Chemical Composition and Biological Properties of Two Jatropha Species: Different Parts and Different Extraction Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Extraction
2.3. Total Phenolic and Flavonoid Content
2.4. HPLC Analysis
2.5. Determination of Antioxidant and Enzyme Inhibitory Effects
2.6. Artemia salina Lethality Bioassay
2.7. Cell Cultures and Viability Test
2.8. RNA Extraction, Reverse Transcription, and Real-Time Reverse Transcription Polymerase Chain Reaction (Real-Time RT PCR)
2.9. Bioinformatics
2.10. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, A.; Sharma, S. An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): A review. Ind. Crop. Prod. 2008, 28, 1–10. [Google Scholar] [CrossRef]
- Félix-Silva, J.; Giordani, R.B.; Silva, A.A.D., Jr.; Zucolotto, S.M.; Fernandes-Pedrosa, M.D.F. Jatropha gossypiifolia L. (Euphorbiaceae): A Review of Traditional Uses, Phytochemistry, Pharmacology, and Toxicology of This Medicinal Plant. Evid. Based Complement. Altern. Med. 2014, 2014, 369204. [Google Scholar] [CrossRef] [Green Version]
- Sabandar, C.W.; Ahmat, N.; Jaafar, F.M.; Sahidin, I. Medicinal property, phytochemistry and pharmacology of several Jatropha species (Euphorbiaceae): A review. Phytochemistry 2013, 85, 7–29. [Google Scholar] [CrossRef]
- Abdelgadir, H.; Van Staden, J. Ethnobotany, ethnopharmacology and toxicity of Jatropha curcas L. (Euphorbiaceae): A review. S. Afr. J. Bot. 2013, 88, 204–218. [Google Scholar] [CrossRef] [Green Version]
- Devappa, R.K.; Makkar, H.P.S.; Becker, K. Jatropha Diterpenes: A Review. J. Am. Oil Chem. Soc. 2010, 88, 301–322. [Google Scholar] [CrossRef]
- Cavalcante, N.B.; Santos, A.D.; Almeida, J.R.G. The genus Jatropha (Euphorbiaceae): A review on secondary chemical metabolites and biological aspects. Chem. Interact. 2020, 318, 108976. [Google Scholar] [CrossRef]
- Oduola, T.; Adeosun, G.O.; Oduola, T.A.; Avwioro, G.O.; Oyeniyi, M.A. Mechanism of Action of Jatropha Gossypifolia Stem Latex as a Haemostatic Agent. Electron. J. Gen. Med. 2005, 2, 140–143. [Google Scholar] [CrossRef]
- Sukohar, A.; Herawati, H.; Puspasari, G. Anticancer activity of Jatrophone an isolated compound from jatropha gossypifolia plant against hepatocellular cancer cell hep G2 1886. Biomed. Pharmacol. J. 2017, 10, 667–673. [Google Scholar]
- Dahake, R.; Roy, S.; Patil, D.; Rajopadhye, S.; Chowdhary, A. Potential anti-HIV activity of Jatropha curcas Linn. Leaf extracts. J. Antivir. Antiretrovir. 2013, 5, 160–165. [Google Scholar] [CrossRef] [Green Version]
- Warra, A. Cosmetic potentials of physic nut (Jatropha curcas Linn.) seed oil: A review. Am. J. Sci. Ind. Res. 2012, 3, 358–366. [Google Scholar] [CrossRef]
- Shetty, S.; Udupa, S.L.; Udupa, A.L.; Vollala, V.R. Wound healing activities of Bark Extract of Jatropha curcas Linn in albino rats. Saudi Med. J. 2006, 27, 1473–1476. [Google Scholar] [PubMed]
- Sangeetha, J.; Divya, K.; Vamsikrishna, M.P.A.; Rani, G.L. Anti-Inflammatory and Antibacterial Activity of Jatropha curcas Linn. Asian J. Pharm. Res. Health Care 2010, 2, 3. [Google Scholar]
- Slinkard, K.; Singleton, V.L. Total phenol analysis: Automation and comparison with manual methods. Am. J. Enol. Vitic. 1977, 28, 49–55. [Google Scholar]
- Zengin, G.; Nithiyanantham, S.; Locatelli, M.; Ceylan, R.; Uysal, S.; Aktumsek, A.; Selvi, P.K.; Maskovic, P. Screening of in vitro antioxidant and enzyme inhibitory activities of different extracts from two uninvestigated wild plants: Centranthus longiflorus subsp. longiflorus and Cerinthe minor subsp. auriculata. Eur. J. Integr. Med. 2016, 8, 286–292. [Google Scholar] [CrossRef]
- Zengin, G.; Uysal, A.; Diuzheva, A.; Gunes, E.; Jekő, J.; Cziáky, Z.; Picot-Allain, C.M.N.; Mahomoodally, M.F. Characterization of phytochemical components of Ferula halophila extracts using HPLC-MS/MS and their pharmacological po-tentials: A multi-functional insight. J. Pharm. Biomed. Anal. 2018, 160, 374–382. [Google Scholar] [CrossRef]
- Mollica, A.; Stefanucci, A.; Zengin, G.; Locatelli, M.; Macedonio, G.; Orlando, G.; Ferrante, C.; Menghini, L.; Recinella, L.; Leone, S. Polyphenolic composition, enzyme inhibitory effects ex-vivo and in-vivo studies on two Brassicaceae of north-central Italy. Biomed. Pharmacother. 2018, 107, 129–138. [Google Scholar] [CrossRef]
- Khoddami, A.; Wilkes, M.A.; Roberts, T.H. Techniques for Analysis of Plant Phenolic Compounds. Molecules 2013, 18, 2328–2375. [Google Scholar] [CrossRef]
- Pereira, G.A.; Molina, G.; Arruda, H.S.; Pastore, G.M. Optimizing the Homogenizer-Assisted Extraction (HAE) of Total Phenolic Compounds from Banana Peel. J. Food Process. Eng. 2016, 40, e12438. [Google Scholar] [CrossRef]
- Sultana, B.; Anwar, F.; Ashraf, M. Effect of Extraction Solvent/Technique on the Antioxidant Activity of Selected Medicinal Plant Extracts. Molecules 2009, 14, 2167–2180. [Google Scholar] [CrossRef]
- Pietrzak, W.; Nowak, R.; Olech, M. Effect of extraction method on phenolic content and antioxidant activity of mistletoe extracts from Viscum album subsp. abietis. Chem. Pap. 2014, 68, 976–982. [Google Scholar] [CrossRef]
- Islam, M.; Hossain, M.S.; Rokeya, B. Biological Investigation of Jatropha gossypiifolia: A Stiff Medicinal Plant in Bangladesh. Iran. J. Pharm. Sci. 2017, 13, 35–48. [Google Scholar]
- Saosoong, K.; Litthanapongsatorn, I.; Ruangviriyachai, C. Antioxidant Activity of the Extracts from Jatropha curcas Fruit and Its Correlation with Total Phenolic Content. Orient. J. Chem. 2015, 32, 1121–1127. [Google Scholar] [CrossRef] [Green Version]
- Igbinosa, O.O.; Igbinosa, I.H.; Chigor, V.N.; Uzunuigbe, O.E.; Oyedemi, S.O.; Odjadjare, E.E.; Okoh, A.I.; Igbinosa, E.O. Polyphenolic Contents and Antioxidant Potential of Stem Bark Extracts from Jatropha curcas (Linn). Int. J. Mol. Sci. 2011, 12, 2958–2971. [Google Scholar] [CrossRef] [PubMed]
- Abd-Alla, H.I.; Moharram, F.A.; Gaara, A.H.; El-Safty, M.M. Phytoconstituents of Jatropha curcas L. Leaves and their Immunomodulatory Activity on Humoral and Cell-Mediated Immune Response in Chicks. Z. Für Naturforschung C 2009, 64, 495–501. [Google Scholar] [CrossRef]
- Mitra, C.; Bhatnagar, S.; Sinha, M. Chemical examination of Jatropha curcas. Indian J. Chem. 1970, 8, 1047. [Google Scholar]
- Martínez-Herrera, J.; Siddhuraju, P.; Francis, G.; Dávila-Ortíz, G.; Becker, K. Chemical composition, toxic/antimetabolic constituents, and effects of different treatments on their levels, in four provenances of Jatropha curcas L. from Mexico. Food Chem. 2006, 96, 80–89. [Google Scholar] [CrossRef]
- Naengchomnong, W.; Thebtaranonth, Y.; Wiriyachitra, P.; Okamoto, K.; Clardy, J. Isolation and structure determination of four novel diterpenes from jatropha curcus. Tetrahedron Lett. 1986, 27, 2439–2442. [Google Scholar] [CrossRef]
- Vega-Ruiz, Y.C.; Hayano-Kanashiro, C.; Gámez-Meza, N.; Medina-Juárez, L.A. Determination of Chemical Constituents and Antioxidant Activities of Leaves and Stems from Jatropha cinerea (Ortega) Müll. Arg and Jatropha cordata (Ortega). Müll. Arg. Plants 2021, 10, 212. [Google Scholar]
- Félix-Silva, J.; Gomes, J.A.; Fernandes, J.M.; Moura, A.K.; Menezes, Y.A.; Santos, E.C.; Tambourgi, D.V.; Silva-Junior, A.A.; Zucolotto, S.M.; Fernandes-Pedrosa, M.F. Comparison of two Jatropha species (Euphorbiaceae) used popularly to treat snakebites in Northeastern Brazil: Chemical profile, inhibitory activity against Bothrops erythromelas venom and antibacterial activity. J. Ethnopharmacol. 2018, 213, 12–20. [Google Scholar] [CrossRef]
- Rofida, S. Antioxidant activity of Jatropha curcas and Jatropha gossypifolia by DPPH method. Pharm. J. Indonesia 2015, 2, 281–284. [Google Scholar]
- Saishri, R.; Ravichandran, N.; Vadivel, V.; Brindha, P. Pharmacognostic Studies on Leaf of Jatropha gossypifolia L. Int. J. Pharm. Sci. Res. 2016, 7, 163. [Google Scholar]
- Tay, Y.N.; A Bakar, M.H.; Azmi, M.N.; Saad, N.A.; Awang, K.; Litaudon, M.; Kassim, M.A. Inhibition of Carbohydrate Hydrolysing Enzymes, Antioxidant Activity and Polyphenolic Content of Beilschmiedia Species Extracts. In Proceedings of the IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 716, p. 12007. [Google Scholar]
- Murray, A.P.; Faraoni, M.B.; Castro, M.J.; Alza, N.P.; Cavallaro, V. Natural AChE Inhibitors from Plants and their Contribution to Alzheimer’s Disease Therapy. Curr. Neuropharmacol. 2013, 11, 388–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, T.C.D.; Gomes, T.M.; Pinto, B.A.S.; Camara, A.L.; Paes, A.M.D.A. Naturally occurring acetylcholinesterase inhibitors and their potential use for Alzheimer’s disease therapy. Front. Pharmacol. 2018, 9, 1192. [Google Scholar] [CrossRef] [Green Version]
- Feitosa, C.M.; Freitas, R.M.; Luz, N.N.N.; Bezerra, M.Z.B.; Trevisan, M.T.S. Acetylcholinesterase inhibition by somes promising Brazilian medicinal plants. Braz. J. Biol. 2011, 71, 783–789. [Google Scholar] [CrossRef] [Green Version]
- Saleem, H.; Ahmad, I.; Shahid, M.N.; Gill, M.S.A.; Nadeem, M.F.; Mahmood, W.; Rashid, I. In Vitro Acetylcholinesterase and Butyrylcholinesterase Inhibitory Potentials of Jatropha gossypifolia Plant Extracts. Acta Pol. Pharm. Drug Res. 2016, 73, 419–423. [Google Scholar]
- Cui, H.-X.; Duan, F.-F.; Jia, S.-S.; Cheng, F.-R.; Yuan, K. Antioxidant and Tyrosinase Inhibitory Activities of Seed Oils from Torreya grandis Fort. ex Lindl. BioMed Res. Int. 2018, 2018, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Hao, M.-M.; Sun, Y.; Wang, L.-F.; Wang, H.; Zhang, Y.-J.; Li, H.-Y.; Zhuang, P.-W.; Yang, Z. Synergistic promotion on tyrosinase inhibition by antioxidants. Molecules 2018, 23, 106. [Google Scholar] [CrossRef] [Green Version]
- Fu, R.; Zhang, Y.; Guo, Y.; Chen, F. Antioxidant and tyrosinase inhibition activities of the ethanol-insoluble fraction of water extract of Sapium sebiferum (L.) Roxb. leaves. S. Afr. J. Bot. 2014, 93, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Radulović, N.S.; Mladenović, M.Z.; Randjelovic, P.J.; Stojanović, N.M.; Dekić, M.S.; Blagojević, P.D. Toxic essential oils. Part IV: The essential oil of Achillea falcata L. as a source of biologically/pharmacologically active trans-sabinyl esters. Food Chem. Toxicol. 2015, 80, 114–129. [Google Scholar] [CrossRef]
- Liu, J.-Q.; Yang, Y.-F.; Li, X.-Y.; Liu, E.-Q.; Li, Z.-R.; Zhou, L.; Li, Y.; Qiu, M.-H. Cytotoxicity of naturally occurring rhamnofolane diterpenes from Jatropha curcas. Phytochemistry 2013, 96, 265–272. [Google Scholar] [CrossRef]
- Almeida, P.; Araújo, S.; Santos, I.; Marin-Morales, M.; Benko-Iseppon, A.; Santos, A.; Randau, K.; Brasileiro-Vidal, A. Genotoxic potential of leaf extracts of Jatropha gossypiifolia L. Genet. Mol. Res. 2016, 15, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, C.; Recinella, L.; Ronci, M.; Orlando, G.; Di Simone, S.; Brunetti, L.; Chiavaroli, A.; Leone, S.; Politi, M.; Tirillini, B.; et al. Protective effects induced by alcoholic Phlomis fruticosa and Phlomis herba-venti extracts in isolated rat colon: Focus on antioxidant, anti-inflammatory, and antimicrobial activities in vitro. Phytother. Res. 2019, 33, 2387–2400. [Google Scholar] [CrossRef]
- Recinella, L.; Chiavaroli, A.; di Giacomo, V.; Antolini, M.D.; Acquaviva, A.; Leone, S.; Brunetti, L.; Menghini, L.; Ak, G.; Zengin, G. Anti-Inflammatory and Neuromodulatory Effects Induced by Tanacetum parthenium Water Extract: Results from In Silico, In Vitro and Ex Vivo Studies. Molecules 2021, 26, 22. [Google Scholar] [CrossRef]
- Zengin, G.; Menghini, L.; Di Sotto, A.; Mancinelli, R.; Sisto, F.; Carradori, S.; Cesa, S.; Fraschetti, C.; Filippi, A.; Angiolella, L. Chromatographic analyses, in vitro biological activities, and cytotoxicity of Cannabis sativa L. essential oil: A multi-disciplinary study. Molecules 2018, 23, 3266. [Google Scholar] [CrossRef] [Green Version]
- Ferrante, C.; Recinella, L.; Locatelli, M.; Guglielmi, P.; Secci, D.; Leporini, L.; Chiavaroli, A.; Leone, S.; Martinotti, S.; Brunetti, L.; et al. Protective Effects Induced by Microwave-Assisted Aqueous Harpagophytum Extract on Rat Cortex Synaptosomes Challenged with Amyloid β-Peptide. Phytother. Res. 2017, 31, 1257–1264. [Google Scholar] [CrossRef]
- Brigadski, T.; Leßmann, V. The physiology of regulated BDNF release. Cell Tissue Res. 2020, 382, 15–45. [Google Scholar] [CrossRef]
- Xu, B.; Goulding, E.H.; Zang, K.; Cepoi, D.; Cone, R.D.; Jones, K.R.; Tecott, L.H.; Reichardt, L.F. Brain-derived neu-rotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nat. Neurosci. 2003, 6, 736–742. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Bomberg, E.; Billington, C.; Levine, A.; Kotz, C.M. Brain-derived neurotrophic factor in the hypothalamic paraventricular nucleus reduces energy intake. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 293, R1003–R1012. [Google Scholar] [CrossRef]
- Piotrowicz, Z.; Chalimoniuk, M.; Czuba, M.; Langfort, J. Rola neurotroficznego czynnika pochodzenia mózgowego w kontroli łaknienia. Postępy Biochem. 2020, 66, 205–212. [Google Scholar]
- Rakshit, K.; Darukeshwara, J.; Raj, K.R.; Narasimhamurthy, K.; Saibaba, P.; Bhagya, S. Toxicity studies of detoxified Jatropha meal (Jatropha curcas) in rats. Food Chem. Toxicol. 2008, 46, 3621–3625. [Google Scholar] [CrossRef]
- Garcia-Galiano, D.; Cara, A.L.; Tata, Z.; Allen, S.J.; Myers, M.G.; Schipani, E.; Elias, C.F. ERα Signaling in GHRH/Kiss1 Dual-Phenotype Neurons Plays Sex-Specific Roles in Growth and Puberty. J. Neurosci. 2020, 40, 9455–9466. [Google Scholar] [CrossRef]
- Bazhanova, E. Apoptosis of the hypothalamus neurosecretory cells in stress and ageing: The role of immune modulators. Rossiiskii fiziologicheskii zhurnal imeni IM Sechenova 2012, 98, 542–550. [Google Scholar] [PubMed]
Species | Parts | Methods | TPC (mg GAE/g) | TFC (mg RE/g) |
---|---|---|---|---|
J. curcas | Leaves | HAE | 48.95 ± 0.90 a | 13.99 ± 1.18 a |
MAC | 38.70 ± 0.53 b | 12.03 ± 0.21 b | ||
Stem bark | HAE | 6.72 ± 0.07 c | 2.67 ± 0.09 c | |
MAC | 5.79 ± 0.06 c | 1.64 ± 0.01 c | ||
J. gossypifolia | Leaves | HAE | 48.43 ± 0.31 b | 6.97 ± 0.32 d |
MAC | 42.62 ± 0.08 c | 11.04 ± 0.59 c | ||
Stem bark | HAE | 62.83 ± 2.05 a | 17.63 ± 0.34 a | |
MAC | 49.05 ± 0.40 b | 12.71 ± 0.10 b |
No. | Name | Formula | Rt | [M + H]+ | [M − H]− | Literature |
---|---|---|---|---|---|---|
1 1 | Catechin | C15H14O6 | 14.17 | 289.07121 | ||
2 | Kynurenic acid | C10H7NO3 | 14.23 | 190.05042 | ||
3 | Bergenin | C14H16O9 | 14.52 | 327.07161 | ||
4 | Scopoletin-7-O-hexoside | C16H18O9 | 15.02 | 355.10291 | ||
5 1 | Epiatechin | C15H14O6 | 17.61 | 289.07121 | ||
6 | Fraxetin (7,8-Dihydroxy-6-methoxycoumarin) | C10H8O5 | 17.68 | 209.04500 | ||
7 | Tomenin or isomer | C17H20O10 | 18.38 | 385.11348 | ||
8 1 | Scopoletin (7-Hydroxy-6-methoxycoumarin) | C10H8O4 | 19.16 | 193.05009 | ||
9 | Hemiphloin (Naringenin-6-C-glucoside) | C21H22O10 | 19.84 | 435.12913 | ||
10 | Luteolin-C-hexoside-C-pentoside isomer 1 | C26H28O15 | 19.87 | 579.13500 | ||
11 1 | Taxifolin (Dihydroquercetin) | C15H12O7 | 19.92 | 303.05048 | ||
12 | Luteolin-C-hexoside-C-pentoside isomer 2 | C26H28O15 | 20.03 | 579.13500 | ||
13 | Loliolide | C11H16O3 | 20.12 | 197.11777 | ||
14 | Apigenin-C-hexoside-O-hexoside | C27H30O15 | 20.29 | 595.16630 | ||
15 | Isohemiphloin (Naringenin-8-C-glucoside) | C21H22O10 | 20.39 | 435.12913 | ||
16 1 | Coumarin | C9H6O2 | 20.55 | 147.04461 | ||
17 | Naringenin-C-hexoside isomer 3 | C21H22O10 | 20.71 | 435.12913 | ||
18 | N-(2-Phenylethyl)acetamide | C10H13NO | 20.76 | 164.10754 | ||
19 | Vicenin-1 (Apigenin-8-C-glucoside-6-C-xyloside) | C26H28O14 | 20.77 | 565.15574 | ||
20 | Orientin (Luteolin-8-C-glucoside) | C21H20O11 | 20.90 | 449.10839 | [24] | |
21 | Vicenin-3 (Apigenin-6-C-glucoside-8-C-xyloside) | C26H28O14 | 21.15 | 565.15574 | ||
22 | Isoorientin (Luteolin-6-C-glucoside) | C21H20O11 | 21.25 | 449.10839 | ||
23 1 | Vitexin (Apigenin-8-C-glucoside) | C21H20O10 | 21.86 | 433.11347 | [24] | |
24 | Tomentin (6,7-Dimethoxy-5-hydroxycoumarin) or isomer | C11H10O5 | 22.22 | 223.06065 | ||
25 | Isovitexin (Apigenin-6-C-glucoside) | C21H20O10 | 22.77 | 433.11347 | ||
26 | Scoparin (Chrysoeriol-8-C-glucoside) or Isoscoparin (Chrysoeriol-6-C-glucoside) | C22H22O11 | 23.18 | 463.12404 | ||
27 1 | Isoquercitrin (Quercetin-3-O-glucoside) | C21H20O12 | 23.44 | 463.08765 | ||
28 | Apigenin-C-pentoside isomer 1 | C20H18O9 | 24.24 | 403.10291 | ||
29 1 | Cosmosiin (Apigenin-7-O-glucoside) | C21H20O10 | 24.51 | 433.11347 | ||
30 | Apigenin-C-pentoside isomer 2 | C20H18O9 | 24.82 | 403.10291 | ||
31 | Rhoifolin (Apigenin-7-O-neohesperidoside) | C27H30O14 | 24.93 | 577.15574 | [24] | |
32 | N-trans-Feruloyltyramine | C18H19NO4 | 25.15 | 314.13924 | ||
33 1 | Eriodictyol (3′,4′,5,7-Tetrahydroxyflavanone) | C15H12O6 | 25.40 | 287.05556 | ||
34 | Dihydroactinidiolide | C11H16O2 | 27.08 | 181.12286 | ||
35 | Dihydroxy-dimethoxy(iso)flavone-C-hexoside | C23H24O11 | 27.31 | 477.13969 | ||
36 1 | Quercetin (3,3′,4′,5,7-Pentahydroxyflavone) | C15H10O7 | 27.55 | 301.03483 | ||
37 1 | Naringenin (4′,5,7-Trihydroxyflavanone) | C15H12O5 | 27.73 | 271.06065 | ||
38 | Jasmonic acid | C12H18O3 | 28.19 | 209.11777 | ||
39 | Jatrophenol I or II or II | C43H40O20 | 28.28 | 875.20347 | [24] | |
40 1 | Luteolin (3′,4′,5,7-Tetrahydroxyflavone) | C15H10O6 | 28.43 | 285.03991 | ||
41 | Sebacic acid (Decanedioic acid) | C10H18O4 | 28.44 | 201.11268 | ||
42 | Quercetin-3-O-methyl ether | C16H12O7 | 28.78 | 315.05048 | ||
43 | Apigenin-C-pentoside isomer 3 | C20H18O9 | 29.40 | 403.10291 | ||
44 1 | Apigenin (4′,5,7-Trihydroxyflavone) | C15H10O5 | 30.26 | 269.04500 | [24] | |
45 | Jatrophenol I or II or II | C43H40O20 | 30.28 | 875.20347 | [24] | |
46 | Chrysoeriol (3′-Methoxy-4′,5,7-trihydroxyflavone) | C16H12O6 | 30.47 | 299.05556 | ||
47 | Undecanedioic acid | C11H20O4 | 31.32 | 215.12834 | ||
48 | 3,3′,4,4′-Tetra-O-methylellagic acid | C18H14O8 | 32.63 | 359.07670 | ||
49 | Hydroxydodecenoic acid | C12H22O3 | 32.75 | 213.14907 | ||
50 | Dimethoxy-trihydroxy(iso)flavone | C17H14O7 | 33.30 | 329.06613 | ||
51 | Dodecanedioic acid | C12H22O4 | 33.74 | 229.14399 | ||
52 | Curcusone C or Curcusone D | C20H24O3 | 35.45 | 313.18037 | [25] | |
53 | Curcusone C or Curcusone D | C20H24O3 | 35.92 | 313.18037 | [25] | |
54 | 12-Oxo phytodienoic acid or 13-Epi-12-oxo phytodienoic acid | C18H28O3 | 38.18 | 291.19603 | ||
55 | 12-Oxo phytodienoic acid or 13-Epi-12-oxo phytodienoic acid | C18H28O3 | 39.80 | 291.19603 | ||
56 | Stearidonic acid | C18H28O2 | 40.12 | 275.20111 | ||
57 | Hydroxyoctadecatrienoic acid | C18H30O3 | 40.22 | 293.21167 | ||
58 | Hydroxyoctadecadienoic acid | C18H32O3 | 41.33 | 295.22732 | ||
59 | Stearidonic acid methyl ester | C19H30O2 | 42.09 | 291.23241 | ||
60 | Hydroxyhexadecenoic acid | C16H30O3 | 43.45 | 269.21167 | ||
61 1 | α-Linolenic acid | C18H30O2 | 45.05 | 277.21676 | [26] | |
62 | Myristic acid | C14H28O2 | 45.16 | 227.20111 | [26] | |
63 | 2-Hydroxyhexadecanoic acid | C16H32O3 | 45.22 | 271.22732 | ||
64 1 | Linoleic acid | C18H32O2 | 46.05 | 279.23241 | [26] | |
65 | Palmitoleic acid | C16H30O2 | 46.30 | 253.21676 | [26] | |
66 | Palmitic acid | C16H32O2 | 46.98 | 255.23241 | [26] | |
67 1 | Oleic acid | C18H34O2 | 47.10 | 281.24806 | [26] | |
68 | Stearic acid | C18H36O2 | 48.40 | 283.26371 | [26] |
No. | Name | Formula | Rt | [M + H]+ | [M −H]− | Literature |
---|---|---|---|---|---|---|
1 | Scandoside methyl ester or isomer | C17H24O11 | 15.04 | 449.1295 | ||
2 | 5-O-Feruloylquinic acid | C17H20O9 | 18.55 | 367.10291 | ||
3 | Loliolide | C11H16O3 | 20.09 | 197.11777 | ||
4 | Orientin (Luteolin-8-C-glucoside) | C21H20O11 | 20.88 | 449.10839 | [24] | |
5 | Isoorientin (Luteolin-6-C-glucoside) | C21H20O11 | 21.22 | 449.10839 | ||
6 1 | Vitexin (Apigenin-8-C-glucoside) | C21H20O10 | 21.88 | 433.11347 | [24] | |
7 | Isovitexin (Apigenin-6-C-glucoside) | C21H20O10 | 22.80 | 433.11347 | ||
8 | Luteolin-7-O-glucoside (Cynaroside) | C21H20O11 | 22.89 | 447.09274 | ||
9 | Quercetin-O-rhamnosylpentoside | C26H28O15 | 23.30 | 579.13500 | ||
10 1 | Isoquercitrin (Quercetin-3-O-glucoside) | C21H20O12 | 23.48 | 463.08765 | ||
11 1 | Rutin (Quercetin-3-O-rutinoside) | C27H30O16 | 23.58 | 611.16122 | ||
12 | Tomatidine or isomer | C27H45NO2 | 24.45 | 416.35286 | ||
13 | Di-O-caffeoylquinic acid | C25H24O12 | 24.63 | 515.11896 | ||
14 1 | Quercitrin (Quercetin-3-O-rhamnoside) | C21H20O11 | 25.03 | 447.09274 | ||
15 | Kaempferol-O-rhamnosylpentoside | C26H28O14 | 25.07 | 563.14009 | ||
16 | Dihydroactinidiolide | C11H16O2 | 27.09 | 181.12286 | ||
17 1 | Quercetin (3,3′,4′,5,7-Pentahydroxyflavone) | C15H10O7 | 27.57 | 301.03483 | ||
18 | Jasmonic acid | C12H18O3 | 28.21 | 209.11777 | ||
19 | Sebacic acid (Decanedioic acid) | C10H18O4 | 28.44 | 201.11268 | ||
20 1 | Luteolin (3′,4′,5,7-Tetrahydroxyflavone) | C15H10O6 | 28.45 | 285.03991 | ||
21 | Quercetin-3-O-methyl ether | C16H12O7 | 28.80 | 315.05048 | ||
22 | Solasodine or isomer | C27H43NO2 | 29.16 | 414.33721 | ||
23 1 | Apigenin (4′,5,7-Trihydroxyflavone) | C15H10O5 | 30.29 | 269.04500 | [24] | |
24 | Undecanedioic acid | C11H20O4 | 31.33 | 215.12834 | ||
25 | Hydroxydodecenoic acid | C12H22O3 | 32.76 | 213.14907 | ||
26 | Dimethoxy-trihydroxy(iso)flavone | C17H14O7 | 33.33 | 329.06613 | ||
27 | Dodecanedioic acid | C12H22O4 | 33.76 | 229.14399 | ||
28 | Unidentified saponin 1 | C42H66O15 | 34.36 | 809.43235 | ||
29 | Trihydroxyoctadecenoic acid | C18H34O5 | 35.46 | 329.23280 | ||
30 | Unidentified saponin 2 | C42H66O15 | 35.73 | 809.43235 | ||
31 | Cynarasaponin C or isomer | C42H66O14 | 37.64 | 793.43744 | ||
32 | 12-Oxo phytodienoic acid or 13-Epi-12-oxo phytodienoic acid | C18H28O3 | 38.20 | 291.19603 | ||
33 | 12-Oxo phytodienoic acid or 13-Epi-12-oxo phytodienoic acid | C18H28O3 | 39.79 | 291.19603 | ||
34 | Stearidonic acid | C18H28O2 | 40.11 | 275.20111 | ||
35 | Hydroxyoctadecatrienoic acid | C18H30O3 | 40.20 | 293.21167 | ||
36 | Hexadecanedioic acid | C16H30O4 | 40.73 | 285.20659 | ||
37 | Hydroxyoctadecadienoic acid | C18H32O3 | 41.37 | 295.22732 | ||
38 1 | α-Linolenic acid | C18H30O2 | 45.07 | 277.21676 | [26] | |
39 1 | Linoleic acid | C18H32O2 | 46.06 | 279.23241 | [26] | |
40 | Palmitic acid | C16H32O2 | 46.99 | 255.23241 | [26] | |
41 1 | Oleic acid | C18H34O2 | 47.11 | 281.24806 | [26] | |
42 | Stearic acid | C18H36O2 | 48.41 | 283.26371 | [26] | |
43 | Taraxasterol or isomer | C30H50O | 50.86 | 427.39399 | [27] | |
44 | Taraxasterol or isomer | C30H50O | 53.00 | 427.39399 | [27] |
No. | Name | Formula | Rt | [M + H]+ | [M − H]− | Literature |
---|---|---|---|---|---|---|
1 | Quinic acid | C7H12O6 | 1.95 | 191.05557 | ||
2 1 | Catechin | C15H14O6 | 14.20 | 289.07121 | [26] | |
3 | Kynurenic acid | C10H7NO3 | 14.24 | 190.05042 | ||
4 | Bergenin | C14H16O9 | 14.56 | 327.07161 | ||
5 | Biflorin | C16H18O9 | 15.08 | 355.10291 | ||
6 | Isobiflorin | C16H18O9 | 15.86 | 355.10291 | ||
7 1 | Epiatechin | C15H14O6 | 17.63 | 289.07121 | ||
8 1 | 4-Coumaric acid | C9H8O3 | 18.63 | 163.03952 | [26] | |
9 | Isololiolide | C11H16O3 | 18.78 | 197.11777 | ||
10 1 | Scopoletin (7-Hydroxy-6-methoxycoumarin) | C10H8O4 | 19.13 | 193.05009 | ||
11 | Isoschaftoside (Apigenin-6-C-arabinoside-8-C-glucoside) | C26H28O14 | 19.44 | 565.15574 | [24] | |
12 | Schaftoside (Apigenin-8-C-arabinoside-6-C-glucoside) | C26H28O14 | 19.78 | 565.15574 | [24] | |
13 | Luteolin-C-hexoside-C-pentoside isomer 1 | C26H28O15 | 19.89 | 579.13500 | ||
14 1 | Taxifolin (Dihydroquercetin) | C15H12O7 | 19.94 | 303.05048 | ||
15 1 | Ferulic acid | C10H10O4 | 19.98 | 193.05009 | [26] | |
16 | Luteolin-C-hexoside-C-pentoside isomer 2 | C26H28O15 | 20.05 | 579.13500 | ||
17 | Loliolide | C11H16O3 | 20.07 | 197.11777 | ||
18 | Vicenin-1 (Apigenin-8-C-glucoside-6-C-xyloside) | C26H28O14 | 20.73 | 565.15574 | ||
19 | Orientin (Luteolin-8-C-glucoside) | C21H20O11 | 20.83 | 449.10839 | [24] | |
20 | Vicenin-3 (Apigenin-6-C-glucoside-8-C-xyloside) | C26H28O14 | 21.10 | 565.15574 | ||
21 | Isoorientin (Luteolin-6-C-glucoside) | C21H20O11 | 21.17 | 449.10839 | [24] | |
22 1 | Vitexin (Apigenin-8-C-glucoside) | C21H20O10 | 21.83 | 433.11347 | [24] | |
23 | Dihydrokaempferol (3,4′,5,7-Tetrahydroxyflavanone) | C15H12O6 | 22.51 | 287.05557 | ||
24 | Luteolin-C-pentoside | C20H18O10 | 22.56 | 419.09783 | ||
25 | Isovitexin (Apigenin-6-C-glucoside) | C21H20O10 | 22.75 | 433.11347 | [24] | |
26 | Luteolin-7-O-glucoside (Cynaroside) | C21H20O11 | 22.91 | 447.09274 | ||
27 | Scoparin (Chrysoeriol-8-C-glucoside) or Isoscoparin (Chrysoeriol-6-C-glucoside) | C22H22O11 | 23.20 | 463.12404 | ||
28 1 | Isoquercitrin (Quercetin-3-O-glucoside) | C21H20O12 | 23.47 | 463.08765 | ||
29 | Apigenin-C-rhamnoside isomer 1 | C21H20O9 | 23.62 | 417.11856 | ||
30 | Apigenin-C-pentoside isomer 1 | C20H18O9 | 24.24 | 403.10291 | ||
31 | Apigenin-C-pentoside isomer 2 | C20H18O9 | 24.91 | 403.10291 | ||
32 | Rhoifolin (Apigenin-7-O-neohesperidoside) | C27H30O14 | 24.95 | 577.15574 | ||
33 1 | Eriodictyol (3′,4′,5,7-Tetrahydroxyflavanone) | C15H12O6 | 25.42 | 287.05556 | ||
34 | Apigenin-C-rhamnoside isomer 2 | C21H20O9 | 26.19 | 417.11856 | ||
35 | Dihydroactinidiolide | C11H16O2 | 27.08 | 181.12286 | ||
36 | Dihydroxy-dimethoxy(iso)flavone-C-hexoside | C23H24O11 | 27.31 | 477.13969 | ||
37 1 | Quercetin (3,3′,4′,5,7-Pentahydroxyflavone) | C15H10O7 | 27.57 | 301.03483 | [26] | |
38 1 | Naringenin (4′,5,7-Trihydroxyflavanone) | C15H12O5 | 27.75 | 271.06065 | ||
39 | Jasmonic acid | C12H18O3 | 28.20 | 209.11777 | ||
40 | Jatrophenol I or II or II | C43H40O20 | 28.31 | 875.20347 | ||
41 1 | Luteolin (3′,4′,5,7-Tetrahydroxyflavone) | C15H10O6 | 28.44 | 285.03991 | [26] | |
42 | Sebacic acid (Decanedioic acid) | C10H18O4 | 28.45 | 201.11268 | ||
43 | Quercetin-3-O-methyl ether | C16H12O7 | 28.80 | 315.05048 | ||
44 | Dimethoxy-tetrahydroxy(iso)flavone | C17H14O8 | 29.05 | 345.06105 | ||
45 1 | Kaempferol (3,4′,5,7-Tetrahydroxyflavone) | C15H10O6 | 29.92 | 285.03991 | [26] | |
46 1 | Apigenin (4′,5,7-Trihydroxyflavone) | C15H10O5 | 30.27 | 269.04500 | [24] | |
47 | Jatrophenol I or II or II | C43H40O20 | 30.32 | 875.20347 | ||
48 1 | Isorhamnetin (3′-Methoxy-3,4′,5,7-tetrahydroxyflavone) | C16H12O7 | 30.42 | 315.05048 | ||
49 | Chrysoeriol (3′-Methoxy-4′,5,7-trihydroxyflavone) | C16H12O6 | 30.52 | 299.05556 | ||
50 | Methoxy-tetrahydroxy(iso)flavone | C16H12O6 | 30.93 | 299.05556 | ||
51 | Trihydroxy-trimethoxy(iso)flavone isomer 1 | C18H16O8 | 31.09 | 359.07670 | ||
52 | Dimethoxy-trihydroxy(iso)flavone | C17H14O7 | 31.15 | 329.06613 | ||
53 | Undecanedioic acid | C11H20O4 | 31.32 | 215.12834 | ||
54 | Trihydroxy-trimethoxy(iso)flavone isomer 2 | C18H16O8 | 31.74 | 359.07670 | ||
55 | Sakuranetin (4′,5-Dihydroxy-7-methoxyflavanone) | C16H14O5 | 32.54 | 287.09195 | ||
56 | Hydroxydodecenoic acid | C12H22O3 | 32.77 | 213.14907 | ||
57 | Trihydroxy-trimethoxy(iso)flavone isomer 3 | C18H16O8 | 33.15 | 359.07670 | ||
58 | Trihydroxy-trimethoxy(iso)flavone isomer 4 | C18H16O8 | 33.56 | 359.07670 | ||
59 | Dodecanedioic acid | C12H22O4 | 33.75 | 229.14399 | ||
60 | Dihydroxy-tetramethoxy(iso)flavone isomer 1 | C19H18O8 | 33.85 | 375.10799 | ||
61 | Dihydroxy-tetramethoxy(iso)flavone isomer 2 | C19H18O8 | 35.45 | 375.10799 | ||
62 | Hydroxy-tetramethoxy(iso)flavone | C19H18O7 | 37.04 | 359.11308 | ||
63 | Pinostrobin (5-Hydroxy-7-methoxyflavanone) | C16H14O4 | 37.08 | 271.09704 | ||
64 | Tetradecanedioic acid | C14H26O4 | 37.67 | 257.17529 | ||
65 | 12-Oxo phytodienoic acid or 13-Epi-12-oxo phytodienoic acid | C18H28O3 | 38.21 | 291.19603 | ||
66 | 12-Oxo phytodienoic acid or 13-Epi-12-oxo phytodienoic acid | C18H28O3 | 39.81 | 291.19603 | ||
67 | Stearidonic acid | C18H28O2 | 40.13 | 275.20111 | ||
68 | Hydroxyoctadecatrienoic acid | C18H30O3 | 40.22 | 293.21167 | ||
69 | Hydroxyoctadecadienoic acid | C18H32O3 | 41.36 | 295.22732 | ||
70 | Stearidonic acid methyl ester | C19H30O2 | 42.11 | 291.23241 | ||
71 | Hydroxyhexadecenoic acid | C16H30O3 | 43.46 | 269.21167 | ||
72 1 | α-Linolenic acid | C18H30O2 | 45.06 | 277.21676 | ||
73 | 2-Hydroxyhexadecanoic acid | C16H32O3 | 45.21 | 271.22732 | ||
74 1 | Linoleic acid | C18H32O2 | 46.06 | 279.23241 | ||
75 | Palmitoleic acid | C16H30O2 | 46.28 | 253.21676 | ||
76 | Palmitic acid | C16H32O2 | 46.99 | 255.23241 | ||
77 1 | Oleic acid | C18H34O2 | 47.09 | 281.24806 | ||
78 | Stearic acid | C18H36O2 | 48.38 | 283.26371 |
Species | Parts | Methods | DPPH | ABTS | CUPRAC | FRAP | MCA | PDB |
---|---|---|---|---|---|---|---|---|
(mg TE/g) | (mg EDTAE/g) | mmol TE/g | ||||||
J. curcas | Leaves | HAE | 124.70 ± 0.43 a | 149.12 ± 7.38 a | 256.21 ± 2.10 a | 97.03 ± 1.05 a | 10.98 ± 1.38 a | 2.57 ± 0.14 b |
MAC | 76.65 ± 0.95 b | 107.81 ± 1.38 b | 193.38 ± 0.66 b | 70.39 ± 0.22 b | 10.64 ± 0.81 a | 2.27 ± 0.12 b | ||
Stem bark | HAE | 6.89 ± 0.81 c | 20.20 ± 1.18 c | 24.90 ± 0.07 c | 15.19 ± 0.47 c | 5.28 ± 0.46 b | 3.34 ± 0.35 a | |
MAC | 7.00 ± 0.20 c | 21.03 ± 1.33 c | 21.07 ± 0.32 d | 14.02 ± 0.18 c | 3.21 ± 0.27 b | 3.55 ± 0.16 a | ||
J. gossypifolia | Leaves | HAE | 123.88 ± 1.05 b | 160.00 ± 1.62 b | 265.79 ± 0.59 b | 109.45 ± 1.43 c | 17.51 ± 0.71 b | 2.44 ± 0.11 a |
MAC | 124.29 ± 4.28 b | 149.65 ± 1.22 c | 245.10 ± 1.44 c | 101.32 ± 0.83 d | 18.98 ± 0.08 a | 2.01 ± 0.17 b | ||
Stem bark | HAE | 193.93 ± 0.23 a | 255.39 ± 3.00 a | 333.30 ± 5.32 a | 168.93 ± 1.17 a | 15.91 ± 0.15 c | 2.12 ± 0.09 ab | |
MAC | 48.14 ± 0.12 c | 86.88 ± 0.96 d | 243.59 ± 1.64 c | 124.18 ± 1.38 b | 13.67 ± 0.65 d | 1.76 ± 0.18 b |
Species | Parts | Methods | AChE | BChE | Tyrosinase | Amylase | Glucosidase |
---|---|---|---|---|---|---|---|
(mg GALAE/g) | (mg KAE/g) | (mmol ACAE/g) | |||||
J. curcas | Leaves | HAE | 2.36 ± 0.25 a | 1.59 ± 0.12 c | 56.30 ± 3.24 a | 0.62 ± 0.02 a | 0.65 ± 0.01 b |
MAC | Na | 2.06 ± 0.20 b | 48.46 ± 0.57 b | 0.62 ± 0.01 a | 0.63 ± 0.01 c | ||
Stem bark | HAE | 2.04 ± 0.02 a | 3.35 ± 0.16 a | 40.51 ± 4.38 c | 0.31 ± 0.01 b | 0.81 ± 0.01 a | |
MAC | 2.08 ± 0.03 a | 3.68 ± 0.15 a | 38.14 ± 0.54 c | 0.28 ± 0.03 b | 0.81 ± 0.01 a | ||
J. gossypifolia | Leaves | HAE | 1.46 ± 0.13 b | 0.65 ± 0.07 a | 53.42 ± 4.15 a | 0.58 ± 0.01 a | 0.79 ± 0.01 b |
MAC | 1.12 ± 0.18 c | Na | 50.43 ± 0.81 a | 0.55 ± 0.01 b | 0.79 ± 0.01 ab | ||
Stem bark | HAE | 1.92 ± 0.13 a | 0.50 ± 0.07 b | 55.09 ± 3.54 a | 0.49 ± 0.01 c | Na | |
MAC | 2.06 ± 0.03 a | 0.72 ± 0.06 a | 57.59 ± 0.33 a | 0.43 ± 0.01 d | 0.81 ± 0.01 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zengin, G.; Mahomoodally, M.F.; Sinan, K.I.; Ak, G.; Etienne, O.K.; Sharmeen, J.B.; Brunetti, L.; Leone, S.; Di Simone, S.C.; Recinella, L.; et al. Chemical Composition and Biological Properties of Two Jatropha Species: Different Parts and Different Extraction Methods. Antioxidants 2021, 10, 792. https://doi.org/10.3390/antiox10050792
Zengin G, Mahomoodally MF, Sinan KI, Ak G, Etienne OK, Sharmeen JB, Brunetti L, Leone S, Di Simone SC, Recinella L, et al. Chemical Composition and Biological Properties of Two Jatropha Species: Different Parts and Different Extraction Methods. Antioxidants. 2021; 10(5):792. https://doi.org/10.3390/antiox10050792
Chicago/Turabian StyleZengin, Gokhan, Mohamad Fawzi Mahomoodally, Kouadio Ibrahime Sinan, Gunes Ak, Ouattara Katinan Etienne, Jugreet B. Sharmeen, Luigi Brunetti, Sheila Leone, Simonetta Cristina Di Simone, Lucia Recinella, and et al. 2021. "Chemical Composition and Biological Properties of Two Jatropha Species: Different Parts and Different Extraction Methods" Antioxidants 10, no. 5: 792. https://doi.org/10.3390/antiox10050792
APA StyleZengin, G., Mahomoodally, M. F., Sinan, K. I., Ak, G., Etienne, O. K., Sharmeen, J. B., Brunetti, L., Leone, S., Di Simone, S. C., Recinella, L., Chiavaroli, A., Menghini, L., Orlando, G., Jekő, J., Cziáky, Z., & Ferrante, C. (2021). Chemical Composition and Biological Properties of Two Jatropha Species: Different Parts and Different Extraction Methods. Antioxidants, 10(5), 792. https://doi.org/10.3390/antiox10050792