Weight Change after Striatal/Capsule Deep Brain Stimulation Relates to Connectivity to the Bed Nucleus of the Stria Terminalis and Hypothalamus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Surgical Procedure
2.3. Reconstruction of Volume of Tissue Activated and Connectivity Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Benabid, A.L.; Chabardes, S.; Mitrofanis, J.; Pollak, P.; Bergman, H.; Wichmann, T.; DeLong, M.; Aziz, T.; Peggs, D.; Sambrook, M.; et al. Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet. Neurol. 2009, 8, 67–81. [Google Scholar] [CrossRef]
- Alonso, P.; Cuadras, D.; Gabriëls, L.; Denys, D.; Goodman, W.; Greenberg, B.D.; Jimenez-Ponce, F.; Kuhn, J.; Lenartz, D.; Mallet, L.; et al. Deep brain stimulation for obsessive-compulsive disorder: A meta-analysis of treatment outcome and predictors of response. PLoS ONE 2015, 10, e0133591. [Google Scholar] [CrossRef] [PubMed]
- Müller, U.J.; Voges, J.; Steiner, J.; Galazky, I.; Heinze, H.J.; Möller, M.; Pisapia, J.; Halpern, C.; Caplan, A.; Bogerts, B.; et al. Deep brain stimulation of the nucleus accumbens for the treatment of addiction. Ann. N. Y. Acad. Sci. 2013, 1282, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Van Dyck-Lippens, P.J.; Santegoeds, R.; Van Kuyck, K.; Gabriëls, L.; Lin, G.; Pan, G.; Li, Y.; Li, D.; Zhan, S.; et al. Deep-Brain stimulation for anorexia nervosa. World Neurosurg. 2013, 8, 44. [Google Scholar] [CrossRef]
- McLaughlin, N.C.R.; Didie, E.R.; MacHado, A.G.; Haber, S.N.; Eskandar, E.N.; Greenberg, B.D. Improvements in anorexia symptoms after deep brain stimulation for intractable obsessive-compulsive disorder. Biol. Psychiatry 2013, 73, e29–e31. [Google Scholar] [CrossRef] [PubMed]
- Tronnier, V.M.; Rasche, D.; Thorns, V.; Alvarez-Fischer, D.; Münte, T.F.; Zurowski, B. Massive weight loss following deep brain stimulation of the nucleus accumbens in a depressed woman. Neurocase 2018, 24, 49–53. [Google Scholar] [CrossRef]
- Mantione, M.; Van De Brink, W.; Schuurman, P.R.; Denys, D. Smoking cessation and weight loss after chronic deep brain stimulation of the nucleus accumbens: Therapeutic and research implications: Case report. Neurosurgery 2010, 66, E218. [Google Scholar] [CrossRef] [PubMed]
- Harat, M.; Rudaś, M.; Zieliński, P.; Birska, J.; Sokal, P. Nucleus accumbens stimulation in pathological obesity. Neurol. Neurochir. Pol. 2016, 50, 207–210. [Google Scholar] [CrossRef]
- Linssen, R.S.N.; Oudijn, M.S.; Mantione, M.; van den Munckhof, P.; Denys, D.; Schuurman, P.R. Body Weight Changes after Deep Brain Stimulation for Obsessive-Compulsive Disorder or Depression. Stereotact. Funct. Neurosurg. 2017, 95, 348–351. [Google Scholar] [CrossRef]
- Fox, M.D. Mapping Symptoms to Brain Networks with the Human Connectome. N. Engl. J. Med. 2018, 379, 2237–2245. [Google Scholar] [CrossRef][Green Version]
- Luo, S.X.; Huang, J.; Li, Q.; Mohammad, H.; Lee, C.-Y.; Krishna, K.; Kok, A.M.-Y.; Tan, Y.L.; Lim, J.Y.; Li, H.; et al. Regulation of feeding by somatostatin neurons in the tuberal nucleus. Science 2018, 361, 76–81. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Huys, D.; Kohl, S.; Baldermann, J.C.; Timmermann, L.; Sturm, V.; Visser-Vandewalle, V.; Kuhn, J. Open-label trial of anterior limb of internal capsule–nucleus accumbens deep brain stimulation for obsessive-compulsive disorder: Insights gained. J. Neurol. Neurosurg. Psychiatry 2019, 90, 805–812. [Google Scholar] [CrossRef] [PubMed]
- Horn, A.; Li, N.; Dembek, T.A.; Kappel, A.; Boulay, C.; Ewert, S.; Tietze, A.; Husch, A.; Perera, T.; Neumann, W.J.; et al. Lead-DBS v2: Towards a comprehensive pipeline for deep brain stimulation imaging. Neuroimage 2019, 184, 293–316. [Google Scholar] [CrossRef] [PubMed]
- Horn, A.; Reich, M.; Vorwerk, J.; Li, N.; Wenzel, G.; Fang, Q.; Schmitz-Hübsch, T.; Nickl, R.; Kupsch, A.; Volkmann, J.; et al. Connectivity Predicts deep brain stimulation outcome in Parkinson disease. Ann. Neurol. 2017, 82, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Yeo, B.T.; Krienen, F.M.; Sepulcre, J.; Sabuncu, M.R.; Lashkari, D.; Hollinshead, M.; Roffman, J.L.; Smoller, J.W.; Zollei, L.; Polimeni, J.R.; et al. The Organization of the Human Cerebral Cortex Estimated By Functional Connectivity. J. Neurophysiol 2011, 106, 1125–1165. [Google Scholar] [CrossRef]
- Baldermann, J.C.; Melzer, C.; Zapf, A.; Kohl, S.; Timmermann, L.; Tittgemeyer, M.; Huys, D.; Visser-Vandewalle, V.; Kühn, A.A.; Horn, A.; et al. Connectivity Profile Predictive of Effective Deep Brain Stimulation in Obsessive-Compulsive Disorder. Biol. Psychiatry 2019, 85, 735–743. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.J.; Elias, G.J.B.; Lozano, A.M. Neuromodulation for the treatment of eating disorders and obesity. Adv. Psychopharmacol. 2018, 8, 73–92. [Google Scholar] [CrossRef]
- Chan, O.; Sherwin, R.S. Hypothalamic regulation of glucose-stimulated insulin secretion. Diabetes 2012, 61, 564–565. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Li, B.; Brooks, V.L. Role of the paraventricular nucleus of the hypothalamus in the sympathoexcitatory effects of leptin. Hypertension 2015, 66, 1034–1041. [Google Scholar] [CrossRef]
- Jennings, J.H.; Rizzi, G.; Stamatakis, A.M.; Ung, R.L.; Stuber, G.D. The inhibitory circuit architecture of the lateral hypothalamus orchestrates feeding. Science 2013, 341, 1517–1521. [Google Scholar] [CrossRef]
- Schag, K.; Schönleber, J.; Teufel, M.; Zipfel, S.; Giel, K.E. Food-related impulsivity in obesity and Binge Eating Disorder—A systematic review. Obes. Rev. 2013, 14, 477–495. [Google Scholar] [CrossRef] [PubMed]
- Castro, D.C.; Cole, S.L.; Berridge, K.C. Lateral hypothalamus, nucleus accumbens, and ventral pallidum roles in eating and hunger: Interactions between homeostatic and reward circuitry. Front. Syst. Neurosci. 2015, 9. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, M.R.; Berridge, K.C.; Mahler, S.V. Endocannabinoid-Enhanced “liking” in Nucleus Accumbens Shell Hedonic Hotspot Requires Endogenous Opioid Signals. Cannabis Cannabinoid Res. 2018, 3, 166–170. [Google Scholar] [CrossRef]
- van der Plasse, G.; Schrama, R.; van Seters, S.P.; Vanderschuren, L.J.M.J.; Westenberg, H.G.M. Deep brain stimulation reveals a dissociation of consummatory and motivated behaviour in the medial and lateral nucleus accumbens shell of the rat. PLoS ONE 2012, 7, e33455. [Google Scholar] [CrossRef] [PubMed]
- Kullmann, S.; Heni, M.; Linder, K.; Zipfel, S.; Häring, H.U.; Veit, R.; Fritsche, A.; Preissl, H. Resting-state functional connectivity of the human hypothalamus. Hum. Brain Mapp. 2014, 35, 6088–6096. [Google Scholar] [CrossRef]
- Contreras-Rodríguez, O.; Vilar-López, R.; Andrews, Z.B.; Navas, J.F.; Soriano-Mas, C.; Verdejo-García, A. Altered cross-talk between the hypothalamus and non-homeostatic regions linked to obesity and difficulty to lose weight. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Albert, U.; Aguglia, A.; Chiarle, A.; Bogetto, F.; Maina, G. Metabolic syndrome and obsessive-compulsive disorder: A naturalistic Italian study. Gen. Hosp. Psychiatry 2013, 35, 154–159. [Google Scholar] [CrossRef]
SUBJECT | AGE | SEX | DIAGNOSIS | BMI PRE-DBS | WEIGHT PRE-DBS (KG) | WEIGHT POST-DBS (KG) | WEIGHT AT LAST FOLLOW-UP (MONTHS AFTER DBS) |
---|---|---|---|---|---|---|---|
1 | 52 | f | OCD | 25 | 67.00 | 57.00 | 55.00 (20) |
2 | 31 | m | OCD | 32 | 113.20 | 104.80 | 114.30 (41) |
3 | 40 | f | OCD | 18 | 49.00 | 47.00 | 48.10 (35) |
4 | 56 | f | OCD | 25 | 74.60 | 72.00 | 72.00 (16) |
5 | 31 | f | OCD | 34 | 121.00 | 117.00 | NA |
6 | 27 | m | ADD | 31 | 92.60 | 90.00 | NA |
7 | 39 | f | OCD | 29 | 87.90 | 86.00 | NA |
8 | 57 | m | ADD | 41 | 126.70 | 126.00 | 126.00 (16) |
9 | 34 | m | ADD | 27 | 88.40 | 88.40 | NA |
10 | 56 | m | OCD | 31 | 97.50 | 98.00 | NA |
11 | 46 | m | OCD | 24 | 81.90 | 82.60 | 82.30 (19) |
12 | 39 | f | OCD | 21 | 54.00 | 55.00 | 63.00 (23) |
13 | 37 | f | OCD | 37 | 108.10 | 111.60 | NA |
14 | 66 | m | OCD | 27 | 88.60 | 92.40 | NA |
15 | 34 | f | OCD | 31 | 78.10 | 81.60 | NA |
16 | 28 | m | OCD | 28 | 88.50 | 93.90 | 100.00 (19) |
17 | 60 | f | OCD | 32 | 97.00 | 105.00 | NA |
18 | 38 | f | OCD | 26 | 77.00 | 84.00 | NA |
19 | 67 | f | OCD | 28 | 80.00 | 90.40 | 75.50 (42) |
20 | 52 | m | ADD | 20 | 69.00 | 78.00 | 78.00 (19) |
21 | 49 | m | OCD | 27 | 85.00 | 97.70 | 92.00 (20) |
22 | 62 | m | OCD | 37 | 120.30 | 138.50 | 134.10 (35) |
23 | 39 | f | ADD | 21 | 56.60 | 66.00 | NA |
24 | 37 | f | OCD | 30 | 73.00 | 93.00 | 89 (20) |
25 | 57 | f | OCD | 32 | 86.00 | 120.00 | 122.1 (24) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baldermann, J.C.; Hahn, L.; Dembek, T.A.; Kohl, S.; Kuhn, J.; Visser-Vandewalle, V.; Horn, A.; Huys, D. Weight Change after Striatal/Capsule Deep Brain Stimulation Relates to Connectivity to the Bed Nucleus of the Stria Terminalis and Hypothalamus. Brain Sci. 2019, 9, 264. https://doi.org/10.3390/brainsci9100264
Baldermann JC, Hahn L, Dembek TA, Kohl S, Kuhn J, Visser-Vandewalle V, Horn A, Huys D. Weight Change after Striatal/Capsule Deep Brain Stimulation Relates to Connectivity to the Bed Nucleus of the Stria Terminalis and Hypothalamus. Brain Sciences. 2019; 9(10):264. https://doi.org/10.3390/brainsci9100264
Chicago/Turabian StyleBaldermann, Juan Carlos, Lisa Hahn, Till A. Dembek, Sina Kohl, Jens Kuhn, Veerle Visser-Vandewalle, Andreas Horn, and Daniel Huys. 2019. "Weight Change after Striatal/Capsule Deep Brain Stimulation Relates to Connectivity to the Bed Nucleus of the Stria Terminalis and Hypothalamus" Brain Sciences 9, no. 10: 264. https://doi.org/10.3390/brainsci9100264