In Vitro and In Silico Toxicological Properties of Natural Antioxidant Therapeutic Agent Azima tetracantha. LAM
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material Collection and Extraction
2.2. DPPH Radical-Scavenging Assay
2.3. Evaluation of Antiseptic Properties
2.4. Inhibition of Albumin Denaturation
2.5. HRBC Membrane Stabilization Method
2.6. HPLC Analysis
2.6.1. Extraction Solvent
2.6.2. Standard Solutions
2.6.3. Test Solution
2.6.4. Chromatographic System and Procedure
2.7. GC-MS Analysis
2.8. Computational Analysis
2.8.1. Drug-Likeness Studies
2.8.2. Swiss ADME/Toxicity
2.8.3. Molecular Docking
2.8.4. Enrichment and Network Analysis
2.9. Cell Line
2.10. Cell Viability Assay by Enzyme-Linked Immunosorbent
2.11. Statistical Analysis
3. Results
3.1. Azima Tetracantha Exhibits Antioxidant Properties
3.2. Antiseptic Properties of Azima Tetracantha
3.3. In Vitro Anti-Inflammatory Activity
3.3.1. Inhibition of Albumin Denaturation
3.3.2. GC-MS Analysis of Azima tetracantha
3.3.3. High-Performance Liquid Chromatography Analysis
3.3.4. Scrutiny of Pharmacokinetic Properties
3.4. Molecular Docking
3.5. Protein–Protein Interaction (PPI) Network Analysis
3.6. Molecular Analysis
3.7. KEGG and REATOME Pathways Enrichment Analysis
3.8. Compound-Target-Pathway Interaction Network
3.9. Compound Induce an Anti-Proliferative Effect on Cervical Cancer Cell Line
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
MeOH | Methanol |
Azima tetracanta | AT |
ADME/T | (Absorption, Distribution, Metabolism, Excretion) and Toxicity |
STRING | Search Tool for the Retrieval of Interacting Genes/Proteins |
HPLC | High-Performance Liquid Chromatography analysis |
MW | Molecular weight |
GC/MS | Gas chromatography mass spectroscopy |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
REATOME | Reactome pathway database |
LogP | Log of octanol/water partition coefficient |
nHBA | No. of hydrogen bond acceptor(s) |
nHBD | No. of hydrogen bond donor(s) |
TPSA | Total polar surface area |
N Violations | No. of rule of five violations |
MS | Molar aqueous solubility |
MV | Molar volume |
nRotB | No. of rotable bonds |
MTT | 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide |
References
- Alok, S.; Jain, S.K.; Verma, A.; Kumar, M.; Mahor, A.; Sabharwal, M. Herbal antioxidant in clinical practice: A review. Asian Pac. J. Trop. Biomed. 2014, 4, 78–84. [Google Scholar] [CrossRef]
- Amaeze, O.U.; Ayoola, G.A.; Sofidiya, M.O.; Adepoju-Bello, A.A.; Adegoke, A.O.; Coker, H.A. Evaluation of antioxidant activity of Tetracarpidium conophorum (Mull. Arg) Hutch & Dalziel leaves. Oxidative Med. Cell. Longev. 2011, 2011, 976701. [Google Scholar] [CrossRef] [Green Version]
- Patel, M.M.; Patel, L.J. Design, synthesis, molecular docking, and antibacterial evaluation of some novel flouroquinolone derivatives as potent antibacterial agent. Sci. World J. 2014, 2014, 897187. [Google Scholar] [CrossRef]
- Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F. Cancer-related inflammation. Nature 2008, 454, 436–444. [Google Scholar] [CrossRef]
- Wang, H.; You, Q.D.; Li, Z.Y.; Zou, Y.Q. Design, synthesis and antitumor activity of 3-substituted quinolone derivatives (I). Chin. Chem. Lett. 2008, 19, 1395–1397. [Google Scholar] [CrossRef]
- Liu, Z.W.; Zhou, T.Y.; Ziegler, A.C.; Dimitrion, P.; Zuo, L. Oxidative Stress in Neurodegenerative Diseases: From Molecular Mechanisms to Clinical Applications. Oxidative Med. Cell. Longev. 2017, 2017, 2525967. [Google Scholar] [CrossRef]
- Saha, S.K.; Lee, S.B.; Won, J.; Choi, H.Y.; Kim, K.; Yang, G.M.; Dayem, A.A.; Cho, S.G. Correlation between Oxidative Stress, Nutrition, and Cancer Initiation. Int. J. Mol. Sci. 2017, 18, 1544. [Google Scholar] [CrossRef] [Green Version]
- Shalapour, S.; Karin, M. Immunity, inflammation, and cancer: An eternal fight between good and evil. J. Clin. Investig. 2015, 125, 3347–3355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.Z.; DuBois, R.N. Immunosuppression associated with chronic inflammation in the tumor microenvironment. Carcinogenesis 2015, 36, 1085–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrihari, T.G. Dual role of inflammatory mediators in cancer. Ecancermedicalscienc 2017, 11, 721. [Google Scholar] [CrossRef]
- Li, S.; Hong, M.; Tan, H.Y.; Wang, N.; Feng, Y.B. Insights into the Role and Interdependence of Oxidative Stress and Inflammation in Liver Diseases. Oxidative Med. Cell. Longev. 2016, 2016, 4234061. [Google Scholar] [CrossRef]
- Yasin, Y.J.; Banoub, J.A.M.; Husseini, A. GBD 2017 Causes of Death Collaborators. Global, regional, and national age- sex- specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the Global Burden of Disease Study 2017 (vol 392, pg 1736, 2017). Lancet 2019, 393, E44. [Google Scholar]
- Kenny, R.G.; Marmion, C.J. Toward Multi-Targeted Platinum and Ruthenium Drugs-A New Paradigm in Cancer Drug Treatment Regimens? Chem. Rev. 2019, 119, 1058–1137. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; MacKerell, A.D., Jr. Computer-Aided Drug Design Methods. Methods Mol. Biol. 2017, 1520, 85–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brogi, S.; Ramalho, T.C.; Kuca, K.; Medina-Franco, J.L.; Valko, M. Editorial: In silico Methods for Drug Design and Discovery. Front. Chem. 2020, 8, 612. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Garcia, A.; Bermejo, M.; Moss, A.; Casabo, V.G. Pharmacokinetics in drug discovery. J. Pharm. Sci. 2008, 97, 654–690. [Google Scholar] [CrossRef]
- Leon-Gonzalez, A.J.; Navarro, I.; Acero, N.; Mingarro, D.M.; Martin-Cordero, C. Genus Retama: A review on traditional uses, phytochemistry, and pharmacological activities. Phytochem. Rev. 2018, 17, 701–731. [Google Scholar] [CrossRef]
- Francesco, A.; Stefano, L.; Enza, M.; Vanneschi, L. Genetic programming for computational pharmacokinetics in drug discovery and development. Genet. Program. Evolvable Mach. 2007, 8, 413–432. [Google Scholar] [CrossRef]
- Van der Graaf, P.H.; Benson, N. Systems Pharmacology: Bridging Systems Biology and Pharmacokinetics-Pharmacodynamics (PKPD) in Drug Discovery and Development. Pharm. Res. 2011, 28, 1460–1464. [Google Scholar] [CrossRef]
- Raghavendra, H.L. Phytochemistry, traditional uses, and pharmacological activities of Azima tetracantha Lam.(Salvadoraceae)—An updated review. Int. J. Green Pharm. 2018, 11, 217–229. [Google Scholar]
- Rahman, M.M.; Islam, M.B.; Biswas, M.; Alam, A.K. In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh. BMC Res. Notes 2015, 8, 621. [Google Scholar] [CrossRef] [Green Version]
- Khan, H. Medicinal plants in light of history: Recognized therapeutic modality. J. Evid. Based Complementary Altern. Med. 2014, 19, 216–219. [Google Scholar] [CrossRef]
- Sakat, S. In vitro antioxidant and anti-inflammatoryactivity of methanol extract of Oxalis corniculata Linn. Int. J. Pharm. Pharm. Sci. 2010, 2, 146–155. [Google Scholar]
- Cragg, G.M.; Newman, D.J.; Yang, S.S. Natural product extracts of plant and marine origin having antileukemia potential. The NCI experience. J. Nat. Prod. 2006, 69, 488–498. [Google Scholar] [CrossRef] [PubMed]
- Zerroug, A.; Belaidi, S.; BenBrahim, I.; Sinha, L.; Chtita, S. Virtual screening in drug-likeness and structure/activity relationship of pyridazine derivatives as Anti-Alzheimer drugs. J. King Saud Univ. Sci. 2019, 31, 595–601. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- Trott, O.; Olson, A.J. Software News and Update AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P. The STRING database in 2017: Quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 2016, 15, D362–D368. [Google Scholar] [CrossRef]
- Truong, D.H.; Nguyen, D.H.; Ta, N.T.; Bui, A.V.; Do, T.H.; Nguyen, H.C. Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of Severinia buxifolia. J. Food Qual. 2019, 2019, 8178294. [Google Scholar] [CrossRef] [Green Version]
- Desai, A.G.; Qazi, G.N.; Ganju, R.K.; El-Tamer, M.; Singh, J.; Saxena, A.K.; Bedi, Y.S.; Taneja, S.C.; Bhat, H.K. Medicinal plants and cancer chemoprevention. Curr. Drug Metab. 2008, 9, 581–591. [Google Scholar] [CrossRef] [Green Version]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef] [Green Version]
- Baumann, J.; Wurn, G.; Bruchlausen, F.V. Prostaglandin synthetase inhibiting O2 radical scavenging properties of some flavonoids and related phenolic compounds. Deutsche Pharmakologische Gesellschaft abstracts of the 20th spring meeting, Naunyn-Schmiedebergs abstract no: R27 cited. Arch. Pharmacol. 1979, 308, 27–32. [Google Scholar]
- Arunachalam, R.; Rao Konda, V.G.; Eerike, M.; Radhakrishnan, A.K.; Devi, S. Nephroprotective effects of ethanolic root extract of Azima tetracantha lam in adenine-induced chronic kidney failure in Wistar rats. Indian J. Pharmacol. 2021, 53, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.R.; Lee, C.W.; Yun, J.; Oh, S.J.; Park, S.K.; Lee, K.; Kim, H.M.; Han, S.B.; Kim, H.C.; Kang, J.S. Methanolic Extract Isolated from Root of Lycoris aurea Inhibits Cancer Cell Growth and Endothelial Cell Tube Formation In Vitro. Toxicol. Res. 2012, 28, 33–38. [Google Scholar] [CrossRef]
- Khameneh, B.; Iranshahy, M.; Soheili, V.; Bazzaz, B.S.F. Review on plant antimicrobials: A mechanistic viewpoint. Antimicrob. Resist. Infect. Control. 2019, 8, 118. [Google Scholar] [CrossRef] [Green Version]
- Othman, L.; Sleiman, A.; Abdel-Massih, R.M. Antimicrobial Activity of Polyphenols and Alkaloids in Middle Eastern Plants. Front. Microbiol. 2019, 10, 911. [Google Scholar] [CrossRef] [PubMed]
- Prakash, P.; Vijayasarathi, D.; Selvam, K.; Karthi, S.; Manivasagaperumal, R. Pharmacore maping based on docking, ADME/toxicity, virtual screening on 3,5-dimethyl-1,3,4-hexanetriol and dodecanoic acid derivates for anticancer inhibitors. J. Biomol. Struct. Dyn. 2021, 39, 4490–4500. [Google Scholar] [CrossRef]
- Lohmann, C.; Hüwel, S.; Galla, H.J. Predicting blood-brain barrier permeability of drugs: Evaluation of different in vitro assays. J. Drug Target. 2002, 10, 263–276. [Google Scholar] [CrossRef] [PubMed]
- Schneider, G. Prediction of Drug-Like Properties. In Madame Curie Bioscience Database [Internet]; Landes Bioscience: Austin, TX, USA, 2013. Available online: https://www.ncbi.nlm.nih.gov/books/NBK6404/ (accessed on 10 February 2021).
- Shen, J.; Cheng, F.; Xu, Y.; Li, W.; Tang, Y. Estimation of ADME properties with substructure pattern recognition. J. Chem. Inf. Model. 2010, 50, 1034–1041. [Google Scholar] [CrossRef]
- Kumar, M.; Chung, S.M.; Enkhtaivan, G.; Patel, R.V.; Shin, H.S.; Mistry, B.M. Molecular Docking Studies and Biological Evaluation of Berberine-Benzothiazole Derivatives as an Anti-Influenza Agent via Blocking of Neuraminidase. Int. J. Mol. Sci. 2021, 22, 2368. [Google Scholar] [CrossRef]
- Goel, S.; Duda, D.G.; Xu, L.; Munn, L.L.; Boucher, Y.; Fukumura, D.; Jain, R.K. Normalization of the vasculature for treatment of cancer and other diseases. Physiol. Rev. 2021, 91, 1071–1121. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Jangra, K. Identification of Important Key Regulators in Cervical Cancer Network. Ann. Immunol. Immunother. 2019, 1. [Google Scholar] [CrossRef]
- Zong, S.; Liu, X.; Zhou, N.; Yue, Y. E2F7, EREG, miR-451a and miR-106b-5p are associated with the cervical cancer development. Arch. Gynecol. Obstet. 2019, 299, 1089–1098. [Google Scholar] [CrossRef] [PubMed]
- Chiang, Y.; Chou, C.Y.; Hsu, K.F.; Huang, Y.F.; Shen, M.R. EGF upregulates Na+/H+ exchanger NHE1 by post-translational regulation that is important for cervical cancer cell invasiveness. J. Cell. Physiol. 2008, 214, 810–819. [Google Scholar] [CrossRef] [PubMed]
- Elufioye, T.O.; Abdul, A.A.; Moody, J.O. Cytotoxicity Studies of the Extracts, Fractions, and Isolated Compound of Pseudocedrela kotschyi on Cervical Cancer (HeLa), Breast Cancer (MCF-7) and Skeletal Muscle Cancer (RD) Cells. Pharm. Res. 2017, 9, 46–50. [Google Scholar] [CrossRef]
- Doonan, F.; Cotter, T.G. Morphological assessment of apoptosis. Methods 2008, 44, 200–204. [Google Scholar] [CrossRef] [PubMed]
- Widiyastuti, Y.; Sholikhah, I.Y.M.; Haryanti, S. Cytotoxic activities of ethanolic and dichloromethane extract of leaves, stems, and flowers of Jarong [Stachytarpheta jamaicensis (L.) Vahl.] on HeLa and T47D cancer cell line. AIP Conf. Proc. 2019, 2202, 020101. [Google Scholar]
- Konda, V.R.; Arunachalam, R.; Eerike, M.; Rao, K.R.; Radhakrishnan, A.K.; Raghuraman, L.P.; Meti, V.; Devi, S. Nephroprotective effect of ethanolic extract of Azima tetracantha root in glycerol induced acute renal failure in Wistar albino rats. J. Tradit. Complement Med. 2015, 6, 347–354. [Google Scholar] [CrossRef] [Green Version]
- Nazeema, T.; Girija, S. Characterisation of the active antiproliferative principles of Jatropha curcus and Jatropha gossippifolia on Hela cell lines. Int. J. Pharm. Pharm. Sci. 2013, 5, 346–355. [Google Scholar]
- Gopalakrishnan, G.; Nair, B.R.; Babu, V. Anti-proliferative and cytotoxic effects of Azima tetracantha Lam. on cervical cancer cell line (HeLa) and human peripheral lymphocyte (HPL). J. Pharmacogn. Phytochem. 2015, 4, 161. [Google Scholar]
- Singh, S.; Sharma, B.; Kanwar, S.S.; Kumar, A. Lead Phytochemicals for Anticancer Drug Development. Front. Plant Sci. 2016, 7, 1667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alam, A.H.M.K.; Hossain, A.S.M.S.; Khan, M.A.; Kabir, S.R.; Abu Reza, M.; Rahman, M.M.; Islam, M.S.; Rahman, M.A.A.; Rashid, M.; Sadik, M.G. The Antioxidative Fraction of White Mulberry Induces Apoptosis through Regulation of p53 and NF kappa B in EAC Cells. PLoS ONE 2016, 11, e0167536. [Google Scholar] [CrossRef] [PubMed]
Mean Zone of Inhibition a (mm) b | ||
---|---|---|
S. No | Microorganism | Methanol Extract (MeOH) |
500 µg/Disc | ||
1 | Staphylococcus aureus | 15.3 ± 0.15 |
2 | Bacillus cereus | 11.4 ± 0.20 |
3 | Bacillus subtilis | 11.1 ± 0.10 |
4 | Escherichiacoli | 8.2 ± 0.05 |
5 | Klebsiellapneumonia | 10.0 ± 0.00 |
6 | Salmonella typhi | 10.0 ± 0.11 |
S. No | Formula | MW | Aromatic Heavy Atoms | Rotatable Bonds | H-Bond Acceptors | H-Bond Donors | TPSA | XLOGP 3 | Ali Log S | Ali Class | BBB | CYP1A2 Inhibitor | CYP2C19 Inhibitor | CYP2C9 Inhibitor | CYP2D6 Inhibitor | CYP3A4 Inhibitor | Bioavailability | SA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | C27H41N3O2S2 | 503.76 | 6 | 12 | 3 | 2 | 112.04 | 5.52 | −7.63 | Soluble | No | No | Yes | No | Yes | Yes | 0.55 | 5.07 |
2 | C16H15N3S | 281.38 | 15 | 2 | 2 | 0 | 57.89 | 4 | −4.92 | M. soluble | Yes | Yes | Yes | Yes | No | No | 0.55 | 3.11 |
3 | C27H42O4 | 430.62 | 0 | 0 | 4 | 1 | 55.76 | 4.83 | −5.73 | M. soluble | Yes | No | No | No | No | No | 0.55 | 6.7 |
4 | C12H14O3 | 206.24 | 6 | 2 | 3 | 0 | 35.53 | 1.96 | −2.33 | Soluble | Yes | Yes | No | No | No | No | 0.55 | 1.99 |
5 | C26H28O8 | 468.5 | 5 | 1 | 8 | 2 | 123.27 | 0.67 | −2.84 | Soluble | No | No | No | No | No | No | 0.55 | 5.92 |
S. No. | Formula | MW | Avian Toxicity | Biodegradation | Crustacea Aquatic Toxicity | Fish Aquatic Toxicity | Honey Bee Toxicity | Tetrahymena Pyriformis | Human Intestinal Absorption |
---|---|---|---|---|---|---|---|---|---|
1 | C27H41N3O2S2 | 503.76 | − | + | iii | − | − | 1.18606 | + |
2 | C16H15N3S | 281.38 | − | + | iii | + | − | 1.0123 | + |
3 | C27H42O4 | 430.62 | − | − | iii | − | − | 0.50823 | + |
4 | C12H14O3 | 206.24 | − | − | iii | + | − | 0.85124 | + |
5 | C26H28O8 | 468.5 | − | + | i | + | − | 1.7517 | + |
Bioactive Compounds | Lipinski’s Parameters | Mv | nRotB | |||||
---|---|---|---|---|---|---|---|---|
Molecular Weight | Log P | nHBA | nHBD | TPSA (A2) | N Violations | |||
(E)-S-tert-butyl 2-((E)-4,4-dimethyl-5-((2,3,3-trimethyl-5-(methylthio)-3,4-dihydro-2H-pyrrol-2-yl)methylene)pyrrolidin-2-ylidene)-2-(3,4-dimethyl-5-oxo-2,5-dihydro-1H-pyrrol-2-yl)ethanethioate | 503.76 | 4.99 | 3 | 1 | 61.43 | 1 | 482.64 | 10 |
5,6-dimethoxy-3-methyl-2,3-dihydro-1H-indene-1-one | 281.38 | 5.26 | 3 | 0 | 29.66 | 1 | 255.16 | 2 |
5-(4-aminophenyl)-4-(o-tolyl) thiazol-2-amine | 430.62 | 5.01 | 4 | 1 | 57.51 | 1 | 427.78 | 3 |
2-(3-acetoxy-4,4,10,13,14 pentamethyl2,3,4,5,6,7,10,11,12,13,14,15,16,17- tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl) propanoic acid | 206.24 | 1.86 | 2 | 0 | 35.41 | 0 | 193.6 | 2 |
7-acetyl-3a1-methyl-4,14-dioxo-1,2,3a,3a1,4,5,5a,6,8a,9b,10,11,11a-tetradecahydro-2,5a1-epoxy-5,6a(methanooxymethano)phenaleno[1′,9′:5,6,7]indeno[1,7a-b]oxiren-2-yl acetate | 468.5 | 0.91 | 8 | 2 | 123.28 | 0 | 406.2 | 2 |
S. No. | Compound Name | 4AGD | 2ITY | ||
---|---|---|---|---|---|
Docking Score (kcal/mol) | Glide Energy (kcal/mol) | Docking Score (kcal/mol) | Glide Energy (kcal/mol) | ||
1 | 5,6-dimethoxy-3-methyl-2,3-dihydro-1H-indene-1-one | −4.91 | −26.65 | −5.58 | −34.33 |
2 | 5-(4-aminophenyl)-4-(o-tolyl)thiazol-2-amine | −4.48 | −26.59 | −6.80 | −36.51 |
3 | 2-(3-acetoxy−4,4,10,13,14-pentamethyl-2,3,4,5,6,7,10,11,12,13,14,15,16,17-tetradecahydro-1H- cyclopenta[a]phenanthren-17-yl) propanoic acid | −4.47 | −39.05 | −6.81 | −43.53 |
4 | 7-acetyl-3a1-methyl-4,14-dioxo-1,2,3a,3a1,4,5,5a,6,8a,9b,10,11,11a-tetradecahydro-2,5a1-epoxy5,6a(methanooxymethano)phenaleno[1′,9′:5,6,7]indeno[1,7a-b]oxiren-2-yl acetate | −6.47 | −52.25 | −5.79 | −44.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prakash, P.; Kumari, N.; Gayathiri, E.; Selvam, K.; Ragunathan, M.G.; Chandrasekaran, M.; Al-Dosary, M.A.; Hatamleh, A.A.; Nadda, A.K.; Kumar, M. In Vitro and In Silico Toxicological Properties of Natural Antioxidant Therapeutic Agent Azima tetracantha. LAM. Antioxidants 2021, 10, 1307. https://doi.org/10.3390/antiox10081307
Prakash P, Kumari N, Gayathiri E, Selvam K, Ragunathan MG, Chandrasekaran M, Al-Dosary MA, Hatamleh AA, Nadda AK, Kumar M. In Vitro and In Silico Toxicological Properties of Natural Antioxidant Therapeutic Agent Azima tetracantha. LAM. Antioxidants. 2021; 10(8):1307. https://doi.org/10.3390/antiox10081307
Chicago/Turabian StylePrakash, Palanisamy, Nisha Kumari, Ekambaram Gayathiri, Kuppusamy Selvam, Manikavali Gurunadhan Ragunathan, Murugesan Chandrasekaran, Munirah Abdullah Al-Dosary, Ashraf Atef Hatamleh, Ashok Kumar Nadda, and Manu Kumar. 2021. "In Vitro and In Silico Toxicological Properties of Natural Antioxidant Therapeutic Agent Azima tetracantha. LAM" Antioxidants 10, no. 8: 1307. https://doi.org/10.3390/antiox10081307
APA StylePrakash, P., Kumari, N., Gayathiri, E., Selvam, K., Ragunathan, M. G., Chandrasekaran, M., Al-Dosary, M. A., Hatamleh, A. A., Nadda, A. K., & Kumar, M. (2021). In Vitro and In Silico Toxicological Properties of Natural Antioxidant Therapeutic Agent Azima tetracantha. LAM. Antioxidants, 10(8), 1307. https://doi.org/10.3390/antiox10081307