Exploration of Molecular Structure, DFT Calculations, and Antioxidant Activity of a Hydrazone Derivative
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Synthesis of 4,4′-((1E,1′E)-hydrazine-1,2-diylidenebis(ethan-1-yl-1-ylidene))bis(benzene-1,3-diol)
2.3. Single X-ray Crystallography
2.4. Theoretical Computations
2.5. Determination of Antioxidant Activity
2.5.1. ABTS Antioxidant Assay
2.5.2. Antioxidant Assay Using DPPH
2.6. Cell Cytotoxicity Assay
3. Results and Discussion
3.1. Synthesis and Characterization of Compound 2
3.2. Single X-ray Crystallography and DFT Calculations
3.3. Antioxidant Activity
3.4. Cell Cytotoxicity Assay
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Belskaya, N.P.; Dehaen, W.; Bakulev, V.A. Synthesis and properties of hydrazones bearing amide, thioamide and amidine functions. ARKIVOC 2010, 2010, 275–332. [Google Scholar] [CrossRef] [Green Version]
- Hammoud, H.; Elhabazi, K.; Quillet, R.; Bertin, I.; Utard, V.; Laboureyras, E.; Bourguignon, J.J.; Bihel, F.; Simonnet, G.; Simonin, F.; et al. Aminoguanidine Hydrazone Derivatives as Nonpeptide NPFF1 Receptor Antagonists Reverse Opioid Induced Hyperalgesia. ACS Chem. Neurosci. 2018, 9, 2599–2609. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Aprahamian, I. Hydrazone-based switches, metallo-assemblies and sensors. Chem. Soc. Rev. 2014, 43, 1963–1981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaplánek, R.; Havlík, M.; Dolenský, B.; Rak, J.; Džubák, P.; Konečný, P.; Hajdúch, M.; Králová, J.; Král, V. Synthesis and biological activity evaluation of hydrazone derivatives based on a Tröger’s base skeleton. Bioorg. Med. Chem. 2015, 23, 1651–1659. [Google Scholar] [CrossRef] [PubMed]
- Palepu, N.R.; Premkumar, J.R.; Verma, A.K.; Bhattacharjee, K.; Joshi, S.R.; Forbes, S.; Mozharivskyj, Y.; Rao, K.M. Antibacterial, in vitro antitumor activity and structural studies of rhodium and iridium complexes featuring the two positional isomers of pyridine carbaldehyde picolinic hydrazone ligand. Arab. J. Chem. 2018, 11, 714–728. [Google Scholar] [CrossRef] [Green Version]
- He, L.Y.; Qiu, X.Y.; Cheng, J.Y.; Liu, S.J.; Wu, S.M. Synthesis, characterization and crystal structures of vanadium (V) complexes derived from halido-substituted tridentate hydrazone compounds with antimicrobial activity. Polyhedron 2018, 156, 105–110. [Google Scholar] [CrossRef]
- Rawat, P.; Singh, R.N.; Niranjan, P.; Ranjan, A.; Holguín, N.R.F. Evaluation of antituberculosis activity and DFT study on dipyrromethane-derived hydrazone derivatives. J. Mol. Struct. 2017, 1149, 539–548. [Google Scholar] [CrossRef]
- Dehestani, L.; Ahangar, N.; Hashemi, S.M.; Irannejad, H.; Masihi, P.H.; Shakiba, A.; Emami, S. Design, synthesis, in vivo and in silico evaluation of phenacyl triazole hydrazones as new anticonvulsant agents. Bioorg. Chem. 2018, 78, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Anastassova, N.O.; Yancheva, D.Y.; Mavrova, A.T.; Kondeva-Burdina, M.S.; Tzankova, V.I.; Hristova-Avakumova, N.G.; Hadjimitova, V.A. Design, synthesis, antioxidant properties and mechanism of action of new N, N′-disubstituted benzimidazole-2-thione hydrazone derivatives. J. Mol. Struct. 2018, 1165, 162–176. [Google Scholar] [CrossRef]
- Baldisserotto, A.; Demurtas, M.; Lampronti, I.; Moi, D.; Balboni, G.; Vertuani, S.; Manfredini, S.; Onnis, V. Benzofuran hydrazones as potential scaffold in the development of multifunctional drugs: Synthesis and evaluation of antioxidant, photoprotective and antiproliferative activity. Eur. J. Med. Chem. 2018, 156, 118–125. [Google Scholar] [CrossRef]
- Demurtas, M.; Baldisserotto, A.; Lampronti, I.; Moi, D.; Balboni, G.; Pacifico, S.; Vertuani, S.; Manfredini, S.; Onnis, V. Indole derivatives as multifunctional drugs: Synthesis and evaluation of antioxidant, photoprotective and antiproliferative activity of indole hydrazones. Bioorg. Chem. 2019, 85, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Kareem, H.S.; Ariffin, A.; Nordin, N.; Heidelberg, T.; Abdul-Aziz, A.; Kong, K.W.; Yehye, W.A. Correlation of antioxidant activities with theoretical studies for new hydrazone compounds bearing a 3, 4, 5-trimethoxy benzyl moiety. Eur. J. Med. Chem. 2015, 103, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Maltarollo, V.G.; de Resende, M.F.; Kronenberger, T.; Lino, C.I.; Sampaio, M.C.P.D.; da Rocha Pitta, M.G.; de Melo Rêgo, M.J.B.; Labanca, R.A.; de Oliveira, R.B. In vitro and in silico studies of antioxidant activity of 2-thiazolylhydrazone derivatives. J. Mol. Graph. Model. 2019, 86, 106–112. [Google Scholar] [CrossRef]
- Nimse, S.B.; Pal, D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 2015, 5, 27986–28006. [Google Scholar] [CrossRef] [Green Version]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The role of polyphenols in human health and food systems: A mini-review. Front. Nutri. 2018, 5, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, D.; Hu, M.J.; Wang, Y.Q.; Cui, Y.L. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules 2019, 24, 1123. [Google Scholar] [CrossRef] [Green Version]
- Japp, F.R.; Klingemann, F. Ueber Benzolazo-und Benzolhydrazofettsäuren. Ber. Dtsch. Chem. Ges. 1887, 20, 2942–2944. [Google Scholar] [CrossRef] [Green Version]
- Japp, F.R.; Klingemann, F. Zur Kenntniss der Benzolazo-und Benzolhydrazopropionsäuren. Ber. Dtsch. Chem. Ges. 1887, 20, 3284–3286. [Google Scholar] [CrossRef] [Green Version]
- Japp, F.R.; Klingemann, F. Ueber sogenannte gemischte Azoverbindungen. Ber. Dtsch. Chem. Ges. 1887, 20, 3398–3401. [Google Scholar] [CrossRef] [Green Version]
- Wagaw, S.; Yang, B.H.; Buchwald, S.L. A palladium-catalyzed method for the preparation of indoles via the Fischer indole synthesis. J. Am. Chem. Soc. 1999, 121, 10251–10263. [Google Scholar] [CrossRef]
- Lefebvre, V.; Cailly, T.; Fabis, F.; Rault, S. Two-step synthesis of substituted 3-aminoindazoles from 2-bromobenzonitriles. J. Org. Chem. 2010, 75, 2730–2732. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Wang, J. Transition-metal-catalyzed cross-coupling with ketones or aldehydes via N-tosylhydrazones. J. Am. Chem. Soc. 2020, 142, 10592–10605. [Google Scholar] [CrossRef] [PubMed]
- Fulton, J.R.; Aggarwal, V.K.; de Vicente, J. The use of tosylhydrazone salts as a safe alternative for handling diazo compounds and their applications in organic synthesis. Eur. J. Org. Chem. 2005, 2005, 1479–1492. [Google Scholar] [CrossRef]
- Horváth, M.; Cigáň, M.; Filo, J.; Jakusová, K.; Gáplovský, M.; Šándrik, R.; Gáplovský, A. Isatin pentafluorophenylhydrazones: Interesting conformational change during anion sensing. RSC Adv. 2016, 6, 109742–109750. [Google Scholar] [CrossRef]
- Filo, J.; Tisovský, P.; Csicsai, K.; Donovalová, J.; Gáplovský, M.; Gáplovský, A.; Cigáň, M. Tautomeric photoswitches: Anion-assisted azo/azine-to-hydrazone photochromism. RSC Adv. 2019, 9, 15910–15916. [Google Scholar] [CrossRef] [Green Version]
- Villada, J.D.; D’Vries, R.F.; Macías, M.; Zuluaga, F.; Chaur, M.N. Structural characterization of a fluorescein hydrazone molecular switch with application towards logic gates. New J. Chem. 2018, 42, 18050–18058. [Google Scholar] [CrossRef]
- Kuwar, A.S.; Fegade, U.A.; Tayade, K.C.; Patil, U.D.; Puschmann, H.; Gite, V.V.; Dalal, D.S.; Bendre, R.S. Bis (2-hydroxy-3-isopropyl-6-methyl-benzaldehyde) ethylenediamine: A novel cation sensor. J. Fluoresce. 2013, 23, 859–864. [Google Scholar] [CrossRef]
- Patil, R.; Moirangthem, A.; Butcher, R.; Singh, N.; Basu, A.; Tayade, K.; Fegade, U.; Hundiwale, D.; Kuwar, A. Al3+ selective colorimetric and fluorescent red shifting chemosensor: Application in living cell imaging. Dalton Trans. 2014, 43, 2895–2899. [Google Scholar] [CrossRef]
- Patil, M.; Park, S.J.; Yeom, G.S.; Bendre, R.; Kuwar, A.; Nimse, S.B. Fluorescence’ turn-on’probe for nanomolar Zn (ii) detection in living cells and environmental samples. New J. Chem. 2022, 46, 13774–13782. [Google Scholar] [CrossRef]
- Lee, J.S.; Warkad, S.D.; Shinde, P.B.; Kuwar, A.; Nimse, S.B. A highly selective fluorescent probe for nanomolar detection of ferric ions in the living cells and aqueous media. Arab. J. Chem. 2020, 13, 8697–8707. [Google Scholar] [CrossRef]
- Larsen, D.; Kietrys, A.M.; Clark, S.A.; Park, H.S.; Ekebergh, A.; Kool, E.T. Exceptionally rapid oxime and hydrazone formation promoted by catalytic amine buffers with low toxicity. Chem. Sci. 2018, 9, 5252–5259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newkome, G.R.; Fishel, D.L. Synthesis of simple hydrazones of carbonyl compounds by an exchange reaction. J. Org. Chem. 1966, 31, 677–681. [Google Scholar] [CrossRef]
- Agilent Technologies UK Ltd. Crysalispro Software System, V1. 171.36.24. Available online: https://www.agilent.com/chem/ (accessed on 23 October 2022).
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Bourhis, L.J.; Dolomanov, O.V.; Gildea, R.J.; Howard, J.A.; Puschmann, H. The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment–Olex2 dissected. Acta Crystallogr. A 2015, 71, 59–75. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision E.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Jang, H.J.; Kang, J.H.; Yun, D.; Kim, C. A multifunctional selective “turn-on” fluorescent chemosensor for detection of Group IIIA ions Al3+, Ga3+ and In3+. Photochem. Photobiol. Sci. 2018, 17, 1247–1255. [Google Scholar] [CrossRef]
- Torawane, P.; Tayade, K.; Bothra, S.; Sahoo, S.K.; Singh, N.; Borse, A.; Kuwar, A. A highly selective and sensitive fluorescent ‘turn-on’chemosensor for Al3+ based on CN isomerisation mechanism with nanomolar detection. Sens. Actuators B Chem. 2016, 222, 562–566. [Google Scholar] [CrossRef]
- Irmi, N.M.; Purwono, B.; Anwar, C. Synthesis of Symmetrical Acetophenone Azine Derivatives as Colorimetric and Fluorescent Cyanide Chemosensors. Indones. J. Chem. 2021, 21, 1337–1347. [Google Scholar] [CrossRef]
- Marcos, M.; Melendez, E.; Serrano, J.L. Synthesis and Mesomorphic Properties of Three Homologous Series of 4, 4′-Dialkoxy-α, α′-Dimethylbenzalazines A Comparative Study (I). Mol. Cryst. Liq. Cryst. 1983, 91, 157–172. [Google Scholar] [CrossRef]
- Said, A.I.; Georgiev, N.I.; Bojinov, V.B. The simplest molecular chemosensor for detecting higher pHs, Cu2+ and S2- in aqueous environment and executing various logic gates. J. Photochem. Photobiol. A Chem. 2019, 371, 395–406. [Google Scholar] [CrossRef]
- Said, A.I.; Georgiev, N.I.; Bojinov, V.B. Low Molecular Weight Probe for Selective Sensing of PH and Cu2+ Working as Three INHIBIT Based Digital Comparator. J. Fluoresc. 2022, 32, 405–417. [Google Scholar] [CrossRef] [PubMed]
- Butcher, R.J.; Bendre, R.S.; Kuwar, A.S. 2-Formylthymol oxime. Acta Cryst. Sect. E 2005, 61, o3511–o3513. [Google Scholar] [CrossRef]
- Butcher, R.J.; Bendre, R.S.; Kuwar, A.S. 6,6-Diisopropyl-3,3′-dimethyl-2,2′-azinodiphenol. Acta Cryst. Sec. E 2007, 63, o3360. [Google Scholar] [CrossRef]
- Baharudin, M.S.; Taha, M.; Ismail, N.H.; Shah, S.A.A.; Yousuf, S. N′-[(E)-2-Hydroxy-5-methoxybenzylidene]-2-methoxybenzohydrazide. Acta Cryst. Sec. E 2012, 68, o3255. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, S.K.; Sharma, D.; Bera, R.K. Studies on molecular structure and tautomerism of a vitamin B6 analog with density functional theory. J. Mol. Mod. 2012, 18, 1993–2001. [Google Scholar] [CrossRef] [PubMed]
- Dračínský, M.; Kaminský, J.; Bouř, P. Relative importance of first and second derivatives of nuclear magnetic resonance chemical shifts and spin-spin coupling constants for vibrational averaging. J. Chem. Phys. 2009, 130, 094106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.S.; Song, I.H.; Shinde, P.B.; Nimse, S.B. Macrocycles and Supramolecules as Antioxidants: Excellent Scaffolds for Development of Potential Therapeutic Agents. Antioxidants 2020, 9, 859. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Song, I.H.; Warkad, S.D.; Yeom, G.S.; Shinde, P.B.; Song, K.S.; Nimse, S.B. Synthesis and evaluation of 2-aryl-1 H-benzo [d] imidazole derivatives as potential microtubule targeting agents. Drug Dev. Res. 2022, 83, 769–782. [Google Scholar] [CrossRef]
- Thongsuk, P.; Sameenoi, Y. Colorimetric determination of radical scavenging activity of antioxidants using Fe3O4 magnetic nanoparticles. Arab. J. Chem. 2022, 15, 103475. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Song, I.H.; Torawane, P.; Lee, J.S.; Warkad, S.D.; Borase, A.; Sahoo, S.K.; Nimse, S.B.; Kuwar, A. The detection of Al3+ and Cu2+ ions using isonicotinohydrazide-based chemosensors and their application to live-cell imaging. Mat. Adv. 2021, 2, 6306–6314. [Google Scholar] [CrossRef]
- Yeom, G.S.; Song, I.H.; Park, S.J.; Kuwar, A.; Nimse, S.B. Development and application of a fluorescence turn-on probe for the nanomolar cysteine detection in serum and milk samples. J. Photochem. Photobiol. A Chem. 2022, 431, 114074. [Google Scholar] [CrossRef]
- Martínez, M.C.; Andriantsitohaina, R. Reactive nitrogen species: Molecular mechanisms and potential significance in health and disease. Antiox. Red. Signal. 2009, 11, 669–702. [Google Scholar] [CrossRef]
- Nosaka, Y.; Nosaka, A.Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 2017, 117, 11302–11336. [Google Scholar] [CrossRef]
- Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Cur. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Wang, W.; Li, L.; Perry, G.; Lee, H.G.; Zhu, X. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biophys. Acta Mol. Basis Dis. 2014, 1842, 1240–1247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sosa, V.; Moliné, T.; Somoza, R.; Paciucci, R.; Kondoh, H.; LLeonart, M.E. Oxidative stress and cancer: An overview. Ageing Res. Rev. 2013, 12, 376–390. [Google Scholar] [CrossRef]
- Young, I.S.; Woodside, J.V. Antioxidants in health and disease. J. Clin. Pathol. 2001, 54, 176–186. [Google Scholar] [CrossRef] [Green Version]
- Tan, B.L.; Norhaizan, M.E.; Liew, W.P.P.; Sulaiman Rahman, H. Antioxidant and oxidative stress: A mutual interplay in age-related diseases. Front. Pharmacol. 2018, 9, 1162. [Google Scholar] [CrossRef]
Parameter | Compound 1 | Compound 2 |
---|---|---|
CCDC | 1009469 | 1402230 |
Formula | C8H10N2O2 | C16H18N2O5 |
Dcalc./g cm−3 | 1.441 | 1.408 |
µmm−1 | 0.106 | 0.106 |
Formula Weight | 166.18 | 318.32 |
Color | clear colorless | Clear colorless |
Shape | Irregular | Regular |
Max Size/mm | 0.85 | 0.26 |
Mid Size/mm | 0.24 | 0.17 |
Min Size/mm | 0.14 | 0.12 |
T/K | 120(2) | 293(2) |
Crystal System | Monoclinic | Triclinic |
Space Group | Ic | P-1 |
a/Å | 16.431(3) | 7.1880(17) |
b/Å | 4.7921(6) | 10.347(2) |
c/Å | 21.042(4) | 11.218(3) |
α/° | 90 | 70.033 |
β/° | 112.40(2) | 81.384(4) |
γ/° | 90 | 73.566 |
V/Å3 | 1531.8(5) | 750.8(3) |
Z | 8 | 2 |
Z′ | 2.000 | 1.000 |
Θmin/° | 2.682 | 1.935 |
Θmax/° | 26.997 | 25.499 |
Measured Refl. | 12,110 | 7515 |
Independent Refl. | 3296 | 6653 |
Reflections Used | 3116 | 4508 |
Rint | 0.0497 | 0.0266 |
Parameters | 235 | 443 |
Restraints | 2 | 3 |
Largest Peak | 0.302 | 0.305 |
Deepest Hole | −0.291 | −0.329 |
GooF | 1.057 | 1.142 |
ωR2 (all data) | 0.1200 | 0.1885 |
ωR2 | 0.1175 | 0.1756 |
R1 (all data) | 0.0470 | 0.0951 |
R1 | 0.0446 | 0.0730 |
D | H | A | d(D-H)/Å | d(H-A)/Å | d(D-A)/Å | D-H-A/° |
---|---|---|---|---|---|---|
O8B | H8B | N10B | 0.84 | 1.83 | 2.571(3) | 145.7 |
O8A | H8A | N10A | 0.84 | 1.86 | 2.591(3) | 145.3 |
O1A | H1A | N11A1 | 0.84 | 1.95 | 2.746(4) | 158.2 |
O1A | H1A | N11A1 | 0.84 | 1.95 | 2.746(4) | 158.2 |
O1B | H1B | N11B1 | 0.84 | 2.00 | 2.790(4) | 157.5 |
N11A | H11C | O8B | 0.84 | 2.47 | 3.077(4) | 129.0 |
1-1/2+X,3/2-Y,+Z |
Compound 1 | Compound 2 | ||||
---|---|---|---|---|---|
Bond Length (Å) | Expt. | DFT | Bond Length (Å) | Expt. | DFT |
6N-4H | 1.856 | 1.671 | 1N···6H | 1.845 | 1.647 |
6N-3O | 2.591 | 2.572 | 1N-5O | 2.570 | 2.559 |
3O-4H | 0.840 | 0.998 | 5O-6H | 0.820 | 1.003 |
15C-3O | 1.356 | 1.343 | 24C-5O | 1.388 | 1.340 |
1O-2H | 0.840 | 0.967 | 3O-4H | 0.821 | 0.967 |
8C-1O | 1.360 | 1.364 | 21C-3O | 1.377 | 1.361 |
6N-7N | 1.413 | 1.394 | 2N-1N | 1.392 | 1.377 |
6N-18C | 1.294 | 1.299 | 1N-15C | 1.289 | 1.308 |
13C-18C | 1.474 | 1.472 | 15C-16C | 1.404 | 1.464 |
13C-11C | 1.407 | 1.409 | 16C-17C | 1.468 | 1.413 |
11C-9C | 1.378 | 1.386 | 17C-19C | 1.320 | 1.382 |
9C-8C | 1.393 | 1.402 | 19C-21C | 1.366 | 1.405 |
8C-16C | 1.392 | 1.392 | 21C-22C | 1.423 | 1.391 |
16C-15C | 1.389 | 1.400 | 22C-24C | 1.346 | 1.401 |
15C-13C | 1.418 | 1.428 | 24C-16C | 1.417 | 1.430 |
18C-19C | 1.511 | 1.511 | 15C-11C | 1.552 | 1.511 |
Bond angle (°) | Expt. | DFT | Bond angle (°) | Expt. | DFT |
6N-4H-3O | 145.28 | 147.9 | 1N-6H-5O | 146.52 | 148.9 |
4H-3O-15C | 109.46 | 106.4 | 6H-5O-24C | 109.42 | 105.8 |
6N-18C-13C | 117.51 | 117.7 | 1N-15C-16C | 119.57 | 117.2 |
2H-1O-8C | 109.51 | 109.0 | 4H-3O-21C | 109.50 | 109.2 |
13C-18C-19C | 120.78 | 121.4 | 16C-15C-11C | 120.86 | 119.5 |
19C-18C-6N | 121.70 | 120.9 | 11C-15C-1N | 119.37 | 123.3 |
Atom Position a | Expt. | DFT | DFT (DMSO) | Atom Position a | Expt. | DFT | DFT (DMSO) |
---|---|---|---|---|---|---|---|
10H | 13.54 | 13.66 | 13.68 | 15C | 166.63 | 161.96 | 164.21 |
32H | 7.54 | 7.41 | 7.65 | 24C | 162.09 | 158.99 | 158.55 |
34H | 6.38 | 6.37 | 6.45 | 21C | 161.57 | 153.95 | 154.65 |
37H | 6.31 | 5.93 | 6.15 | 17C | 130.74 | 126.00 | 127.39 |
8H | 10.15 | 3.89 | 4.7 | 16C | 111.22 | 109.81 | 110.25 |
-CH3 | 2.46 | 2.32 | 2.41 | 19C | 107.5 | 101.73 | 102.2 |
22C | 102.9 | 97.87 | 98.3 | ||||
11C | 14.23 | 13.88 | 14.67 |
Compound | ABTS Assay IC50, µM | DPPH Assay IC50, µM |
---|---|---|
Compound 2 | 4.30 ± 0.21 | 81.06 ± 0.72 |
Ascorbic acid | 13.2 ± 0.45 | 28.7 ± 0.65 |
Quercetin | 3.57 ± 0.54 | 4.02 ± 0.058 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tayade, K.; Yeom, G.-S.; Sahoo, S.K.; Puschmann, H.; Nimse, S.B.; Kuwar, A. Exploration of Molecular Structure, DFT Calculations, and Antioxidant Activity of a Hydrazone Derivative. Antioxidants 2022, 11, 2138. https://doi.org/10.3390/antiox11112138
Tayade K, Yeom G-S, Sahoo SK, Puschmann H, Nimse SB, Kuwar A. Exploration of Molecular Structure, DFT Calculations, and Antioxidant Activity of a Hydrazone Derivative. Antioxidants. 2022; 11(11):2138. https://doi.org/10.3390/antiox11112138
Chicago/Turabian StyleTayade, Kundan, Gyu-Seong Yeom, Suban K. Sahoo, Horst Puschmann, Satish Balasaheb Nimse, and Anil Kuwar. 2022. "Exploration of Molecular Structure, DFT Calculations, and Antioxidant Activity of a Hydrazone Derivative" Antioxidants 11, no. 11: 2138. https://doi.org/10.3390/antiox11112138
APA StyleTayade, K., Yeom, G.-S., Sahoo, S. K., Puschmann, H., Nimse, S. B., & Kuwar, A. (2022). Exploration of Molecular Structure, DFT Calculations, and Antioxidant Activity of a Hydrazone Derivative. Antioxidants, 11(11), 2138. https://doi.org/10.3390/antiox11112138