Urinary Nitric Oxide Levels Are Associated with Blood Pressure, Fruit and Vegetable Intake and Total Polyphenol Excretion in Adolescents from the SI! Program
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sample Selection
2.2. Anthropometric Measurements
2.3. Cardiovascular Measurements
2.4. Urinary Biochemical Analyses
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BMI | body mass index |
BP | blood pressure |
CVH | cardiovascular health |
CVHs | cardiovascular health score |
DBP | diastolic blood pressure |
eNOS | endothelial nitric oxide synthase |
NO | nitric oxide |
NOX | NADPH oxidases |
ROS | reactive oxygen |
SBP | systolic blood pressure |
TC | total cholesterol |
TPE | total polyphenol excretion |
References
- World Health Organization Cardiovascular Diseases (CVDs). Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 3 October 2022).
- Bondonno, C.P.; Croft, K.D.; Hodgson, J.M. Dietary Nitrate, Nitric Oxide, and Cardiovascular Health. Crit. Rev. Food Sci. Nutr. 2016, 56, 2036–2052. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cyr, A.R.; Huckaby, L.V.; Shiva, S.S.; Zuckerbraun, B.S. Nitric Oxide and Endothelial Dysfunction. Crit. Care Clin. 2020, 36, 307–321. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, J.O.; Carlström, M.; Weitzberg, E. Metabolic Effects of Dietary Nitrate in Health and Disease. Cell Metab. 2018, 28, 9–22. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Karwowska, M.; Kononiuk, A. Nitrates/Nitrites in Food—Risk for Nitrosative Stress and Benefits. Antioxidants 2020, 9, 241. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bryan, N.S.; Loscalzo, J. (Eds.) Nitrite and Nitrate in Human Health and Disease; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-46187-8. [Google Scholar]
- Jackson, J.; Patterson, A.J.; MacDonald-Wicks, L.; McEvoy, M. The Role of Inorganic Nitrate and Nitrite in CVD. Nutr. Res. Rev. 2017, 30, 247–264. [Google Scholar] [CrossRef]
- dos Santos Baião, D.; Vieira Teixeira da Silva, D.; Margaret Flosi Paschoalin, V. A Narrative Review on Dietary Strategies to Provide Nitric Oxide as a Non-Drug Cardiovascular Disease Therapy: Beetroot Formulations—A Smart Nutritional Intervention. Foods 2021, 10, 859. [Google Scholar] [CrossRef]
- Bowtell, J.; Kelly, V. Fruit-Derived Polyphenol Supplementation for Athlete Recovery and Performance. Sports Med. 2019, 49, 3–23. [Google Scholar] [CrossRef][Green Version]
- Henning, S.M.; Yang, J.; Shao, P.; Lee, R.-P.; Huang, J.; Ly, A.; Hsu, M.; Lu, Q.-Y.; Thames, G.; Heber, D.; et al. Health Benefit of Vegetable/Fruit Juice-Based Diet: Role of Microbiome. Sci. Rep. 2017, 7, 2167. [Google Scholar] [CrossRef][Green Version]
- Pellegrino, D. Antioxidants and Cardiovascular Risk Factors. Diseases 2016, 4, 11. [Google Scholar] [CrossRef][Green Version]
- Yamagata, K. Polyphenols Regulate Endothelial Functions and Reduce the Risk of Cardiovascular Disease. Curr. Pharm. Des. 2019, 25, 2443–2458. [Google Scholar] [CrossRef]
- Abdelghany, T.M.; Ismail, R.S.; Mansoor, F.A.; Zweier, J.R.; Lowe, F.; Zweier, J.L. Cigarette Smoke Constituents Cause Endothelial Nitric Oxide Synthase Dysfunction and Uncoupling Due to Depletion of Tetrahydrobiopterin with Degradation of GTP Cyclohydrolase. Nitric Oxide 2018, 76, 113–121. [Google Scholar] [CrossRef]
- Costa, E.D.; Silva, J.F.; Garcia, D.C.; Wainstein, A.J.; Rezende, B.A.; Tostes, R.C.; Teixeira, M.M.; Cortes, S.F.; Lemos, V.S. Decreased Expression of Neuronal Nitric Oxide Synthase Contributes to the Endothelial Dysfunction Associated with Cigarette Smoking in Human. Nitric Oxide 2020, 98, 20–28. [Google Scholar] [CrossRef]
- Correia-Costa, L.; Sousa, T.; Morato, M.; Cosme, D.; Afonso, J.; Areias, J.C.; Schaefer, F.; Guerra, A.; Afonso, A.C.; Azevedo, A.; et al. Oxidative Stress and Nitric Oxide Are Increased in Obese Children and Correlate with Cardiometabolic Risk and Renal Function. Br. J. Nutr. 2016, 116, 805–815. [Google Scholar] [CrossRef][Green Version]
- Orlando, A.; Viazzi, F.; Giussani, M.; Nava, E.; Cazzaniga, E.; Bonino, B.; Palestini, P.; Parati, G.; Genovesi, S. Endothelin-1/Nitric Oxide Balance and HOMA Index in Children with Excess Weight and Hypertension: A Pathophysiological Model of Hypertension. Hypertens. Res. 2019, 42, 1192–1199. [Google Scholar] [CrossRef]
- Tousoulis, D.; Kampoli, A.-M.; Tentolouris Nikolaos Papageorgiou, C.; Stefanadis, C. The Role of Nitric Oxide on Endothelial Function. Curr. Vasc. Pharmacol. 2012, 10, 4–18. [Google Scholar] [CrossRef]
- Xia, N.; Förstermann, U.; Li, H. Resveratrol and Endothelial Nitric Oxide. Molecules 2014, 19, 16102–16121. [Google Scholar] [CrossRef]
- Aflyatumova, G.N.; Nigmatullina, R.; Sadykova, D.I.; Chibireva, M.D.; Fugetto, F.; Serra, R. Endothelin-1, Nitric Oxide, Serotonin and High Blood Pressure in Male Adolescents. Vasc. Health Risk Manag. 2018, 14, 213–223. [Google Scholar] [CrossRef][Green Version]
- Al-Daghri, N.M.; Bukhari, I.; Yakout, S.M.; Sabico, S.; Khattak, M.N.K.; Aziz, I.; Alokail, M.S. Associations of Serum Nitric Oxide with Vitamin D and Other Metabolic Factors in Apparently Healthy Adolescents. BioMed Res. Int. 2018, 2018, 1489132. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ashworth, A.; Bescos, R. Dietary Nitrate and Blood Pressure: Evolution of a New Nutrient? Nutr. Res. Rev. 2017, 30, 208–219. [Google Scholar] [CrossRef][Green Version]
- d’El-Rei, J.; Cunha, A.R.; Trindade, M.; Neves, M.F. Beneficial Effects of Dietary Nitrate on Endothelial Function and Blood Pressure Levels. Int. J. Hypertens. 2016, 2016, 6791519. [Google Scholar] [CrossRef]
- Gumanova, N.G.; Gorshkov, A.U.; Klimushina, M.V.; Kots, A.Y. Associations of Endothelial Biomarkers, Nitric Oxide Metabolites and Endothelin, with Blood Pressure and Coronary Lesions Depend on Cardiovascular Risk and Sex to Mark Endothelial Dysfunction on the SCORE Scale. Horm. Mol. Biol. Clin. Investig. 2020, 41, 20200024. [Google Scholar] [CrossRef] [PubMed]
- Lloyd-Jones, D.M.; Hong, Y.; Labarthe, D.; Mozaffarian, D.; Appel, L.J.; Van Horn, L.; Greenlund, K.; Daniels, S.; Nichol, G.; Tomaselli, G.F.; et al. Defining and Setting National Goals for Cardiovascular Health Promotion and Disease Reduction: The American Heart Association’s Strategic Impact Goal Through 2020 and Beyond. Circulation 2010, 121, 586–613. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Fernandez-Jimenez, R.; Santos-Beneit, G.; Tresserra-Rimbau, A.; Bodega, P.; de Miguel, M.; de Cos-Gandoy, A.; Rodríguez, C.; Carral, V.; Orrit, X.; Haro, D.; et al. Rationale and Design of the School-Based SI! Program to Face Obesity and Promote Health among Spanish Adolescents: A Cluster-Randomized Controlled Trial. Am. Heart J. 2019, 215, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Savva, S.; Tornaritis, M.; Savva, M.; Kourides, Y.; Panagi, A.; Silikiotou, N.; Georgiou, C.; Kafatos, A. Waist Circumference and Waist-to-Height Ratio Are Better Predictors of Cardiovascular Disease Risk Factors in Children than Body Mass Index. Int. J. Obes. 2000, 24, 1453–1458. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cole, T.J.; Lobstein, T. Extended International (IOTF) Body Mass Index Cut-Offs for Thinness, Overweight and Obesity: Extended International BMI Cut-Offs. Pediatr. Obes. 2012, 7, 284–294. [Google Scholar] [CrossRef]
- Sharma, A.K.; Metzger, D.L.; Daymont, C.; Hadjiyannakis, S.; Rodd, C.J. LMS Tables for Waist-Circumference and Waist-Height Ratio Z-Scores in Children Aged 5–19 y in NHANES III: Association with Cardio-Metabolic Risks. Pediatr. Res. 2015, 78, 723–729. [Google Scholar] [CrossRef]
- Torres Lana, A.; Morales Núñez, A.; Ramallo Fariña, Y.; Ramos-Goñi, J.; Linertová, R.; Duque González, B.; León González, E. Evaluación de una Intervención Sobre Tabaquismo en Enseñanza Secundaria. Programa ITES; Ministerio de Ciencia e Innovación: Madrid, Spain, 2010; p. 94.
- Chandler, J.L.; Brazendale, K.; Beets, M.W.; Mealing, B.A. Classification of Physical Activity Intensities Using a Wrist-Worn Accelerometer in 8-12-Year-Old Children: Wrist-Worn Accelerometry in Children. Pediatr. Obes. 2016, 11, 120–127. [Google Scholar] [CrossRef]
- McDowell, M.A.; Fryar, C.D.; Ogden, C.L.; Flegal, K.M. Anthropometric Reference Data for Children and Adults: United States, 2007–2010. Vital Health Stat. 2012, 252, 1–48. [Google Scholar]
- Flynn, J.T.; Kaelber, D.C.; Baker-Smith, C.M.; Blowey, D.; Carroll, A.E.; Daniels, S.R.; de Ferranti, S.D.; Dionne, J.M.; Falkner, B.; Flinn, S.K.; et al. Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents. JAMA Pediatr. 2018, 172, 1087. [Google Scholar] [CrossRef]
- Whitehead, S.J.; Ford, C.; Gama, R. A Combined Laboratory and Field Evaluation of the Cholestech LDX and CardioChek PA Point-of-Care Testing Lipid and Glucose Analysers. Ann. Clin. Biochem. Int. J. Lab. Med. 2014, 51, 54–67. [Google Scholar] [CrossRef]
- Bel-Serrat, S.; Mouratidou, T.; Pala, V.; Huybrechts, I.; Börnhorst, C.; Fernández-Alvira, J.M.; Hadjigeorgiou, C.; Eiben, G.; Hebestreit, A.; Lissner, L.; et al. Relative Validity of the Children’s Eating Habits Questionnaire–Food Frequency Section among Young European Children: The IDEFICS Study. Public Health Nutr. 2014, 17, 266–276. [Google Scholar] [CrossRef]
- Lanfer, A.; Hebestreit, A.; Ahrens, W.; Krogh, V.; Sieri, S.; Lissner, L.; Eiben, G.; Siani, A.; Huybrechts, I.; Loit, H.-M.; et al. Reproducibility of Food Consumption Frequencies Derived from the Children’s Eating Habits Questionnaire Used in the IDEFICS Study. Int. J. Obes. 2011, 35, S61–S68. [Google Scholar] [CrossRef][Green Version]
- Fernández-Ballart, J.D.; Piñol, J.L.; Zazpe, I.; Corella, D.; Carrasco, P.; Toledo, E.; Perez-Bauer, M.; Martínez-González, M.Á.; Salas-Salvadó, J.; Martín-Moreno, J.M. Relative Validity of a Semi-Quantitative Food-Frequency Questionnaire in an Elderly Mediterranean Population of Spain. Br. J. Nutr. 2010, 103, 1808–1816. [Google Scholar] [CrossRef][Green Version]
- Farrán, A.; Zamora, R.; Cervera, P. Tablas de Composicion de Alimentos del CESNID; McGraw-Hill Espana: New York, NY, USA, 2004; ISBN 978-84-481-7478-1. [Google Scholar]
- Steinberger, J.; Daniels, S.R.; Hagberg, N.; Isasi, C.R.; Kelly, A.S.; Lloyd-Jones, D.; Pate, R.R.; Pratt, C.; Shay, C.M.; Towbin, J.A.; et al. Cardiovascular Health Promotion in Children: Challenges and Opportunities for 2020 and Beyond: A Scientific Statement From the American Heart Association. Circulation 2016, 134, e236–e255. [Google Scholar] [CrossRef][Green Version]
- Fernández-Alvira, J.M.; Fuster, V.; Pocock, S.; Sanz, J.; Fernández-Friera, L.; Laclaustra, M.; Fernández-Jiménez, R.; Mendiguren, J.; Fernández-Ortiz, A.; Ibáñez, B.; et al. Predicting Subclinical Atherosclerosis in Low-Risk Individuals Ideal Cardiovascular Health Score and Fuster-BEWAT Score. J. Am. Coll. Cardiol. 2017, 70, 2463–2473. [Google Scholar] [CrossRef]
- Fernandez-Jimenez, R.; Santos-Beneit, G.; de Cos-Gandoy, A.; Fernández-Alvira, J.M.; Tresserra-Rimbau, A.; Storniolo, C.; Domènech, M.; Laveriano-Santos, E.P.; Bodega, P.; de Miguel, M.; et al. Prevalence and Correlates of Cardiovascular Health among Early Adolescents Enrolled in the SI! Program in Spain: A Cross-Sectional Analysis. Eur. J. Prev. Cardiol. 2022, 29, e7–e10. [Google Scholar] [CrossRef]
- Medina-Remón, A.; Barrionuevo-González, A.; Zamora-Ros, R.; Andres-Lacueva, C.; Estruch, R.; Martínez-González, M.-Á.; Diez-Espino, J.; Lamuela-Raventos, R.M. Rapid Folin–Ciocalteu Method Using Microtiter 96-Well Plate Cartridges for Solid Phase Extraction to Assess Urinary Total Phenolic Compounds, as a Biomarker of Total Polyphenols Intake. Anal. Chim. Acta 2009, 634, 54–60. [Google Scholar] [CrossRef]
- Elsahoryi, N.A.; Cardwell, C.; Gilchrist, S.; Woodside, J.V. Effect of High Nitrate Vegetable Juice Supplementation on Plasma Nitrate and Blood Pressure in Adults: A Pilot Randomized Crossover Intervention in Healthy Volunteers. J. Nutr. Sci. 2022, 11, e41. [Google Scholar] [CrossRef]
- van der Avoort, C.M.T.; Jonvik, K.L.; Nyakayiru, J.; van Loon, L.J.C.; Hopman, M.T.E.; Verdijk, L.B. A Nitrate-Rich Vegetable Intervention Elevates Plasma Nitrate and Nitrite Concentrations and Reduces Blood Pressure in Healthy Young Adults. J. Acad. Nutr. Diet. 2020, 120, 1305–1317. [Google Scholar] [CrossRef]
- Djurica, D.; Holt, R.R.; Ren, J.; Shindel, A.W.; Hackman, R.M.; Keen, C.L. Effects of a Dietary Strawberry Powder on Parameters of Vascular Health in Adolescent Males. Br. J. Nutr. 2016, 116, 639–647. [Google Scholar] [CrossRef]
- Burton-Freeman, B.; Freeman, M.; Zhang, X.; Sandhu, A.; Edirisinghe, I. Watermelon and L-Citrulline in Cardio-Metabolic Health: Review of the Evidence 2000–2020. Curr. Atheroscler. Rep. 2021, 23, 81. [Google Scholar] [CrossRef] [PubMed]
- Sweazea, K.L.; Johnston, C.S.; Miller, B.; Gumpricht, E. Nitrate-Rich Fruit and Vegetable Supplement Reduces Blood Pressure in Normotensive Healthy Young Males without Significantly Altering Flow-Mediated Vasodilation: A Randomized, Double-Blinded, Controlled Trial. J. Nutr. Metab. 2018, 2018, 1729653. [Google Scholar] [CrossRef] [PubMed]
- Blekkenhorst, L.C.; Lewis, J.R.; Prince, R.L.; Devine, A.; Bondonno, N.P.; Bondonno, C.P.; Wood, L.G.; Puddey, I.B.; Ward, N.C.; Croft, K.D.; et al. Nitrate-Rich Vegetables Do Not Lower Blood Pressure in Individuals with Mildly Elevated Blood Pressure: A 4-Wk Randomized Controlled Crossover Trial. Am. J. Clin. Nutr. 2018, 107, 894–908. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mayra, S.T.; Johnston, C.S.; Sweazea, K.L. High-Nitrate Salad Increased Plasma Nitrates/Nitrites and Brachial Artery Flow-Mediated Dilation in Postmenopausal Women: A Pilot Study. Nutr. Res. 2019, 65, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Sundqvist, M.L.; Larsen, F.J.; Carlström, M.; Bottai, M.; Pernow, J.; Hellénius, M.-L.; Weitzberg, E.; Lundberg, J.O. A Randomized Clinical Trial of the Effects of Leafy Green Vegetables and Inorganic Nitrate on Blood Pressure. Am. J. Clin. Nutr. 2020, 111, 749–756. [Google Scholar] [CrossRef] [PubMed]
- van der Avoort, C.M.T.; ten Haaf, D.S.M.; Bongers, C.C.W.G.; van Oorschot, F.; Verdijk, L.B.; van Loon, L.J.C.; Hopman, M.T.E. Increasing Nitrate-Rich Vegetable Intake Lowers Ambulatory Blood Pressure in (Pre)Hypertensive Middle-Aged and Older Adults: A 12-Wk Randomized Controlled Trial. J. Nutr. 2021, 151, 2667–2679. [Google Scholar] [CrossRef] [PubMed]
- Festa, J.; Da Boit, M.; Hussain, A.; Singh, H. Potential Benefits of Berry Anthocyanins on Vascular Function. Mol. Nutr. Food Res. 2021, 65, 2100170. [Google Scholar] [CrossRef]
- George, T.W.; Waroonphan, S.; Niwat, C.; Gordon, M.H.; Lovegrove, J.A. The Glu298Asp Single Nucleotide Polymorphism in the Endothelial Nitric Oxide Synthase Gene Differentially Affects the Vascular Response to Acute Consumption of Fruit and Vegetable Puree Based Drinks. Mol. Nutr. Food Res. 2012, 56, 1014–1024. [Google Scholar] [CrossRef]
- Medina-Remón, A.; Tresserra-Rimbau, A.; Pons, A.; Tur, J.A.; Martorell, M.; Ros, E.; Buil-Cosiales, P.; Sacanella, E.; Covas, M.I.; Corella, D.; et al. Effects of Total Dietary Polyphenols on Plasma Nitric Oxide and Blood Pressure in a High Cardiovascular Risk Cohort. The PREDIMED Randomized Trial. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 60–67. [Google Scholar] [CrossRef]
- Yamashita, Y.; Nakamura, A.; Nanba, F.; Saito, S.; Toda, T.; Nakagawa, J.; Ashida, H. Black Soybean Improves Vascular Function and Blood Pressure: A Randomized, Placebo Controlled, Crossover Trial in Humans. Nutrients 2020, 12, 2755. [Google Scholar] [CrossRef]
- Hurtado-Barroso, S.; Quifer-Rada, P.; Rinaldi de Alvarenga, J.; Pérez-Fernández, S.; Tresserra-Rimbau, A.; Lamuela-Raventos, R. Changing to a Low-Polyphenol Diet Alters Vascular Biomarkers in Healthy Men after Only Two Weeks. Nutrients 2018, 10, 1766. [Google Scholar] [CrossRef]
- Mun Loke, W.; M Hodgson, J.; M Proudfoot, J.; J McKinley, A.; B Puddey, I.; D Croft, K. Pure Dietary Flavonoids Quercetin and (-)-Epicatechin Augment Nitric Oxide Products and Reduce Endothelin-1 Acutely in Healthy Men. Am. J. Clin. Nutr. 2008, 88, 1018–1025. [Google Scholar] [CrossRef][Green Version]
- Khosravi, M.; Poursaleh, A.; Ghasempour, G.; Farhad, S.; Najafi, M. The Effects of Oxidative Stress on the Development of Atherosclerosis. Biol. Chem. 2019, 400, 711–732. [Google Scholar] [CrossRef]
- Xia, N.; Daiber, A.; Förstermann, U.; Li, H. Antioxidant Effects of Resveratrol in the Cardiovascular System: Antioxidant Effects of Resveratrol. Br. J. Pharmacol. 2017, 174, 1633–1646. [Google Scholar] [CrossRef][Green Version]
- Biegańska-Hensoldt, S.; Rosołowska-Huszcz, D. Polyphenols in preventing endothelial dysfunction. Postępy Hig. Med. Dośw. 2017, 71, 227–235. [Google Scholar] [CrossRef]
- Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients 2018, 10, 1618. [Google Scholar] [CrossRef][Green Version]
- Wang, S.; Du, Q.; Meng, X.; Zhang, Y. Natural Polyphenols: A Potential Prevention and Treatment Strategy for Metabolic Syndrome. Food Funct. 2022, 13, 9734–9753. [Google Scholar] [CrossRef]
- Bondonno, C.P.; Croft, K.D.; Ward, N.; Considine, M.J.; Hodgson, J.M. Dietary Flavonoids and Nitrate: Effects on Nitric Oxide and Vascular Function. Nutr. Rev. 2015, 73, 216–235. [Google Scholar] [CrossRef]
- Matsumoto, Y.; Katano, Y. Cardiovascular Protective Effects of Polyphenols Contained in Passion Fruit Seeds Namely Piceatannol and Scirpusin B: A Review. Tokai J. Exp. Clin. Med. 2021, 46, 151–161. [Google Scholar]
- Taguchi, K.; Tano, I.; Kaneko, N.; Matsumoto, T.; Kobayashi, T. Plant Polyphenols Morin and Quercetin Rescue Nitric Oxide Production in Diabetic Mouse Aorta through Distinct Pathways. Biomed. Pharmacother. 2020, 129, 110463. [Google Scholar] [CrossRef]
- Galleano, M.; Pechanova, O.; Fraga, C. Hypertension, Nitric Oxide, Oxidants, and Dietary Plant Polyphenols. Curr. Pharm. Biotechnol. 2010, 11, 837–848. [Google Scholar] [CrossRef] [PubMed]
- Lamuela-Raventos, R.-M.; Medina-Remón, A.; Tresserra-Rimbau, A.; Estruch, R. Fruit and Vegetable Polyphenol Consumption Decreases Blood Pressure. In ACS Symposium Series; Patil, B.S., Jayaprakasha, G.K., Murthy, K.N.C., Seeram, N.P., Eds.; American Chemical Society: Washington, DC, USA, 2012; Volume 1093, pp. 443–461. ISBN 978-0-8412-2664-7. [Google Scholar]
Total (n = 149) | Boys (n = 73) | Girls (n = 76) | p-Value | |
---|---|---|---|---|
Age (months) | 151 ± 6 | 151 ± 7 | 151 ± 5 | 0.951 |
Smokers (%) * | 10.7 | 9.6 | 11.8 | |
MVPA (min/day) | 73.9 ± 22.1 | 71.7 ± 22.2 | 76.9 ± 21.7 | 0.088 |
Anthropometric | ||||
BMI (kg/m2) | 20.8 ± 4.3 | 20.8 ± 4.3 | 20.9 ± 4.4 | 0.849 |
BMI z-score | 0.80 ± 1.05 | 0.87 ± 1.03 | 0.72 ± 1.08 | 0.393 |
WC (cm) | 73.0 ± 11.7 | 73.6 ± 12.2 | 72.5 ± 11.3 | 0.568 |
WC z-score | 0.45 ± 0.86 | 0.48 ± 0.88 | 0.42 ± 0.85 | 0.635 |
WHtR | 0.47 ± 0.07 | 0.47 ± 0.07 | 0.46 ± 0.07 | 0.248 |
WHtR z-score | 0.07 ± 0.98 | 0.24 ± 0.92 | −0.10 ± 1.01 | 0.034 |
Body fat (%) | 24.0 ± 8.5 | 22.4 ± 8.2 | 25.5 ± 8.5 | 0.028 |
Skeletal muscle (%) | 34.2 ± 3.6 | 35.4 ± 3.2 | 33.0 ± 3.6 | <0.001 |
SBP (mmHg) | 113 ± 11 | 114 ± 10 | 111 ± 12 | 0.169 |
SBP z-score | 0.60 ± 1.00 | 0.76 ± 0.90 | 0.42 ± 1.07 | 0.037 |
DBP (mmHg) | 67 ± 9 | 67 ± 11 | 68 ± 8 | 0.683 |
DBP z-score | 0.46 ± 0.88 | 0.47 ± 0.94 | 0.46 ± 0.82 | 0.934 |
Blood biochemistry | ||||
Glucose (mg/dL) | 99.5 ± 11.1 | 99.8 ± 11.3 | 99.2 ± 10.9 | 0.755 |
Triglycerides (mg/dL) | 76.6 ± 29.9 | 76.5 ± 35.3 | 76.7 ± 23.7 | 0.973 |
TotalCholesterol (mg/dL) | 151 ± 28 | 152 ± 31 | 150 ± 25 | 0.657 |
HDL-c (mg/dL) | 61.7 ± 14.3 | 60.9 ± 14.3 | 62.4 ± 14.4 | 0.524 |
LDL-c (mg/dL) | 74.0 ± 23.6 | 75.8 ± 25.2 | 72.3 ± 22.1 | 0.374 |
Non-HDL-c (mg/dL) | 89.3 ± 25.2 | 91.1 ± 28.1 | 87.5 ± 22.1 | 0.393 |
Urine analysis | ||||
NO (μM NO/mM creatinine) | 40.9 ± 22.2 | 43.5 ± 24.0 | 38.4 ± 20.3 | 0.162 |
TPE (mg GAE/g creatinine) | 137 ± 107 | 146 ± 118 | 127 ± 97 | 0.286 |
Diet | ||||
Fruits & vegetables (servings/day) | 2.68 ± 1.95 | 2.89 ± 1.94 | 2.47 ± 1.94 | 0.189 |
Whole grains (servings/day) | 0.38 ± 0.53 | 0.35 ± 0.52 | 0.42 ± 0.54 | 0.442 |
Sodium (mg/day) | 3340 ± 1042 | 3492 ± 1095 | 3180 ± 967 | 0.093 |
Fish (servings/week) | 3.28 ± 2.47 | 3.23 ± 2.40 | 3.33 ± 2.56 | 0.813 |
Sugar-sweetened beverages (L/week) | 1.38 ± 1.74 | 1.59 ± 1.92 | 1.19 ± 1.53 | 0.166 |
CVHs | 4.27 ± 1.31 | 4.15 ± 1.32 | 4.38 ± 1.30 | 0.283 |
Ideal (n = 28) | Intermediate (n = 77) | Poor (n = 44) | Effect Size | p-Value | |
---|---|---|---|---|---|
Boys (%) | 39.3 | 50.6 | 52.3 | ||
Smokers (%) * | 0.0 | 14.3 | 13.6 | ||
MVPA (min/day) | 81 (61–138) A | 71 (23–112) A | 74 (21–139) | 0.034 | 0.030 |
BMI (percentile) | 52.3 (6.7–78.4) B | 55.6 (5.1–97.6) C | 95.8 (15.5–99.4) B,C | 0.429 | <0.001 |
SBP (percentile) | 52 (6–87) B | 62 (2–99) C | 91 (5–99) B,C | 0.230 | <0.001 |
DBP (percentile) | 49 (7–79) B | 55 (13–99) C | 90 (18–99) B,C | 0.201 | <0.001 |
Blood glucose (mg/dL) | 95 (84–99) B | 96 (79–128) C | 107 (73–137) B,C | 0.213 | <0.001 |
Blood total cholesterol (mg/dL) | 144 (112–169) B | 144 (95–199) C | 164 (100–237) B,C | 0.091 | <0.001 |
NO (μM NO/mM creatinine) | 32.2 (10.8–105.5) | 37.6 (10.9–108.1) | 30.1 (10.3–89.0) | 0.146 | 0.126 |
Diet | |||||
Fruits & vegetables (servings/day) | 3.3 (0.3–13.6) | 2.0 (0.0–8.0) | 1.7 (0.3–7.6) | 0.024 | 0.063 |
Whole grains (servings/day) | 0.3 (0.0–1.0) | 0.3 (0.0–3.0) | 0.1 (0.0–1.7) | 0.011 | 0.837 |
Sodium (mg/day) | 2838 (726–5061) | 3353 (1884–6528) | 3147 (1809–6835) | 0.000 | 0.354 |
Fish (servings/week) | 3.0 (0.0–10.0) | 2.0 (0.0–10.0) | 2.0 (0.0–16.0) | 0.009 | 0.725 |
Sugar-sweetened beverages (L/week) | 0.8 (0.0–10.2) | 0.8 (0.0–8.4) | 0.8 (0.0–7.4) | 0.011 | 0.828 |
Coefficient (β) | Significance (p-Value) | |
---|---|---|
Age (month) | 0.137 | 0.100 |
MVPA (min/day) | 0.031 | 0.711 |
Anthropometric | ||
BMI z-score | −0.169 | 0.029 |
WC z-score | −0.143 | 0.134 |
WHtR z-score | −0.092 | 0.274 |
Body fat (%) | −0.196 | 0.016 |
Skeletal muscle (%) | 0.172 | 0.036 |
SBP z-score | −0.263 | 0.001 |
DBP z-score | −0.256 | 0.006 |
Blood biochemistry | ||
Glucose (mg/dL) | −0.046 | 0.581 |
Triglycerides (mg/dL) | −0.162 | 0.049 |
Total cholesterol (mg/dL) | 0.121 | 0.142 |
HDL-c (mg/dL) | 0.167 | 0.041 |
LDL-c (mg/dL) | 0.853 | 0.301 |
Non-HDL-c (mg/dL) | 0.037 | 0.651 |
Urine analysis | ||
TPE (mg GAE/g creatinine) | 0.250 | 0.002 |
Diet | ||
Fruits/vegetables (servings/day) | 0.160 | 0.050 |
Whole grains (servings/day) | −0.154 | 0.061 |
Sodium (mg/day) | 0.168 | 0.063 |
Fish (servings/week) | −0.001 | 0.990 |
Sugar-sweetened beverages (L/week) | 0.108 | 0.195 |
CVHs | 0.148 | 0.073 |
Boys (n = 73) | Girls (n = 76) | |||
---|---|---|---|---|
Rho | p-Value | Rho | p-Value | |
Age (month) | −0.344 | 0.003 | 0.102 | 0.379 |
MVPA (min/day) | 0.005 | 0.969 | 0.089 | 0.447 |
Anthropometric | ||||
BMI z-score | −0.155 | 0.192 | −0.261 | 0.023 |
WC z-score | −0.042 | 0.724 | −0.181 | 0.117 |
WHtR z-score | −0.037 | 0.754 | −0.078 | 0.501 |
Body fat (%) | −0.095 | 0.425 | −0.232 | 0.044 |
Skeletal muscle (%) | 0.151 | 0.202 | 0.085 | 0.463 |
SBP z-score | −0.304 | 0.009 | −0.391 | 0.001 |
DBP z-score | −0.227 | 0.054 | −0.317 | 0.006 |
Blood biochemistry | ||||
Glucose (mg/dL) | 0.064 | 0.592 | −0.206 | 0.075 |
Triglycerides (mg/dL) | −0.194 | 0.101 | −0.004 | 0.973 |
Total cholesterol (mg/dL) | 0.054 | 0.648 | 0.353 | 0.002 |
HDL-c (mg/dL) | 0.123 | 0.302 | 0.262 | 0.022 |
LDL-c (mg/dL) | 0.033 | 0.779 | 0.272 | 0.018 |
Non-HDL-c (mg/dL) | −0.008 | 0.946 | 0.222 | 0.055 |
Urine analysis | ||||
TPE (mg GAE/g creatinine) | 0.375 | 0.001 | −0.008 | 0.943 |
Diet | ||||
Fruits/vegetables (servings/day) | 0.132 | 0.264 | −0.147 | 0.206 |
Whole grains (servings/day) | −0.051 | 0.670 | −0.349 | 0.002 |
Sodium (mg/day) | 0.209 | 0.097 | 0.028 | 0.832 |
Fish (servings/week) | 0.043 | 0.720 | −0.091 | 0.435 |
Sugar-sweetened beverages (L/week) | −0.030 | 0.803 | −0.296 | 0.010 |
CVHs | 0.111 | 0.352 | 0.217 | 0.060 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-Garza, S.L.; Laveriano-Santos, E.P.; Arancibia-Riveros, C.; Carrasco-Jimenez, J.C.; Bodega, P.; Cos-Gandoy, A.d.; Miguel, M.d.; Santos-Beneit, G.; Fernández-Alvira, J.M.; Fernández-Jiménez, R.; et al. Urinary Nitric Oxide Levels Are Associated with Blood Pressure, Fruit and Vegetable Intake and Total Polyphenol Excretion in Adolescents from the SI! Program. Antioxidants 2022, 11, 2140. https://doi.org/10.3390/antiox11112140
Ramírez-Garza SL, Laveriano-Santos EP, Arancibia-Riveros C, Carrasco-Jimenez JC, Bodega P, Cos-Gandoy Ad, Miguel Md, Santos-Beneit G, Fernández-Alvira JM, Fernández-Jiménez R, et al. Urinary Nitric Oxide Levels Are Associated with Blood Pressure, Fruit and Vegetable Intake and Total Polyphenol Excretion in Adolescents from the SI! Program. Antioxidants. 2022; 11(11):2140. https://doi.org/10.3390/antiox11112140
Chicago/Turabian StyleRamírez-Garza, Sonia L., Emily P. Laveriano-Santos, Camila Arancibia-Riveros, Jose C. Carrasco-Jimenez, Patricia Bodega, Amaya de Cos-Gandoy, Mercedes de Miguel, Gloria Santos-Beneit, Juan Miguel Fernández-Alvira, Rodrigo Fernández-Jiménez, and et al. 2022. "Urinary Nitric Oxide Levels Are Associated with Blood Pressure, Fruit and Vegetable Intake and Total Polyphenol Excretion in Adolescents from the SI! Program" Antioxidants 11, no. 11: 2140. https://doi.org/10.3390/antiox11112140