Preparation, Characterization, and Antioxidant Activity of Nanoemulsions Incorporating Lemon Essential Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Methods
2.2.1. Extraction and GC-MS Analysis of Lemon Essential Oil (LEO)
2.2.2. Preparation of Lemon Oil-Based Nanoemulsions (LEO-NEs)
2.3. Optimization and Statistical Design of LEO-NEs
2.3.1. Single-Factor Experiments (SFE)
2.3.2. Response Surface Methodology (RSM) Design
2.4. Characterization of LEO-NEs
2.4.1. Mean Droplet Size and Polydispersity Index (PDI) of LEO-NEs
2.4.2. Transmission Electron Microscopy (TEM) Images of LEO-NEs
2.4.3. DPPH Radical-Scavenging Activity
2.4.4. ABTs Radical-Scavenging Activity
2.5. Data Analysis
3. Results
3.1. Chemical Composition of the Lemon Essential Oil
3.2. Single-Factor Experiments
3.2.1. Effect of HLB Value on the Mean Droplet Size of LEO-NEs
3.2.2. Effect of Essential Oil Concentration on the Mean Droplet Size of LEO-NEs
3.2.3. Effect of Surfactant Concentration on the Mean Droplet Size of LEO-NEs
3.2.4. Effect of Ultrasonic Time on the Mean Droplet Size of LEO-NEs
3.2.5. Effect of Ultrasonic Power on the Mean Droplet Size of LEO-NEs
3.3. Response Surface Optimization of LEO-NEs
3.4. Physicochemical Properties and Stability of LEO-NEs
3.4.1. Morphological Observation of LEO-NEs
3.4.2. Changes in Particle Size of LEO-NEs during the Storage Period
3.4.3. Antioxidant Activity of LEO-NEs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ilic, Z.S.; Milenkovic, L.; Tmusic, N.; Stanojevic, L.; Stanojevic, J.; Cvetkovic, D. Essential oils content, composition and antioxidant activity of lemon balm, mint and sweet basil from Serbia. LWT 2022, 153, 112210. [Google Scholar] [CrossRef]
- Herrera-Calderon, O.; Chacaltana-Ramos, L.J.; Huayanca-Gutierrez, I.C.; Algarni, M.A.; Alqarni, M.; Batiha, G.E.S. Chemical Constituents, In Vitro Antioxidant Activity and In Silico Study on NADPH Oxidase of Allium sativum L. (Garlic) Essential Oil. Antioxidants 2021, 10, 1844. [Google Scholar] [CrossRef] [PubMed]
- Pucci, M.; Raimondo, S.; Zichittella, C.; Tinnirello, V.; Corleone, V.; Aiello, G.; Moschetti, M.; Conigliaro, A.; Fontana, S.; Alessandro, R. Biological Properties of a Citral-Enriched Fraction of Citrus limon Essential Oil. Foods 2020, 9, 1290. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.J.; Gao, Z.P.; Li, G.Y.; Fu, F.H.; Liang, Z.E.N.; Zhu, H.; Shan, Y. Antimicrobial and antibiofilm efficacy and mechanism of essential oil from Citrus Changshan-huyou Y. B. chang against Listeria monocytogenes. Food Control 2019, 105, 256–264. [Google Scholar] [CrossRef]
- Sharma, N.; Tripathi, A. Effects of Citrus sinensis (L.) Osbeck epicarp essential oil on growth and morphogenesis of Aspergillus niger (L.) Van Tieghem. Microbiol. Res. 2008, 163, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.J.; Gao, Z.P.; Xia, J.L.; Ritenour, M.A.; Li, G.Y.; Shan, Y. Comparative analysis of chemical composition, antimicrobial and antioxidant activity of citrus essential oils from the main cultivated varieties in China. LWT 2018, 97, 825–839. [Google Scholar] [CrossRef]
- Ben Hsouna, A.; Ben Halima, N.; Smaoui, S.; Hamdi, N. Citrus lemon essential oil: Chemical composition, antioxidant and antimicrobial activities with its preservative effect against Listeria monocytogenes inoculated in minced beef meat. Lipids Health Dis. 2017, 16, 146. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Lopez, J.; Viuda-Martos, M. Introduction to the Special Issue: Application of Essential Oils in Food Systems. Foods 2018, 7, 56. [Google Scholar] [CrossRef] [Green Version]
- Aghababaei, F.; Cano-Sarabia, M.; Trujillo, A.J.; Quevedo, J.M.; Ferragut, V. Buttermilk as Encapsulating Agent: Effect of Ultra-High-Pressure Homogenization on Chia Oil-in-Water Liquid Emulsion Formulations for Spray Drying. Foods 2021, 10, 1059. [Google Scholar] [CrossRef]
- Lawrence, M.J.; Rees, G.D. Microemulsion-based media as novel drug delivery systems. Adv. Drug Deliv. Rev. 2012, 64, 175–193. [Google Scholar] [CrossRef]
- Zainol, S.; Basri, M.; Bin Basri, H.; Shamsuddin, A.F.; Abdul-Gani, S.S.; Karjiban, R.A.; Abdul-Malek, E. Formulation Optimization of a Palm-Based Nanoemulsion System Containing Levodopa. Int. J. Mol. Sci. 2012, 13, 13049–13064. [Google Scholar] [CrossRef] [PubMed]
- Walker, R.M.; Decker, E.A.; McClements, D.J. Physical and oxidative stability of fish oil nanoemulsions produced by spontaneous emulsification: Effect of surfactant concentration and particle size. J. Food Eng. 2015, 164, 10–20. [Google Scholar] [CrossRef]
- Mossa, A.T.H.; Mohafrash, S.M.M.; Ziedan, E.S.H.E.; Abdelsalam, I.S.; Sahab, A.F. Development of eco-friendly nanoemulsions of some natural oils and evaluating of its efficiency against postharvest fruit rot fungi of cucumber. Ind. Crop. Prod. 2021, 159, 113049. [Google Scholar] [CrossRef]
- Falleh, H.; Ben Jemaa, M.; Neves, M.A.; Isoda, H.; Nakajima, M.; Ksouri, R. Peppermint and Myrtle nanoemulsions: Formulation, stability, and antimicrobial activity. LWT 2021, 152, 112377. [Google Scholar] [CrossRef]
- Tadros, T.; Izquierdo, P.; Esquena, J.; Solans, C. Formation and stability of nano-emulsions. Adv. Colloid Interface Sci. 2004, 108–109, 303–318. [Google Scholar] [CrossRef]
- Ngan, C.L.; Basri, M.; Lye, F.F.; Masoumi, H.R.F.; Tripathy, M.; Karjiban, R.A.; Abdul-Malek, E. Comparison of process parameter optimization using different designs in nanoemulsion-based formulation for transdermal delivery of fullerene. Int. J. Nanomed. 2014, 9, 4375–4386. [Google Scholar] [CrossRef] [Green Version]
- Yukuyama, M.N.; Ghisleni, D.D.M.; Pinto, T.J.A.; Bou-Chacra, N.A. Nanoemulsion: Process selection and application in cosmetics—A review. Int. J. Cosmet. Sci. 2016, 38, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Sepahvand, S.; Amiri, S.; Radi, M.; Akhavan, H.R. Antimicrobial Activity of Thymol and Thymol-Nanoemulsion Against Three Food-Borne Pathogens Inoculated in a Sausage Model. Food Bioprocess Technol. 2021, 14, 1936–1945. [Google Scholar] [CrossRef]
- Gao, Z.P.; Zhong, W.M.; Chen, K.Y.; Tang, P.Y.; Guo, J.J. Chemical composition and anti-biofilm activity of essential oil from Citrus medica L. var. sarcodactylis Swingle against Listeria monocytogenes. Ind. Crop. Prod. 2020, 144, 112036. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Z.L.; Wang, X.M.; Zhang, F.J.; Huang, X.; Li, J.R.; Sun, X.; Guo, Y.M.; Han, X.B. Effect of HLB value on the properties of chitosan/zein/lemon essential oil film-forming emulsion and composite film. Int. J. Food Sci. Technol. 2021, 56, 4925–4933. [Google Scholar] [CrossRef]
- Nirmal, N.P.; Mereddy, R.; Li, L.; Sultanbawa, Y. Formulation, characterisation and antibacterial activity of lemon myrtle and anise myrtle essential oil in water nanoemulsion. Food Chem. 2018, 254, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelhameed, M.F.; Asaad, G.F.; Ragab, T.I.M.; Ahmed, R.F.; El Gendy, A.G.; Abd El-Rahman, S.S.; Elgamal, A.M.; Elshamy, A.I. Oral and Topical Anti-Inflammatory and Antipyretic Potentialities of Araucaria bidiwillii Shoot Essential Oil and Its Nanoemulsion in Relation to Chemical Composition. Molecules 2021, 26, 5833. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Zhang, J.R.; Li, H.B.; Wu, D.T.; Geng, F.; Corke, H.; Wei, X.L.; Gan, R.Y. Green Extraction of Antioxidant Polyphenols from Green Tea (Camellia sinensis). Antioxidants 2020, 9, 785. [Google Scholar] [CrossRef] [PubMed]
- Maran, J.P.; Priya, B. Ultrasound-assisted extraction of polysaccharide from Nephelium lappaceum L. fruit peel. Int. J. Biol. Macromol. 2014, 70, 530–536. [Google Scholar] [CrossRef]
- Hirai, M.; Ota, Y.; Ito, M. Diversity in principal constituents of plants with a lemony scent and the predominance of citral. J. Nat. Med. 2022, 76, 254–258. [Google Scholar] [CrossRef]
- Aguilar-Hernandez, M.G.; Sanchez-Bravo, P.; Hernandez, F.; Carbonell-Barrachina, A.A.; Pastor-Perez, J.J.; Legua, P. Determination of the Volatile Profile of Lemon Peel Oils as Affected by Rootstock. Foods 2020, 9, 241. [Google Scholar] [CrossRef] [Green Version]
- Perdones, A.; Escriche, I.; Chiralt, A.; Vargas, M. Effect of chitosan-lemon essential oil coatings on volatile profile of strawberries during storage. Food Chem. 2016, 197, 979–986. [Google Scholar] [CrossRef]
- Campolo, O.; Romeo, F.V.; Algeri, G.M.; Laudani, F.; Malacrino, A.; Timpanaro, N.; Palmeri, V. Larvicidal Effects of Four Citrus Peel Essential Oils Against the Arbovirus Vector Aedes albopictus (Diptera: Culicidae). J. Econ. Entomol. 2016, 109, 360–365. [Google Scholar] [CrossRef]
- Roberto, D.; Micucci, P.; Sebastian, T.; Graciela, F.; Anesini, C. Antioxidant Activity of Limonene on Normal Murine Lymphocytes: Relation to H2O2 Modulation and Cell Proliferation. Basic Clin. Pharmacol. 2010, 106, 38–44. [Google Scholar] [CrossRef]
- Piccialli, I.; Tedeschi, V.; Caputo, L.; Amato, G.; De Martino, L.; De Feo, V.; Secondo, A.; Pannaccione, A. The Antioxidant Activity of Limonene Counteracts Neurotoxicity Triggered byA β(1–42) Oligomers in Primary Cortical Neurons. Antioxidants 2021, 10, 937. [Google Scholar] [CrossRef]
- Ozogul, Y.; El Abed, N.; Ozogul, F. Antimicrobial effect of laurel essential oil nanoemulsion on food-borne pathogens and fish spoilage bacteria. Food Chem. 2022, 368, 130831. [Google Scholar] [CrossRef] [PubMed]
- Yazgan, H.; Ozogul, Y.; Kuley, E. Antimicrobial influence of nanoemulsified lemon essential oil and pure lemon essential oil on food-borne pathogens and fish spoilage bacteria. Int. J. Food Microbiol. 2019, 306, 108266. [Google Scholar] [CrossRef] [PubMed]
- Walker, R.M.; Gumus, C.E.; Decker, E.A.; McClements, D.J. Improvements in the formation and stability of fish oil-in-water nanoemulsions using carrier oils: MCT, thyme oil, & lemon oil. J. Food Eng. 2017, 211, 60–68. [Google Scholar] [CrossRef]
- Ziani, K.; Fang, Y.; McClements, D.J. Fabrication and stability of colloidal delivery systems for flavor oils: Effect of composition and storage conditions. Food Res. Int. 2012, 46, 209–216. [Google Scholar] [CrossRef]
- Ziani, K.; Fang, Y.; McClements, D.J. Encapsulation of functional lipophilic components in surfactant-based colloidal delivery systems: Vitamin E, vitamin D, and lemon oil. Food Chem. 2012, 134, 1106–1112. [Google Scholar] [CrossRef]
- Smejkal, G.B.; Ting, E.Y.; Nambi, K.N.A.; Schumacher, R.T.; Lazarev, A.V. Characterization of Astaxanthin Nanoemulsions Produced by Intense Fluid Shear through a Self-Throttling Nanometer Range Annular Orifice Valve-Based High-Pressure Homogenizer. Molecules 2021, 26, 2856. [Google Scholar] [CrossRef]
- Gulotta, A.; Saberi, A.H.; Nicoli, M.C.; McClements, D.J. Nanoemulsion-Based Delivery Systems for Polyunsaturated (ω-3) Oils: Formation Using a Spontaneous Emulsification Method. J. Agric. Food Chem. 2014, 62, 1720–1725. [Google Scholar] [CrossRef]
- Fathordoobady, F.; Sannikova, N.; Guo, Y.G.; Singh, A.; Kitts, D.D.; Pratap-Singh, A. Comparing microfluidics and ultrasonication as formulation methods for developing hempseed oil nanoemulsions for oral delivery applications. Sci. Rep. 2021, 11, 72. [Google Scholar] [CrossRef]
- Gupta, A.; Eral, H.B.; Hatton, T.A.; Doyle, P.S. Controlling and predicting droplet size of nanoemulsions: Scaling relations with experimental validation. Soft Matter 2016, 12, 1452–1458. [Google Scholar] [CrossRef] [Green Version]
- Kentish, S.; Wooster, T.J.; Ashokkumar, M.; Balachandran, S.; Mawson, R.; Simons, L. The use of ultrasonics for nanoemulsion preparation. Innov. Food Sci. Emerg. Technol. 2008, 9, 170–175. [Google Scholar] [CrossRef]
- Floris, A.; Meloni, M.C.; Lai, F.; Marongiu, F.; Maccioni, A.M.; Sinico, C. Cavitation effect on chitosan nanoparticle size: A possible approach to protect drugs from ultrasonic stress. Carbohyd. Polym. 2013, 94, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Moazeni, M.; Davari, A.; Shabanzadeh, S.; Akhtari, J.; Saeedi, M.; Mortyeza-Semnani, K.; Abastabar, M.; Nabili, M.; Moghadam, F.H.; Roohi, B.; et al. In vitro antifungal activity of Thymus vulgaris essential oil nanoemulsion. J. Herb. Med. 2021, 28, 100452. [Google Scholar] [CrossRef]
- Aziz, Z.A.A.; Nasir, H.M.; Ahmad, A.; Setapar, S.H.M.; Ahmad, H.; Noor, M.H.M.; Rafatullah, M.; Khatoon, A.; Kausar, M.A.; Ahmad, I.; et al. Enrichment of Eucalyptus oil nanoemulsion by micellar nanotechnology: Transdermal analgesic activity using hot plate test in rats’ assay. Sci. Rep. 2019, 9, 13678. [Google Scholar] [CrossRef] [PubMed]
- Romes, N.B.; Abdul Wahab, R.; Abdul Hamid, M.; Oyewusi, H.A.; Huda, N.; Kobun, R. Thermodynamic stability, in-vitro permeability, and in-silico molecular modeling of the optimal Elaeis guineensis leaves extract water-in-oil nanoemulsion. Sci. Rep. 2021, 11, 20851. [Google Scholar] [CrossRef]
- Kaur, K.; Kumar, R.; Arpita; Goel, S.; Uppal, S.; Bhatia, A.; Mehta, S.K. Physiochemical and cytotoxicity study of TPGS stabilized nanoemulsion designed by ultrasonication method. Ultrason. Sonochem. 2017, 34, 173–182. [Google Scholar] [CrossRef]
- Zhong, W.M.; Tang, P.Y.; Liu, T.; Zhao, T.Y.; Guo, J.J.; Gao, Z.P. Linalool Nanoemulsion Preparation, Characterization and Antimicrobial Activity against Aeromonas hydrophila. Int. J. Mol. Sci. 2021, 22, 11003. [Google Scholar] [CrossRef]
- Azizkhani, M.; Kiasari, F.J.; Tooryan, F.; Shahavi, M.H.; Partovi, R. Preparation and evaluation of food-grade nanoemulsion of tarragon (Artemisia dracunculus L.) essential oil: Antioxidant and antibacterial properties. J. Food Sci. Technol. 2021, 58, 1341–1348. [Google Scholar] [CrossRef]
- Aouf, A.; Ali, H.; Al-Khalifa, A.R.; Mahmoud, K.F.; Farouk, A. Influence of Nanoencapsulation Using High-Pressure Homogenization on the Volatile Constituents and Anticancer and Antioxidant Activities of Algerian Saccocalyx satureioides Coss. et Durieu. Molecules 2020, 25, 4756. [Google Scholar] [CrossRef]
- da Costa, J.S.; Barroso, A.S.; Mourao, R.H.V.; da Silva, J.K.R.; Maia, J.G.S.; Figueiredo, P.L.B. Seasonal and Antioxidant Evaluation of Essential Oil from Eugenia uniflora L., Curzerene-Rich, Thermally Produced in Situ. Biomolecules 2020, 10, 328. [Google Scholar] [CrossRef] [Green Version]
Factors of SFE | Variables | |||||||
---|---|---|---|---|---|---|---|---|
HLB value of STmix | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
concentration of LEO (g/mL) | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 | 0.1 | ||
STmix content (g/mL) | 0.0125 | 0.025 | 0.05 | 0.1 | 0.2 | |||
ultrasonic time (min) | 0 | 10 | 20 | 30 | 40 | |||
ultrasonic power (W) | 100 | 300 | 500 | 700 | 900 | |||
Independent Variables of RSM | Levels | |||||||
−1 | 0 | 1 | ||||||
A: HLB value of STmix | 11 | 12 | 13 | |||||
B: content of STmix (g/mL) | 0.05 | 0.125 | 0.2 | |||||
C: ultrasonic time (min) | 10 | 20 | 30 | |||||
D: ultrasonic power (W) | 500 | 700 | 900 |
HLB | Span 80 (%) | Tween 80 (%) |
---|---|---|
8 | 65.4 | 34.6 |
9 | 56.9 | 43.1 |
10 | 46.7 | 53.3 |
11 | 37.4 | 62.6 |
12 | 28 | 72 |
13 | 18.7 | 81.3 |
14 | 9.3 | 90.7 |
15 | 0 | 100 |
No | Main Component | Content (%) | Classification |
---|---|---|---|
1 | Limonene | 48.54 | Monoterpene Hydrocarbons |
2 | α-Pinene | 30.9 | Monoterpene Hydrocarbons |
3 | β-Citral | 3.65 | Monoterpene aldehydes |
4 | β-Myrcene | 3.01 | Monoterpene Hydrocarbons |
5 | Neryl Acetate | 1.74 | Oxygenated Terpenes |
6 | β-Bisabolene | 1.31 | Sesquiterpene Hydrocarbons |
7 | α-Terpineol | 1.11 | Oxygenated Terpenes |
8 | Terpinolene | 1.08 | Monoterpene Hydrocarbons |
9 | α-bergamotene | 0.97 | Sesquiterpene Hydrocarbons |
10 | Thujane | 0.85 | Monoterpene alkanes |
11 | Caryophyllene | 0.72 | Sesquiterpene Hydrocarbons |
12 | 4-Terpineol | 0.68 | Oxygenated Terpenes |
13 | Geraniol | 0.68 | Oxygenated Terpenes |
14 | Nerol | 0.61 | Oxygenated Terpenes |
15 | Valencene | 0.51 | Sesquiterpene Hydrocarbons |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 19,794.11 | 22 | 899.73 | 8.11 | 0.0077 | significant |
A-HLB | 881.89 | 1 | 881.89 | 7.95 | 0.0304 | |
B-Surfactant content | 188.81 | 1 | 188.81 | 1.7 | 0.2398 | |
C-Ultrasonic time | 4009.95 | 1 | 4009.95 | 36.14 | 0.001 | |
D-Ultrasonic power | 411.79 | 1 | 411.79 | 3.71 | 0.1023 | |
AB | 116.53 | 1 | 116.53 | 1.05 | 0.3449 | |
AC | 95.39 | 1 | 95.39 | 0.8598 | 0.3896 | |
AD | 26.95 | 1 | 26.95 | 0.243 | 0.6396 | |
BC | 1241.27 | 1 | 1241.27 | 11.19 | 0.0155 | |
BD | 154.36 | 1 | 154.36 | 1.39 | 0.2828 | |
CD | 36.29 | 1 | 36.29 | 0.3271 | 0.5881 | |
A2 | 100.41 | 1 | 100.41 | 0.905 | 0.3782 | |
B2 | 2505.85 | 1 | 2505.85 | 22.59 | 0.0032 | |
C2 | 1357.05 | 1 | 1357.05 | 12.23 | 0.0129 | |
D2 | 72.53 | 1 | 72.53 | 0.6538 | 0.4496 | |
Residual | 665.65 | 6 | 110.94 | |||
Lack of Fit | 514.75 | 2 | 257.38 | 6.82 | 0.0514 | not significant |
Run | HLB | Surfactant Content (g/mL) | Ultrasound Time (min) | Ultrasound Power (W) | Mean Droplet Size (nm) |
---|---|---|---|---|---|
1 | 12 | 0.2 | 20 | 500 | 132.53 |
2 | 12 | 0.2 | 20 | 900 | 101.51 |
3 | 12 | 0.125 | 10 | 900 | 119.93 |
4 | 11 | 0.2 | 20 | 700 | 94.85 |
5 | 11 | 0.125 | 20 | 900 | 104.0 |
6 | 13 | 0.125 | 30 | 700 | 87.79 |
7 | 11 | 0.125 | 20 | 500 | 129.70 |
8 | 12 | 0.05 | 20 | 900 | 75.35 |
9 | 13 | 0.125 | 20 | 900 | 79.50 |
10 | 13 | 0.125 | 20 | 500 | 94.81 |
11 | 12 | 0.125 | 30 | 500 | 76.90 |
12 | 13 | 0.125 | 10 | 700 | 119.75 |
13 | 12 | 0.125 | 10 | 500 | 146.25 |
14 | 12 | 0.05 | 20 | 500 | 131.22 |
15 | 12 | 0.125 | 20 | 700 | 94.79 |
16 | 13 | 0.2 | 20 | 700 | 80.56 |
17 | 11 | 0.125 | 30 | 700 | 81.59 |
18 | 12 | 0.125 | 20 | 700 | 92.41 |
19 | 12 | 0.2 | 10 | 700 | 184.80 |
20 | 12 | 0.125 | 20 | 700 | 91.35 |
21 | 12 | 0.05 | 10 | 700 | 130.87 |
22 | 12 | 0.125 | 20 | 700 | 83.11 |
23 | 12 | 0.125 | 30 | 900 | 62.63 |
24 | 11 | 0.05 | 20 | 700 | 123.07 |
25 | 12 | 0.05 | 30 | 700 | 108.12 |
26 | 13 | 0.05 | 20 | 700 | 130.37 |
27 | 12 | 0.125 | 20 | 700 | 80.830 |
28 | 12 | 0.2 | 30 | 700 | 91.587 |
29 | 11 | 0.125 | 10 | 700 | 133.083 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Gao, Z.; Zhong, W.; Fu, F.; Li, G.; Guo, J.; Shan, Y. Preparation, Characterization, and Antioxidant Activity of Nanoemulsions Incorporating Lemon Essential Oil. Antioxidants 2022, 11, 650. https://doi.org/10.3390/antiox11040650
Liu T, Gao Z, Zhong W, Fu F, Li G, Guo J, Shan Y. Preparation, Characterization, and Antioxidant Activity of Nanoemulsions Incorporating Lemon Essential Oil. Antioxidants. 2022; 11(4):650. https://doi.org/10.3390/antiox11040650
Chicago/Turabian StyleLiu, Ting, Zhipeng Gao, Weiming Zhong, Fuhua Fu, Gaoyang Li, Jiajing Guo, and Yang Shan. 2022. "Preparation, Characterization, and Antioxidant Activity of Nanoemulsions Incorporating Lemon Essential Oil" Antioxidants 11, no. 4: 650. https://doi.org/10.3390/antiox11040650
APA StyleLiu, T., Gao, Z., Zhong, W., Fu, F., Li, G., Guo, J., & Shan, Y. (2022). Preparation, Characterization, and Antioxidant Activity of Nanoemulsions Incorporating Lemon Essential Oil. Antioxidants, 11(4), 650. https://doi.org/10.3390/antiox11040650