sung, S.-J.; Kang, K.-M.; Lee, K.-H.; Yoo, S.-Y.; Kook, J.-K.; Lee, D.S.; Yu, S.-J. Effect of Garcinia mangostana L. and propolis extracts on the inhibition of inflammation and alveolar bone loss in ligature-induced periodontitis in rats. Int. J. Oral Biol. 2019, 44, 55–61. [Google Scholar] [CrossRef]
- Ali, K.; Saleh, Z.; Jalal, J. Effect of local propolis irrigation in experimental periodontitis in rats on inflammatory markers (IL-1β and TNF-α) and oxidative stress. Indian J. Dent. Res. 2020, 31, 893. [Google Scholar] [CrossRef] [PubMed]
- Coutinho, D.; Karibasappa, S.N.; Mehta, D.S. Royal Jelly Antimicrobial Activity against Periodontopathic Bacteria. J. Interdiscip. Dent. 2018, 8, 18. [Google Scholar] [CrossRef]
- Khosla, A.; Gupta, S.J.; Jain, A.; Shetty, D.C.; Sharma, N. Evaluation and comparison of the antimicrobial activity of royal jelly—A holistic healer against periodontopathic bacteria: An In vitro study. J. Indian Soc. Periodontol. 2020, 24, 221. [Google Scholar] [CrossRef] [PubMed]
- Gupta, I.; Das, N.; Ranjan, P.; Sujatha, R.; Gupta, R.; Gupta, N. A Preliminary Study on the Evaluation of In-vitro Inhibition Potential of Antimicrobial Efficacy of Raw and Commercial Honey on Escherichia coli: An Emerging Periodontal Pathogen. Mymensingh Med. J. 2021, 30, 547–554. [Google Scholar] [PubMed]
- Li, L.; Sun, W.; Wu, T.; Lu, R.; Shi, B. Caffeic acid phenethyl ester attenuates lipopolysaccharide-stimulated proinflammatory responses in human gingival fibroblasts via NF-κB and PI3K/Akt signaling pathway. Eur. J. Pharmacol. 2017, 794, 61–68. [Google Scholar] [CrossRef]
- Gu, H.; An, H.J.; Kim, J.Y.; Kim, W.H.; Gwon, M.G.; Kim, H.J.; Han, S.M.; Park, I.S.; Park, S.C.; Leem, J.; et al. Bee venom attenuates Porphyromonas gingivalis and RANKL-induced bone resorption with osteoclastogenic differentiation. Food Chem. Toxicol. 2019, 129, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.H.; An, H.J.; Kim, J.Y.; Gwon, M.G.; Gu, H.; Park, J.B.; Sung, W.J.; Kwon, Y.C.; Park, K.D.; Han, S.M.; et al. Bee Venom Inhibits Porphyromonas gingivalis Lipopolysaccharides-Induced Pro-Inflammatory Cytokines through Suppression of NF-κB and AP-1 Signaling Pathways. Molecules 2016, 21, 1508. [Google Scholar] [CrossRef]
- Kim, W.H.; An, H.J.; Kim, J.Y.; Gwon, M.G.; Gu, H.; Jeon, M.; Kim, M.K.; Han, S.M.; Park, K.K. Anti-inflammatory effect of melittin on Porphyromonas gingivalis LPS-stimulated human keratinocytes. Molecules 2018, 23, 332. [Google Scholar] [CrossRef] [Green Version]
- Nakao, R.; Senpuku, H.; Ohnishi, M.; Takai, H.; Ogata, Y. Effect of topical administration of propolis in chronic periodontitis. Odontology 2020, 108, 704–714. [Google Scholar] [CrossRef]
- Kiani, S.; Birang, R.; Jamshidian, N. Effect of Propolis mouthwash on clinical periodontal parameters in patients with gingivitis: A double-blinded randomized clinical trial. Int. J. Dent. Hyg. 2021, 2021, 1–19. [Google Scholar] [CrossRef] [PubMed]
- González-Serrano, J.; López-Pintor, R.M.; Serrano, J.; Torres, J.; Hernández, G.; Sanz, M. Short-term efficacy of a gel containing propolis extract, nanovitamin C and nanovitamin E on peri-implant mucositis: A double-blind, randomized, clinical trial. J. Periodontal Res. 2021, 56, 897–906. [Google Scholar] [CrossRef] [PubMed]
- Singhal, R.; Siddibhavi, M.; Sankeshwari, R.; Patil, P.; Jalihal, S.; Ankola, A. Effectiveness of three mouthwashes—Manuka honey, Raw honey, and Chlorhexidine on plaque and gingival scores of 12–15-year-old school children: A randomized controlled field trial. J. Indian Soc. Periodontol. 2018, 22, 34. [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y.; Ko, K.A.; Lee, J.Y.; Oh, J.W.; Lim, H.C.; Lee, D.W.; Choi, S.H.; Cha, J.K. Clinical and Immunological Efficacy of Mangosteen and Propolis Extracted Complex in Patients with Gingivitis: A Multi-Centered Randomized Controlled Clinical Trial. Nutrients 2021, 13, 2604. [Google Scholar] [CrossRef]
- Lisbona-González, M.J.; Muñoz-Soto, E.; Lisbona-González, C.; Vallecillo-Rivas, M.; Diaz-Castro, J.; Moreno-Fernandez, J. Effect of Propolis Paste and Mouthwash Formulation on Healing after Teeth Extraction in Periodontal Disease. Plants 2021, 10, 1603. [Google Scholar] [CrossRef]
- Sparabombe, S.; Monterubbianesi, R.; Tosco, V.; Orilisi, G.; Hosein, A.; Ferrante, L.; Putignano, A.; Orsini, G. Efficacy of an All-Natural Polyherbal Mouthwash in Patients with Periodontitis: A Single-Blind Randomized Controlled Trial. Front. Physiol. 2019, 10, 632. [Google Scholar] [CrossRef]
- Giammarinaro, E.; Marconcini, S.; Genovesi, A.; Poli, G.; Lorenzi, C.; Covani, U. Propolis as an adjuvant to non-surgical periodontal treatment: A clinical study with salivary antioxidant capacity assessment. Minerva Stomatol. 2018, 67, 183–188. [Google Scholar] [CrossRef]
- Bapat, S.; Nagarajappa, R.; Ramesh, G.; Bapat, K. Effect of propolis mouth rinse on oral microorganisms—A randomized controlled trial. Clin. Oral Investig. 2021, 25, 6139–6146. [Google Scholar] [CrossRef]
- Machorowska-Pieniążek, A.; Morawiec, T.; Olek, M.; Mertas, A.; Aebisher, D.; Bartusik-Aebisher, D.; Cieślar, G.; Kawczyk-Krupka, A. Advantages of using toothpaste containing propolis and plant oils for gingivitis prevention and oral cavity hygiene in cleft lip/palate patients. Biomed. Pharmacother. 2021, 142, 111992. [Google Scholar] [CrossRef]
- Dehghani, M.; Abtahi, M.; Hasanzadeh, N.; Farahzad, Z.; Noori, M.; Noori, M. Effect of Propolis mouthwash on plaque and gingival indices over fixed orthodontic patients. J. Clin. Exp. Dent. 2019, 11, e244. [Google Scholar] [CrossRef]
Bee Products/Country of Origin | Bacterial Strain/Yeast Strain/Cell Line | Obtained Results | Reference |
---|---|---|---|
Antimicrobial studies | |||
Propolis (Margalla hills, Islamabad) | Prevotella melaninogenica, Porphyromonas gingivalis, Porphyromonas asaccharolytica and Prevotella intermedia | EEP (30% w/v concentration) shows an inhibitory effect on periodontal bacteria with zone of inhibition 18.3 ± 0.64 mm for P. melaninogenica, 18.9 ± 0.05 mm for P. gingivalis, 22.8 ± 0.28 mm for P. asaccharolytica, and 22.8 ± 0.18 mm for P. intermedia. | [62] |
Propolis (Minas Gerais State, Brazil) | Porphyromonas gingivalis | Result of both assays reported the MIC value of 64 μg/mL (broth) and 128 μg/mL (agar). | [63] |
EEP inhibited P. gingivalis activity and induced cell death within 30 min by increasing membrane permeability. | |||
Ursolic acid inhibited bactericidal activity with membrane rupture. Baccharin and artepillin C show bacteriostatic activities with membrane blebbing. | |||
Propolis (Kopaonik, Serbia) | Periodontopathic bacteria: Fusobacterium nucleatum, Eikenella corrodens and Actinomyces odontolyticus and oral carcinogenic bacteria: Streptococcus mitis, Lactobacillus acidophilus, Streptococcus mutans and Streptococcus sanguis | Propolis with MIC value of 12.5 μg/mL inhibits all periodontopathic bacteria and oral carcinogenic bacteria except L. acidophilus with a MIC value of 6.3 μg/mL. | [64] |
Propolis (Bangalore, India) | Streptococcus mutans (bacterial strain) and Candida albicans (yeast strain) | Propolis with a concentration of 50 μl shows 15.6 mm mean zone of inhibition for Candida albicans as compared to probiotics 12 mm and chlorhexidine 14 mm. | [65] |
For Streptococcus mutans, mean zone of inhibition was 9.4 mm for probiotics, 14 mm for chlorhexidine, and 14.6 mm for propolis. | |||
Propolis (Andean regions, Peru) | Fusobacterium nucleatum and Streptococcus gordonii | Treatment of methanolic fraction of propolis (chloroform partition) formed lower than average thickness biofilms of F. nucleatum and S. gordonii with concentrations of 1.563 mg/mL (7.37 ± 1.620 μm and 9.24 ± 0.679 μm) and 0.78 mg/mL (6.84 ± 1.68 µm and 8.02 ± 1.6 μm). | [66] |
Cytotoxic assay of propolis (chloroform partition) on human gingival fibroblast cell line (HGF-1) at the 0.78 mg/mL dilution shows cell viability of 92.64%. | |||
Antimicrobial study of methanolic fraction of propolis (chloroform residue) shows significant inhibition of F. nucleatum and S. gordonii bacteria with zone of inhibition, 12.15 ± 0.19 mm and 12.55 ± 0.19 mm in comparison to propolis combined with chlorhexidine (14.33 ± 0.19 mm and 14.55 ± 0.19 mm). | |||
Propolis (City of Maceio, Alagoas State, north-eastern Brazil) | Periodontal pathogens present in multispecies biofilm | Propolis with a concentration of 1600 μg/mL shows no significant difference to sample treated with chlorohexidine and decreased the metabolic activity by 45%. | [67] |
Propolis (City of Maceio, Alagoas State, north-eastern Brazil) | Periodontal pathogens present in multispecies biofilm | Propolis with a concentration of (400, 800, and 1600 μg/mL) was found to be effective in reducing metabolic activity of multispecies biofilms (7 days old) by 57, 56, and 56%, respectively, in comparison to 65% reduction with treatment of amoxicillin. | [68] |
Propolis (South America) | Bacteria causing periodontal diseases (Porphyromonas gingivalis), yeast causing candida infections (Candida albicans), and bacteria causing dental caries (Streptococcus mutans) | MIC value of European EEP reported for P. gingivalis was 0.2 mg/mL, for C. albicans was 6.25 mg/mL, and for S. mutans was 0.2 mg/mL. | [69] |
Periodontal biofilm containing bacterial counts 8.99 log10 CFU biofilm formation after 4 h was reduced to 3.21 log10 CFU by propolis with concentration of 100 mg/mL after 4 h treatment. | |||
Carcinogenic control biofilm containing 7.99 log10 CFU biofilm formation after 4 h was reduced to bacterial count of 2.21 log10 CFU by propolis with concentration of 100 mg/mL after 4 h treatment. | |||
Candida biofilm containing bacterial counts 7.74 log10 CFU biofilm formation after 4 h was reduced to 3.65 log10 CFU by propolis with concentration of 100 mg/mL after 4 h treatment. | |||
Propolis (Belo Horizonte, Brazil) | Yeast strain—Candida albicans, Candida tropicalis, Candida glabrata | Propolis shows fungicidal and fungistatic activity on various Candida species, respectively, for C. albicans MIC values were 64–152 and 32–64 μg/mL, for C. tropicalis were 64 and 32–64 μg/mL, and for C. glabrata were 64–256 and 64 μg/mL. | [70] |
Propolis (Okayama, Japan) | P. gingivalis W83 and C57BL/6 mice | Propolis treatment inhibited upregulation of serum endotoxin levels and downregulated P. gingivalis induced hepatic steatosis. | [71] |
Propolis (Gwangju, Republic of Korea) | P. gingivalis KCOM 2804 and Wistar rats (weighing 250–400 g) | Finding shows MEC administration (L + LPS from P. gingivalis + MEC 1:34 group) showed significant reduction in alveolar bone loss and downregulated the expression levels of COX-2, COX-1, MMP- 8, iNOS, PGE2, and IL-8. | [73] |
Propolis (Haj Umran city, Iraq) | Wistar rats (weighing 250–300 g) | Propolis irrigation after scaling root planning shows downregulation in TNF-α, IL-1β, and MDA serum levels as compared to control group with statistically significant difference of p < 0.05 | [74] |
Royal jelly (RHF, Singapore.) | Fusobacterium nucleatum, Prevotella intermedia, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans | Royal jelly with concentration range of 12.5–100 μg/mL shows inhibitory effects on periodontopathic bacteria. | [75] |
Royal jelly (Uttar Pradesh, India) | Periodontopathic bacteria in subgingival plaque | Royal jelly with higher concentrations of 12.5 and 25 μg/mL shows inhibitory effects for anaerobic and aerobic periodontopathic bacteria. | [76] |
Raw honey (Kanpur, India) | Escherichia coli | Zone of inhibition (ZI) for raw honey against patient isolated Escherichia coli with concentration of 75% and 100% is found to be 23 ± 0.666 and 27 ± 1.154 mm which was equivalent to standard tetracycline. | [77] |
Anti-inflammatory activity | |||
Caffeic acid phenethyl ester (Saint Louis, MO, USA) | P. gingivalis and human gingival fibroblasts | CAPE in a dose-dependent manner inhibits LPS induced inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), interleukins (IL-8 and IL-6) production and inhibits protein kinase B (AKT) and phosphatidylinositol 3 kinase (PI3K) phosphorylation. | [78] |
Result of Western blot assay shows that lipopolysaccharide stimulated nuclear factor kappa B (NF-kB) and TLR4/MyD88 activation was suppressed by CAPE treatment. | |||
Purified bee venom (Suwon, Korea) | P. gingivalis, Balb/C mice and Mouse monocyte/macrophage RAW 264.7 cells | Purified bee venom (100 μg/kg) treatment reduces inflammatory bone loss related periodontitis by P. gingivalis and reduced expression of IL-1β and TNF-α in vivo. | [79] |
Purified bee venom treatment suppressed osteoclast specific gene expression of TRAP, cathepsin K, integrin αVβ3, and NFATc1 and suppressed multinucleated osteoclast differentiation induced by RANKL. | |||
Purified bee venom (Suwon, Korea) | P. gingivalis and HaCaT cell line | PGLPS upregulate expression of pro-inflammatory cytokines including IL-1β, IL-8, IL-6, TNF-α, and TLR-4, in addition induced signaling pathway activation of inflammatory cytokines related transcription factors, AP-1, and NF-kB. | [80] |
Further the treatment of bee venom (100 ng/mL) inhibited the pro-inflammatory cytokines by downregulation of AP-1 and NF-kB signaling pathways. | |||
Melittin (Farmingdale, NY, USA) | P. gingivalis and HaCaT cell line | Melittin treatment with concentration of 1 μg/mL downregulated the expression of pro-inflammatory cytokine by suppressing signaling pathway activation of NF-kB, Akt, and ERK. | [81] |
Bee Product/Country of Study | Participants | Interventions | Outcome | Reference |
---|---|---|---|---|
Propolis (Matsudo, Japan) | Total participants (n = 24) Four groups: Group I—placebo (n = 6) Group II—propolis (n = 6) Group III—curry leaf (n = 6) Group IV—minocycline (n = 6) | Propolis ointment was given three times with a 1 month interval to tooth having periodontal pocket ≥ 5mm. | With propolis treatment P. gingivalis is significantly reduced in gingival crevicular fluid and improvement in score of clinical attachment level in propolis (1.67 ± 1.22 mm) is observed. | [82] |
Propolis (Isfahan, Iran) | Total participants (n = 32) Two groups: Group I—propolis (n = 16) Group II—control (n = 16) | The propolis mouthwash (30 drops mixed with 20 mL water) was given to patients twice a day (gargle 1 min) with a 12-hour interval. | Results shows that there is no significant difference (p = 0.91) in plaque index (PI) score of propolis (85.19 ± 51.6%) in comparison to placebo group (83.93 ± 36.1%). | [83] |
Result of papillary bleeding index (PBI) shows significant reduction in PBI of propolis group in comparison with placebo group with significant difference of p < 0.001 between two groups. | ||||
Propolis (South-East, South Korea) | Patients were selected with at least one implant with PM. Total participants (n = 46) Two groups: Group I—propolis test group (n = 23) Group II—control test group (n = 23) | The test group were advised to use gel as toothpaste for 1 month 3 times/day. | In the test group a significant reduction is reported in probing depths (p = 0.27), plaque index score (p = 0.03), and bleeding on probing (p = 0.04) compared to control groups. | [84] |
From baseline to 1 month follow up significant statistical reduction in Porphyromonas gingivalis (p = 0.05) and Tannerella forsythia (p = 0.02) was observed in the test group in comparison with the control group. | ||||
Honey (Belagavi, Karnataka) | Total participants (n = 135) Three groups: Group I—manuka honey (n = 45) Group II—raw honey (n = 45) Group III—control (chlorhexidine) (n = 45) | Instructed to use 10 mL of honey mouthwash twice/day for the course of 21 days. | The GI score of raw honey mouthwash reduced from baseline 1.465 ± 0.17 to 22nd day 0.927 ± 0.26, score of manuka honey mouthwash reduced from baseline 1.457 ± 0.18 to 22nd day 0.976 ± 0.15. | [85] |
The PI score of raw honey mouthwash reduced from baseline 1.525 ± 0.2 to 22nd day 0.723 ± 0.11, score of manuka honey mouthwash reduced from baseline 1.525 ± 0.2 to 22nd day 0.72 ± 0.12. | ||||
Propolis (Seoul, South Korea) | Total participants (n = 80) Two groups: Group I—PME (n = 41) Group II—control or placebo (n = 39) | Patients diagnosed with incipient periodontitis or gingivitis was selected and the patients were advised to take 194 mg of PME capsule daily for the course of 8 weeks. | Result shows significant difference of p = 0.0406 in modified GI between test and control groups during 4 and 8 weeks. | [86] |
Results of test group also reported that increase in salivary matrix metalloproteinase-9 and reduction in IL-6 was observed after 8 weeks. | ||||
Propolis (Granada, Spain) | Total participants (n = 40) Four groups: Group I—placebo or control mouthwash (n = 10), Group II—0.2% chlorhexidine containing mouthwash (n = 10), Group III—2% propolis containing mouthwash (n = 10) and Group IV—0.2% chlorhexidine + 2% propolis (n = 10) | Patients for propolis mouthwash study was advised to use mouthwash 3 times/day for 2 days. | Result of propolis mouthwash assay shows reduction in bacterial proliferation, especially the mouthwash formulation of 0.2% chlorhexidine + 2% propolis reported < 105 CFU. | [87] |
Result of propolis paste assay reported 90% of complete healing in periodontal sockets in comparison with control paste which shows 13.4% complete healing after 3 days of surgery. | ||||
Propolis (Milan, Italy) | Total participants (n = 40) Two groups: Group I—test (phytoherbal group) (n = 20) Group II—control (placebo mouthwash) (n = 20) | Test group was instructed to rinse with mouthwash for 2 min, twice/day for the course of 3 months. | Both control group and test group show a statistically significant reduction from baseline to 3 months in the score of P.D. (CG p = 0.011, TG p = 0.001), FMPS (CG p = 0.003, TG p = 0.001), CAL (CG p = 0.020, TG p < 0.001), and FMBS (CG p = 0.002, TG p = 0.001). | [88] |
Propolis (Pisa, Italy) | Total participants (n = 40) Two groups: Group I—control group (chlorhexidine gel formula + NSPT) Group II—test group (antioxidant gel formula + NSPT) | Propolis and herbs (antioxidant gel) as adjunctive therapy to non-standard periodontal treatment (NSPT). | Test group show better oxidation stress reduction results as compared to placebo group. | [89] |
Propolis (Udaipur, India) | Total participants (n = 120) Four groups: Group I—hot EEP (n = 30), Group II—cold EEP (n = 30), Group III—0.2% chlorhexidine gluconate (n = 30) and Group IV—placebo (distilled water) (n = 30) | Advised to use mouthrinse twice a day for the course of 3 months. | Result shows decline in S. mutans concentration after use of mouth rinse p < 0.05. | [90] |
The cell count of S. mutans and L. acidophilus is found to be decreased in comparison to baseline with use of chlorhexidine mouthwash (5.8 × 102) and hot ethanolic propolis mouthwash (5.5 × 102). | ||||
Significant reduction in plaque scores was observed after the course of 3 months in cold ethanolic propolis (0.46), hot ethanolic propolis (0.47), and chlorhexidine (0.45) mouthwash groups. | ||||
Propolis (Katowice, Poland) | Total participants (n = 50) Two groups: Group I—test group (active ingredient) (n = 25) Group II—control group (placebo) (n = 25) | Patients advised to brush teeth with propolis toothpaste 3 times/day for 3 min over the course of 35 days. | In group A (used toothpaste with propolis and plant oils) for gingival condition, GBI was significantly decreased for molars p = 0.0017, for incisors p = 0.007, and total GBI p = 0.002. | [91] |
Significant improvement in oral hygiene index (OHI) was observed p = 0.011. | ||||
Propolis (Mashhad, Iran) | Total participants (n = 40) Two groups: Group I—test group (propolis mouthwash) (n = 20) Group II—control group (chlorhexidine mouthwash) (n = 20) | Test group was advised to use propolis mouthwash for 3 weeks after brushing their teeth twice/day consecutively. | A statistically significant difference between the score of periodontal index (p = 0.005), PI (p < 0.001) and GI (p = 0.006) in the test group is observed. | [92] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, M.; Prakash, S.; Radha; Lorenzo, J.M.; Chandran, D.; Dhumal, S.; Dey, A.; Senapathy, M.; Rais, N.; Singh, S.; et al. Apitherapy and Periodontal Disease: Insights into In Vitro, In Vivo, and Clinical Studies. Antioxidants 2022, 11, 823. https://doi.org/10.3390/antiox11050823
Kumar M, Prakash S, Radha, Lorenzo JM, Chandran D, Dhumal S, Dey A, Senapathy M, Rais N, Singh S, et al. Apitherapy and Periodontal Disease: Insights into In Vitro, In Vivo, and Clinical Studies. Antioxidants. 2022; 11(5):823. https://doi.org/10.3390/antiox11050823
Chicago/Turabian StyleKumar, Manoj, Suraj Prakash, Radha, José M. Lorenzo, Deepak Chandran, Sangram Dhumal, Abhijit Dey, Marisennayya Senapathy, Nadeem Rais, Surinder Singh, and et al. 2022. "Apitherapy and Periodontal Disease: Insights into In Vitro, In Vivo, and Clinical Studies" Antioxidants 11, no. 5: 823. https://doi.org/10.3390/antiox11050823